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Abstract

We consider three types of stabilizability defined for discrete nD systems

within the behavioral framework, namely: trajectory stabilizability, set- con-

trollability to a stable behavior and stabilizability by interconnection. As a

first step, we introduce and fully characterize the underlying stability notion.

Then, we formalize the definitions of these properties and investigate what

is the relationship among them.

1 Introduction

As is well known, the central idea in the behavioral approach to control is the one

of interconnection. This consists in the intersection of a given behavior to be con-

trolled with a suitable controller-behavior, in order to obtain a desired (controlled)

behavior. The classical stabilization problem can be then reformulated in terms of
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interconnections as the search for a controller-behavior that yields a stable con-

trolled behavior. In this context, a behavior that admits a stabilizing controller is

said to be stabilizable.

On the other hand, stabilizability has also been defined in terms of trajectory

concatenation. Indeed, a 1D behavior B is defined to be stabilizable if all its tra-

jectories can be concatenated with trajectories that tend to zero as time goes to

infinity, [1]; as we shall see this definition can be generalized to the multidimen-

sional case.

Still at the level of trajectory concatenation, the notion of set controllability

has been introduced in [2]. A behavior B is said to be set-controllable to a sub-

behavior B∗ ⊂ B if its trajectories can be driven to B∗ in the sense that they can

be concatenated with some trajectory in this sub-behavior. In this framework, a

stabilizable behavior could be defined as one that is set-controllable to a stable

sub-behavior.

This leads us to three different types of stabilization properties, which in the

sequel will be referred to as stabilization by interconnection, trajectory stabiliza-

tion and set stabilization, respectively. A natural question to pose is what is the

relationship between all these properties. For the one-dimensional (1D) case, the

results in [3], [2] and [1] allow to conclude that they are all equivalent. However

the 1D techniques used in [3] and [1] do not extend to higher dimensions.

The main purpose of this contribution is to characterize and compare the afore-

mentioned stabilization properties for nD behaviors defined over the discrete grid

Zn. Clearly, this presupposes a definition of stability. Here we shall adapt the one

introduced in [4] for the continuous case, which is defined with respect to given

stability cones.

2



Some results on the stabilizability of two-dimensional systems have also been

obtained in [5], but with a different underlying notion of stability and without ad-

dressing the relationship with stabilization by interconnection. On the other hand,

the stabilization of nD behaviors by interconnection has been partially studied in

[4] for the continuous case, but without a connection with trajectory- or set stabi-

lizability.

The paper is organized as follows. Section 2 contains the necessary preliminary

concepts and results. In Section 3 we introduce the stability property to be used

in the sequel and derive some new results that will be relevant for our study of

stabilization. Section 4 is devoted to the characterization of the three stabilizabil-

ity properties, as well as to the study of the relationship among these properties.

Finally, some concluding remarks are presented in Section 5.

2 Preliminaries

In order to state more precisely the questions to be considered, we introduce some

preliminary notions and results.

2.1 Kernel behaviors

We consider nD behaviors B defined over Zn that can be described by a set of

linear partial difference equations, i.e.,

B = ker H(σ, σ−1) := {w ∈ U | H(σ, σ−1)w ≡ 0},

where U is the trajectory universe, here taken to be (Rq)Zn , σ = (σ1, . . . , σn),

σ−1 = (σ−1
1 , . . . , σ−1

n ), the σi’s are the elementary nD shift operators (defined by
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σiw(k) = w(k + ei), for k ∈ Zn, where ei is the ith element of the canonical basis

of Rn) and H(s, s−1) is an nD Laurent-polynomial matrix known as representa-

tion of B. We shall refer to these behaviors as kernel behaviors. An important

characterization of kernel behaviors is the following.

Theorem 1 [6] B ⊂ (Rq)Zn
is a kernel behavior if and only if it is a linear,

shift-invariant (i.e, σi(B) = B, i = 1, . . . , n) and closed (in the point-wise con-

vergence topology) subspace of (Rq)Zn
.

Instead of characterizing B by means of a representation matrix H , it is also

possible to characterize it by means of its orthogonal module Mod(B), which

consists of all the nD Laurent-polynomial rows r(s, s−1) ∈ R1×q[s, s−1] such

that B ⊂ ker r(σ, σ−1), and can be shown to coincide with the R[s, s−1]-module

RM(H) generated by the rows of H , i.e., Mod(B) = RM(H(s, s−1)).

It turns out that sums and intersections of kernel behaviors can be formulated in

terms of the corresponding modules.

Theorem 2 [7] Let B1 and B2 be two nD kernel behaviors. Then, B1 + B2 and

B1 ∩B2 are also nD kernel behaviors and

1. Mod(B1 + B2) = Mod(B1) ∩Mod(B2)

2. Mod(B1 ∩B2) = Mod(B1) + Mod(B2)

The notions of controllability and autonomy play an important role in the sequel.

Although controllability is originally defined in a different way, here we say that

an nD kernel behavior B = ker R(σ, σ−1) is controllable if besides being a kernel

it is also an image, i.e., if there exists M(s, s−1) such that B = imM(σ, σ−1). On

the other hand, we say that a behavior is autonomous if it has no free variables
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(or inputs). B = ker R(σ, σ−1) is autonomous if and only if R(s, s−1) has full

column rank (over R[s, s−1]), [8].

As also shown in [8], every nD kernel behavior B can be decomposed into a sum

B = Bc + Ba,

where Bc is the controllable part of B (defined as the largest controllable sub-

behavior of B) and Ba is a (non-unique) autonomous sub-behavior said to be an

autonomous part of B. If Ba is an autonomous part of B such that B = Bc⊕Ba,

we shall say that Ba is a direct summand of B.

An interesting case is when the controllable part Bc is rectifiable. An nD behavior

B = ker R(σ, σ−1) ⊂ (Rq)Zn is said to be rectifiable if there exists an invertible

operator U(σ, σ−1), where U(s, s−1) is an nD Laurent-polynomial matrix, such

that U(σ, σ−1)(B) = ker[Il 0], where Il is the l × l identity matrix, for some

l ∈ {1, . . . , q}. This is equivalent to say that R(s, s−1) is zero left-prime (ZLP),

see [2]. When a rectifying operator exists, it is possible to take advantage of the

simplified form of the rectified behaviors in order to derive various results. In

particular, it is not difficult to obtain the next proposition.

Proposition 1 Let B = ker R(σ, σ−1) ⊂ (Rq)Zn
be an nD kernel behavior with

rectifiable controllable part Bc and U(σ, σ−1) be a corresponding rectifying op-

erator such that U(σ, σ−1)(Bc) = ker[Il 0]. Then the following are equivalent.

1. B = Bc ⊕Ba

2. Ba = ker

 P 0

X Iq−l

U , with P (s, s−1) such that R = [P 0]U and

X(s, s−1) an arbitrary Laurent-polynomial matrix of suitable size.
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Note that the behaviors Ba of Proposition 1 always exist and are autonomous.

Thus, this result states that every behavior with rectifiable controllable part has

direct summands and, moreover, gives a parametrization for all such summands.

This yields the following parametrization of U(B).

Corollary 1 Let B = ker R(σ, σ−1) ⊂ (Rq)Zn
be an nD kernel behavior with

rectifiable controllable part Bc and U(σ, σ−1) be a corresponding rectifying op-

erator such that U(σ, σ−1)(Bc) = ker[Il 0]. Then

U(B) =

 0

(Rq−l)Zn

⊕
 Il

Y

 ker P,

with P (s, s−1) such that R = [P 0]U and Y (s, s−1) an arbitrary Laurent-

polynomial matrix of suitable size.

To conclude this subsection, we present two theorems that are crucial for our pur-

poses.

The first one is an immediate consequence of the variable elimination property

obtained in [9] and states that the components of the variable of a nD kernel be-

havior are themselves trajectories of an nD kernel behavior.

More concretely, given a behavior B ⊂ (Rq)Zn , with variable w = [w1 . . . wq]
T ,

define its projection with respect to the ith-component of w as

Πi(B) = {wi ∈ RZn | ∃ wj, i 6= j = 1, . . . , q : [w1 . . . wq]
T ∈ B}.

Theorem 3 If B ⊂ (Rq)Zn
is an nD kernel behavior whose variable w has com-

ponents wi, i = 1, . . . , q, then Πi(B) is also an nD kernel behavior.

The second important theorem is a consequence of the results and reasonings pre-

sented in [10] and amounts to say that the restriction of an nD kernel behavior to

6



one of the axes in Zn is a 1D kernel behavior.

To state this more precisely, given a kernel behavior B ⊂ (Rq)Zn , define its re-

striction to the axis kej , k ∈ Z as

Bj = {v(k) ∈ (Rq)Z | ∃ w ∈ B : w(kej) = v(k)}.

Moreover, consider the map Lj : (Rq)Zn → (Rq)Z defined by Lj(w) = vj , with

vj(k) = w(kej), k ∈ Z. This map is linear, and is continuous when the vector

spaces (Rq)Zn and (Rq)Z are equipped with the topology of point-wise conver-

gence. This allows to prove (cf. [10]) that Bj = Lj(B) is a linear closed subspace

of (Rq)Z. Since, moreover, Bj is clearly (1D) shift-invariant, by Theorem 1 we

conclude that Bj is a kernel behavior.

Theorem 4 If B ⊂ (Rq)Zn
is an nD kernel behavior, then the behavior Bj (as

previously defined) is a 1D kernel behavior.

2.2 Interconnections and control

Given two behaviors B1 and B2 their interconnection is defined as the intersection

B1 ∩B2. This interconnection is said to be regular if

Mod(B1) ∩Mod(B2) = {0}.

Regular interconnections correspond to a lack of overlapping between the laws of

the interconnected behaviors and play an important role in behavioral control, [1].

Based on the notion of behavior interconnection it is possible to formulate a con-

trol problem in set theoretic terms. Indeed, if P is the behavior of the system to be

controlled (the plant) and C is the set of all signals compatible with the additional
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restrictions to be imposed on w, i.e., the controller, then the resulting controlled

behavior is given by the interconnection

P ∩ C (1)

of the behaviors P and C. Thus, in the behavioral setting, a control problem con-

sists in, given a desired controlled behavior D, finding a full controller C such that

its interconnection (1) with the plant behavior P results in D. In case this inter-

connection is regular, the controller is called a regular controller and the desired

behavior D is said to be achievable by regular interconnection.

Achievability by regular interconnection has been characterized in [2] for general

pairs of behaviors and desired sub-behaviors. Here we shall consider a particu-

lar case, namely the achievability of direct summands of a behavior by regular

interconnection.

Theorem 5 Let B ⊂ (Rq)Zn
and B∗ ⊂ B be two nD kernel behaviors such that

B = Bc ⊕B∗, where Bc denotes the controllable part of B. Then the following

conditions are equivalent:

1. B∗ is achievable from B by regular interconnection

2. Bc is rectifiable.

Proof:

1 ⇒ 2: The fact that B = Bc ⊕B∗ can be formulated in terms of modules as

Mod(Bc) ∩Mod(B∗) = Mod(B) (2)

and

Mod(Bc) + Mod(B∗) = R1×q[s, s−1]. (3)
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Assume that B∗ is achievable from B by regular interconnection. This means that

there exists a controller behavior C such that, again in terms of modules,

Mod(B) + Mod(C) = Mod(B∗) (4)

and

Mod(B) ∩Mod(C) = {0} ⊂ R1×q[s, s−1]. (5)

Now, from (3) and (4), and taking into account that Mod(B) ⊂ Mod(Bc) (cf.

(2)), it follows that

Mod(Bc) + Mod(C) = R1×q[s, s−1]. (6)

On the other hand, since (by (4)) Mod(C) ⊂ Mod(B∗), Mod(Bc) ∩Mod(C) ⊂

Mod(Bc)∩Mod(B∗) = Mod(B). This clearly implies that Mod(Bc)∩Mod(C) ⊂

Mod(B) ∩Mod(C) and therefore, due to (5),

Mod(Bc) ∩Mod(C) = {0} ⊂ R1×q[s, s−1]. (7)

Equations (6) and (7) mean that the zero behavior {0} ⊂ (Rq)Zn is achievable

from Bc by regular interconnection, i.e., Bc is rectifiable.

2⇒ 1: Assume now that Bc is rectifiable. Let U(σ, σ−1) be an invertible operator

such that

U(σ, σ−1)(Bc) = ker[Il 0].

Then the achievability of B∗ from B by regular interconnection is equivalent to

the achievability of U(σ, σ−1)(B∗) from U(σ, σ−1)(B) by regular interconnec-

tion. Moreover, note that, since B = Bc ⊕B∗, also

U(σ, σ−1)(B) = U(σ, σ−1)(Bc)⊕ U(σ, σ−1)(B∗).
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This implies that, for some nD Laurent-polynomial matrices P (s, s−1) and X(s, s−1)

with l columns,

U(σ, σ−1)(B∗) = ker

 P (σ, σ−1) 0

X(σ, σ−1) Iq−l


and

U(σ, σ−1)(B) = ker[P (σ, σ−1) 0].

Thus, U(σ, σ−1)(B∗) is achievable by the interconnection of ker[X(σ, σ−1) Iq−l]

with U(σ, σ−1)(B), which is a regular one, allowing to conclude that also the

behavior B∗ is achievable from B by regular interconnection.

2.3 Set-controllability

Another notion that will be relevant in our study is the one of set-controllability.

This is defined in terms of trajectory concatenability. Two trajectories w1 and w2

of a behavior B evolving over Rn are said to be concatenable with respect to a

pair (T1, T2) of subsets of Rn if there exists a third trajectory w ∈ B coinciding

with w1 in T1 and with w2 in T2.

Definition 1 An nD behavior B is said to be set-controllable to a sub-behavior

B∗ ⊂ B if the following holds: there exists a ρ > 0 such that for any w ∈ B

there exists w∗ ∈ B∗ such that, for any sets T1, T2 ⊂ Zn with d(T1, T2) ≥ ρ, w

and w∗ are concatenable with respect to (T1, T2).

Here, w can be interpreted as a given system trajectory and w∗ is some trajec-

tory in the desired subsystem into which w can be controlled by means of an

adequate driving trajectory. Among others, the following characterization of set-

controllability is given in [2].
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Theorem 6 Let B and B∗ ⊂ B be two nD kernel behaviors. Then B is set-

controllable to B∗ if and only if

B = Bc + B∗,

where Bc denotes the controllable behavior of B.

The connection between set-controllability to a behavior B∗ ⊂ B and achievabil-

ity of B∗ (from B) by regular interconnection has been investigated in [2].

Theorem 7 [2] Let B and B∗ ⊂ B be two nD kernel behaviors. If B∗ is achiev-

able from B by regular interconnection then B is set-controllable to B∗.

However, for n ≥ 2 set-controllability does not imply achievability by regular

interconnection.

3 Stability

A discrete 1D behavior B ⊂ (Rq)Z is said to be stable if all its trajectories tend

to the origin as time goes to infinity. In the nD case, we shall define stability

with respect to a specified stability region by adapting the ideas in [4] to the

discrete case. For this purpose we identify a direction in Zn with an element

d = (d1, . . . , dn) ∈ Zn whose components are coprime integers, and define a sta-

bility cone in Zn as the set of all positive integer linear combinations of n linearly

independent directions. This is formalized as follows.

Definition 2 A stability cone S ⊂ Zn is a set of the form

S = {s = α1d1 + . . . + αndn | αi ∈ Z+
0 , i = 1, . . . n}

where d1, . . . dn are n linearly independent directions in Zn.
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Note that, according to this definition, a stability cone is always a ”full” cone, in

the sense that it contains a basis of directions.

By a half-line associated with a direction d ∈ Zn we mean the set of all points of

the form αd where α is a nonnegative integer; clearly, the half-lines in a stability

cone S are the ones associated with the directions d ∈ S.

Definition 3 Given a stability cone S ⊂ Zn, a trajectory w ∈ (Rq)Zn
is said to

be S-stable if it tends to zero along every half line in S. A behavior B is S-stable

if all its trajectories are S-stable.

Lemma 1 Every nD kernel behavior B ⊂ (Rq)Zn
which is stable with respect

to some stability cone S is a finite dimensional linear subspace of the trajectory

universe, (Rq)Zn
.

Proof: Assume that the behavior B is S-stable, for some stability cone S. It is

not difficult to see that an appropriate change of independent variables transforms

S into the first orthant. Therefore we shall assume, without loss of generality, that

S is the first orthant in Zn.

Let then B ⊂ (Rq)Zn be an nD behavior which is stable with respect to the

first orthant. According to the definition of stability, this means that the sys-

tem trajectories w tend to zero along the positive axes defined by e1, . . . , en, i.e.,

limk→+∞w(kej) = 0, for j = 1, . . . , n. This implies that the same happens for

the components wi of w, i = 1, . . . , q. In other words, each univariate nD behavior

ΠiB is stable with respect to the first orthant.

Consider now the restriction (ΠiB)j = Lj(ΠiB) of the behavior ΠiB to the

axis kej, k ∈ Z. By Theorem 4, this is a (univariate) 1D kernel behavior. More-

over, (ΠiB)j is stable, since its trajectories vj clearly satisfy limk→+∞ vj(k) = 0.
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This implies that the variable vj is not free, which in turn means that (ΠiB)j =

ker pj(σ, σ−1) for some nonzero Laurent-polynomial pj(s, s
−1), where σ denotes

the 1D shift. Translating this in terms of the trajectories wi, we obtain

pj(σj, σ
−1
j )wi(kej) = 0, k ∈ Z,

and, by the shift-invariance of B, we may conclude that

pj(σj, σ
−1
j )wi ≡ 0.

Letting j = 1, . . . , n, yields that the components wi of the system trajectories

w ∈ B must satisfy the following set of n decoupled difference equations:
p1(σ1, σ

−1
1 )

...

pn(σn, σ
−1
n )

wi ≡


0
...

0

 .

It is not difficult to check that, under these conditions, Bi is a finite dimensional

subspace of RZn , i = 1, . . . , q.

Since B ⊂ B1 × . . .×Bq, we conclude that also B is finite dimensional.

Finite dimensional nD behaviors are known as strongly autonomous [4]. Thus,

stability with respect to a stability cone S implies strong autonomy, leaving out

the class of infinite dimensional autonomous behaviors. The definition of stability

used in [5] does not exclude this class of systems, but is focussed on 2D behaviors

and seems to be somewhat difficult to generalize to the higher dimensional case.

In order to characterize stability, it is convenient to introduce some preliminary

notation. Given two elements λ = (λ1, . . . , λn) ∈ Cn and k = (k1, . . . , kn) ∈ Zn,

we define

λk := λk1
1 . . . λkn

n .
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With this notation an nD q-vector polynomial function p(k) of k is such that

p(k) =
∑
i∈I

αik
i,

where I ⊂ (Z+)n is a finite multi-index set and αi ∈ Rq.

Given an nD Laurent-polynomial matrix R(s, s−1) with full column rank, a zero

of R is defined as λ ∈ (C \ {0})n such that

rank R(λ, λ−1) < rank R(s, s−1),

where, the first rank is taken over C and the second one over R[s, s−1]. Now, let B

be an autonomous behavior. Since the set of zeros of the different representations

of B coincide, we may define the set N (B) of zeros of the behavior B as the

set of zeros of any of its kernel representations. As pointed out in [8], B is finite

dimensional if and only of N (B) is a finite set. In the sequel, whenever we refer

to N (B) we implicitly suppose that B is autonomous.

Theorem 8 Let B ⊂ (Rq)Zn
be an nD kernel behavior, and let S be a stability

cone. The the following are equivalent:

1. B is S-stable

2. N (B) is finite and for every zero λ ∈ N (B) and every direction d ∈ S,

|λd| < 1.
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Proof:

1 ⇒ 2 : Assume that B is an S-stable behavior. Then, by Lemma 1, B is finite

dimensional and hence N (B) is finite. Now, for each λ ∈ N (B), there exists

a vector vλ ∈ Rq \ {0} such that the trajectory wλ defined by wλ(k) = vλλ
k

is in B (here, for simplicity, we identify B with its complexification, since the

stability properties of these two behaviors are the same). Thus, wλ must tend to

zero along the half-line kd, k ∈ Z, k ≥ 0, associated with every direction d ∈ S.

But wλ(kd) = vλ(λ
d)k, and therefore the requirement that limk→+∞wλ(kd) = 0

implies that |λd| < 1.

2⇒ 1 : Assume now thatN (B) is finite. Then, every trajectory w ∈ B is a linear

combination of trajectories of the form w(p,λ)(k) = p(k)λk, for some suitable

nonzero nD q-vector polynomial function p(k). Since, for k ∈ Z, w(p,λ)(kd) =

p̃(k)(λd)k, for some 1D q-vector polynomial function p̃(k), if |λd| < 1 for every

direction d ∈ S, limk→+∞w(p,λ)(kd) = 0 and, consequently the same happens for

w. Thus B is S-stable.

Motivated by this result, given a stability cone S, we shall say that λ ∈ Cn is

S-stable if for every direction d ∈ S, |λd| < 1.

Thus, Theorem 8 can be rephrased as: B is S-stable if and only if it has a

finite number of zeros and these zeros are S-stable. The S-stability of the zeros

of B is the discrete version of the sufficient condition obtained in [4] for the

continuous case. The fact that in our case this a necessary and sufficient condition

is a consequence of the finite dimensionality of discrete S-stable behaviors.
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4 Stabilization properties

4.1 Stabilization by interconnection

Our definition of S-stabilizability by interconnection is similar to the definition of

stabilizability with respect to a cone S proposed in [4], but has the extra require-

ment of regularity.

Definition 4 Given a stability cone S ⊂ Zn, we say that an nD kernel behavior

B ⊂ (Rq)Zn
is S-stabilizable by interconnection if there exists an S-stable sub-

behavior Bs ⊂ B that is achievable from B by regular interconnection.

An easy consequence of Theorems 7 and 6 is the following necessary condition.

Theorem 9 Let B ⊂ (Rq)Zn
be an nD kernel behavior and S ⊂ Zn be a stability

cone. Let further Bc denote the controllable part of B. If B is S-stabilizable

by interconnection then there exists an S-stable sub-behavior Bs of B such that

B = Bc + Bs.

The condition of the theorem is not sufficient since the stable summand Bs is not

guaranteed to be achievable from B by regular interconnection. If Bs happens to

be a direct summand of B, then, by Theorem 5, it is achievable from B by regular

interconnection if and only if Bc is rectifiable.

On the other hand, if we restrict ourselves to the rectifiable case it is not difficult

to prove that B is S-stabilizable by interconnection if and only if there exists a

stable behavior Bs which is a direct summand of B. Recalling Proposition 1, and

using the therein defined notation, if U is an operator that rectifies Bc, we obtain
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that

U(Bs) = ker

 P 0

X Iq−l

 .

Therefore, U(Bs) is S-stable if and only if ker P is S-stable. This clearly applies

to any other direct summand of B. Moreover U(Bs) is S-stable if and only if

the same holds for Bs. This allows to formulate the next characterization of S-

stabilizability by interconnection in the rectifiable case.

Proposition 2 Let B ⊂ (Rq)Zn
= ker R(σ, σ−1) be an nD kernel behavior and

S ⊂ Zn be a stability cone. Assume that the controllable part Bc of B is rectifi-

able. Further, let U(s, s−1) be a rectifying operator for Bc and P (s, s−1) be such

that R = [P 0]U . Then the following statements are equivalent.

1. B is S-stabilizable by interconnection

2. Every direct summand of B is stable

3. ker P (σ, σ−1) is S-stable.

Remark Imposing the assumption of rectifiability to the controllable part of B

may be restrictive in the context of stabilization. However, the situation is different

if instead of stabilization by interconnection one considers the more demanding

problem of achieving (by regular interconnection) a stable controlled behavior Bs

which does not intersect Bc. Indeed, the solvability of this problem implies that

B = Bc ⊕ Bs, meaning that Bs is a finite dimensional direct summand of B

which is achievable by regular interconnection, and hence (by Theorem 5) Bc

must be rectifiable. This observation may be relevant, for instance, in the context

of pole placement.
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4.2 Trajectory- and set stabilizability

We shall adopt here the following definition of trajectory stabilizability.

Definition 5 Given a stability cone S ⊂ Zn, a behavior B ∈ (Rq)Zn
is said to

be trajectory S-stabilizable if there exists a ρ > 0 such that for any w ∈ B there

exists an S-stable trajectory ws ∈ B such that, for any sets T1, T2 ⊂ Zn with

d(T1, T2) ≥ ρ, w and ws are concatenable with respect to (T1, T2).

Note that, in particular, every trajectory in an S-stabilizable behavior can be

”forced” to tend to zero in S. In this sense, our definition of trajectory stabi-

lizability generalizes the one given in [1] for the 1D case, accordind to which a

behavior B is said to be stabilizable if every trajectory w ∈ B is concatenable

with a trajectory w∗ ∈ B, such limk→+∞w∗(k) = 0, with respect to (T1, T2) =

((−∞, k1) ∩ Z, (k2, +∞) ∩ Z), for k2 sufficiently larger than k1.

As expected, every controllable behavior is trajectory S-stabilizable with respect

to an arbitrary stability cone S, due to the fact that its trajectories are concatenable

with the zero trajectory.

Trajectory stabilizability seems difficult to characterize for general behaviors.

However, the problem becomes much simpler for behaviors with rectifiable con-

trollable part. Indeed, assume that B = ker R(σ, σ−1) has a rectifiable control-

lable part, U(σ, σ−1) is a corresponding rectifying operator, and let P be such

that R = [P 0]U . Then it is not difficult to check that U(B) is trajectory S-

stabilizable if and only if ker P (σ, σ−1) is S-stable. Since N (ker P ) = N (Ba)

for every direct summand Ba of B, this leads to the following result.

Proposition 3 Let B ⊂ (Rq)Zn
= ker R(σ, σ−1) be an nD kernel behavior and

S ⊂ Zn be a stability cone. Assume that the controllable part Bc of B is recti-
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fiable. Further, let U(s, s−1) be a rectifying operator and P (s, s−1) be such that

R = [P 0]U . Then the following statements are equivalent.

1. B is trajectory S-stabilizable

2. Every direct summand of B is stable

3. ker P (σ, σ−1) is S-stable.

The concept of set stabilizabillity is formalized in the next definition.

Definition 6 Given a stability cone S ⊂ Zn, a behavior B ∈ C∞(Rn, Rq) is said

to be set S-stabilizable if it is set-controllable to an S-stable sub-behavior of B.

An immediate consequence of Theorem 6 is the following.

Corollary 2 Given stability cone S, an nD kernel behavior B, with controllable

part Bc, is set S-stabilizable if and only if there exists an S-stable sub-behavior

Bs of B such that

B = Bc + Bs.

Note that, in [5], a behavior B is defined to be stabilizable if B = Bc + Bs with

Bs stable. Taking the previous corollary into account, and disregarding the fact

that we use a different underlying stability notion, this means that the stabilizabil-

ity property of [5] corresponds to set stabilizability.

Clearly, controllable behaviors are set S-stabilizable with respect to every stabil-

ity cone S as they are set-controllable to the zero behavior.

If Bc is rectifiable, it is not difficult to show that the stability of one autonomous

part Bs implies the existence of a stable direct summand. Indeed, assume that Bc
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is rectifiable. Then B has a direct summand Ba, which implies that Bs ∩Ba is

also a direct summand of B. Moreover, this direct summand is stable since it is

contained in the stable summand Bs. Now, as in the previous cases, the existence

of a stable direct summand is in turn equivalent to the stability of all the direct

summands of B. Thus, in the rectifiable case, Corollary 2 leads to a characteri-

zation of set stabilizability which is similar to the ones of trajectory stabilizability

and of stabilizability by interconnection.

Proposition 4 Let B ⊂ (Rq)Zn
= ker R(σ, σ−1) be an nD kernel behavior and

S ⊂ Zn be a stability cone. Assume that the controllable part Bc of B is recti-

fiable. Further, let U(s, s−1) be a rectifying operator and P (s, s−1) be such that

R = [P 0]U . Then the following statements are equivalent.

1. B is set S-stabilizable

2. Every direct summand of B is stable

3. ker P (σ, σ−1) is S-stable.

4.3 Property comparison

Clearly, set stabilizability implies trajectory stabilizability. However, the recipro-

cal implication is not a priori clear, since although trajectory stabilizability means

that every system trajectory can be driven to a stable one, it is not a priori guaran-

tee that all the trajectories in B can be driven into a stable sub-behavior.

Combining Theorem 9 and Corollary 2, the following relation between set S-

stabilization and S-stabilization by interconnection is obtained.
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Theorem 10 Let B be a nD kernel behavior and S ⊂ Zn be a stability cone. If

B is S-stabilizable by interconnection then B is set S-stabilizable.

The reciprocal is not true, as shown by the next example.

Example 1 Let B = ker R(σ1, σ2) be 2D kernel behavior with R(s1, s2) = [s1−

1 − (s2 − 1)]. Let further S be the first quadrant in Z2.

It turns out that B = imM((σ1, σ2)), with M(s1, s2) = [s2 − 1 s1 − 1]T

and is hence controllable. By Theorem 6, this means that B is set-controllable to

the zero behavior. Consequently, B is set S-stabilizable with respect to any given

stability cone.

However, B is not S-stabilizable by interconnection. Indeed, if this were the

case, there would exists a finite dimensional (S-stable) sub-behavior of B which

would be achievable from B by regular interconnection. We next show that this is

impossible.

Indeed, the S-stabilization of B by interconnection is equivalent to the exis-

tence of a matrix Rk(s1, s2) such that, letting R̃s =

 R

Rk

, ker R̃s(σ1, σ2) is

S-stable and, moreover, RM(R((s1, s2))) ∩ RM(Rk((s1, s2))) = [0 0]. This last

condition implies that Rk(s1, s2) must be of the form:

Rk(s1, s2) =


r1(s1, s2)

...

rl(s1, s2)

 [α(s1, s2) β(s1, s2)],

for some suitable polynomials ri(s1, s2), i = 1, . . . , l, and (s2 − 1)α(s1, s2) +
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(s1 − 1)β(s1, s2) 6= 0. Thus,

R̃s(s1, s2) =


(s1 − 1) −(s2 − 1)

r1(s1, s2)α(s1, s2) r1(s1, s2)β(s1, s2)
...

...

rl(s1, s2)α(s1, s2) rl(s1, s2)β(s1, s2)

 .

Therefore, all the nonzero maximal order minors of R̃s(s1, s2) have p(s1, s2) =

(s2 − 1)α(s1, s2) + (s1 − 1)β(s1, s2) as a common divisor and the zeros os this

polynomial are zeros of ker R̃s(σ1, σ2). But p(s1, s2) has an infinite number os

zeros, since is not a unit in R[s1, s2, s
−1
1 , s−1

2 ] (as p(1, 1) = 0). This implies

that R̃s(s1, s2) has also an infinite number of zeros. Therefore its kernel is not

finite dimensional and hence cannot be S-stable. This means that there exists no

matrix Rk(s1, s2) satisfying the desired conditions and B is not S-stabilizable by

interconnection.

Remark: Theorem 7 of [4] (adapted to the discrete case) states that an nD con-

trollable behavior can always be interconnected with a suitable controller so as to

obtain an S-stable part. This example also shows that this no longer holds when

the regularity of interconnection is required.

Our conclusions on the comparison of the three considered stabilization properties

can be summarized in the following diagram.

B S-stabilizable by interconnection
⇒

:
B set S-stabilizable

⇓

B is trajectory S-stabilizable

For behaviors with rectifiable controllable part, Propositions 2, 3 and 4 imply that
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all three properties are equivalent.

Theorem 11 Let B ⊂ (Rq)Zn
= ker R(σ, σ−1) be an nD kernel behavior with

rectifiable controllable part, and let S ⊂ Zn be a stability cone. Then the follow-

ing are equivalent:

1. B is trajectory S-stabilizable

2. B is set S-stabilizable

3. B is S-stabilizable by interconnection.

Since for n = 1 every controllable behavior is rectifiable, this theorem recovers

the results obtained in [1], [2] and [3] for one-dimensional systems. The same

happens with the corresponding property characterizations obtained in Proposi-

tions 2, 3 and 4.

5 Concluding remarks

An important issue is the characterization of each of the stabilizability properties

in terms of behavior representations. Some results have already been obtained in

[5] for set stabilizability, but, as already mentioned, a different notion of stability

is used; also in [4] results on stabilizability by (non necessarily regular) intercon-

nection were derived for the case of controllable behaviors.

For behaviors with rectifiable controllable part, we obtained a full characteriza-

tion, that can easily be implemented in order to test stabilizability. However, the

research reported in this paper did not go more deeply into this issue, as it was
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originally motivated by other aspects, more focussed on the establishment of re-

lationships among the different stabilizability properties.

A natural question to ask is whether the conclusions presented in this paper carry

on to the case of behaviors defined over Rn. This is a nontrivial matter. Indeed,

the results obtained here are strongly based on the finite dimensionality of discrete

nD kernel behaviors that are stable with respect to some stability cone. This is in

turn a consequence of (among others) the fact that the restrictions of an nD kernel

behavior over Zn to each of the n axes in Zn are 1D kernel behaviors over Z. To

our knowledge, no version of this result has been published in the literature for

behaviors over Rn. However, in case this property carries on to the continuous-

domain case, it is clear that the same will happen with our results.
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