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Abstract    

Skin cancer is considered as one of the most common types of cancer in several countries and its incidence 

rate has increased in recent years. Melanoma cases have caused an increasing number of deaths worldwide, 

since this type of skin cancer is the most aggressive compared to other types. Computational methods have 

been developed to assist dermatologists in early diagnosis of skin cancer. An overview of the main and 

current computational methods that have been proposed for pattern analysis and pigmented skin lesion 

classification is addressed in this review. In addition, a discussion about the application of such methods, as 

well as future trends are also provided. Several methods for feature extraction from both macroscopic and 

dermoscopic images and models for feature selection are introduced and discussed. Furthermore, 

classification algorithms and evaluation procedures are described, and performance results for lesion 

classification and pattern analysis are given.  

Keywords:  Pattern analysis; feature extraction and selection; classification methods; macroscopic and 

dermoscopic images. 

1. Introduction 

Computational methods for skin cancer diagnosis have been proposed in order to aid dermatologists in 

early assessment of skin cancer and in the follow-up of pigmented skin lesions [1-3]. Such lesions represent 
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an abnormal production of melanocytes cells, which are mainly caused by excessive sun exposure. 

Melanocytes cells are responsible for creating the substance melanin, one of the functions of which is to 

provide pigmentation in the skin. Furthermore, the number of skin cancer cases has increased in the last 

years, and consequently, an increasing number of deaths caused by this disease has been reported, 

particularly due to melanoma cases (Figures 1c and d) [4-6]. Therefore, pigmented skin lesions have been a 

cause for global concern, since some types of benign lesions may become skin cancer, such as dysplastic 

nevi (Figures 1a and b).  

 

Fig. 1 Two examples of macroscopic images (a and c) and dermoscopic images (b and d): (a) and (b) are images of a 
dysplastic nevus and, (c) and (d) are of an invasive melanoma (images publicly available from Bourne et al. [7]). 

Image acquisition, pre-processing, segmentation, feature extraction, and classification are fundamental 

steps commonly found in computational systems for diagnosing skin lesions. Different non-invasive 

imaging techniques have been used to assist dermatologists [8]. Macroscopic images [9,10] and 

dermoscopic images [11,12] are examples of images acquired from such techniques that have been widely 

used in the diagnosis of pigmented skin lesions by computational methods. Macroscopic images (Figures 

1a and c), commonly known as clinical images, are usually acquired from standard cameras or mobile 

devices. On the other hand, dermoscopic images (Figs. 1b and d), may be acquired from dermatoscope 

devices or specific cameras in order to better visualize the pigmentation pattern on the skin surface. 

However, their imaging conditions are frequently inconsistent; for example, macroscopic images can be 

acquired from variable distances and/or under different illumination conditions. Furthermore, the images 

may have poor resolution, which may be challenging when the lesion under study is small. An additional 
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problem with both macroscopy and dermoscopic images is related to the presence of artefacts, such as hair, 

reflections, shadows, skin lines and bubbles, which may hinder adequate analysis of the imaged skin lesions. 

The identification of the regions of the lesions in such images may be performed in order to assist in the 

process of classification [13]. Segmentation is an important step that allows the extraction of such regions 

of interest (ROI) from an image [14-34]. However, before the segmentation step, previous pre-processing 

methods are usually applied to reduce the effects of undesirable artefacts that may influence the outcome of 

the segmentation step. These methods can be based on colour space transformation [20,26,35], illumination 

correction [36,37], contrast enhancement [20,22,23,26,38-42], artefact removal [14,20,21,43,44] and 

approximate lesion localization [45]. In addition, hair removal methods are also used in pre-processing 

steps, since this artefact may considerably affect the detection of lesion borders [46-53]. Lee et al. [54] 

proposed a solution for hair removal, especially thick dark hairs, which is based on one of the first widely 

adopted methods for hair removal in dermoscopy images, and consists of identifying the hair location, 

replacing the values of the detected hair pixels in the original image by the values of the corresponding 

nearby non-hair pixels, and smoothing the thin lines. An overview of lesion border detection methods, 

including the pre-processing, segmentation and post-processing steps, is presented in Celebi et al. [55,56]. 

In addition, the authors also discuss performance evaluation issues and propose guidelines for future studies.  

Computational methods for pigmented skin lesion classification are usually based on the features of the 

pixels within the segmented ROIs. Therefore, the extraction of representative features of the ROIs under 

analysis is an important step for the efficient classification of the segmented lesions. In this step, common 

difficulties are: 1) identification of the features to be used; 2) to confirm that the number of selected features 

is sufficient to describe the classification problem; 3) the number of selected features is too large, which 

requires high computational resources; and 4) there are redundant and/or irrelevant features that should be 

removed from the feature set. Techniques to reduce the dimensionality of the data may be used to solve 

these problems according to one of the following reduction strategies: feature transformation (also known 

as feature extraction in literature concerning pattern recognition [57,58]), and feature selection [59].  

The feature extraction strategy allows the modification of all the data of the image, in order to emphasize 

the most effective features, ensuring the correct separation of the classification classes [57]. Such strategy 

is based on the generation of a new feature space, which may expand or reduce, according to the adopted 

strategy. The new features may be extracted by means of discovery of missing information from 

relationships among the features, or even by means of searching for a new feature space with smaller 

dimensions through functional mapping. Contrary, new features are not created in the feature selection 

strategy, meaning that a subset from the original features is defined when using this approach. Both 

strategies may also be combined in order to achieve a better representation of the features. For example, in 

cases in which the feature extraction step increases the number of features, feature selection algorithms can 
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provide an automatic reduction of such excessive features. Furthermore, a larger feature space may include 

redundant or irrelevant data [60].  

Several solutions [61-64] have been proposed for feature extraction and selection of pigmented skin 

lesions, in order to represent them according to a certain clinical criteria [65-67]. Such features may be used 

for the classification process, in order to provide dermatologists with a computer-aided diagnosis of 

pigmented skin lesions [2,12]. In this review, some of the most relevant solutions that have been developed 

to assist the skin lesion diagnosis from macroscopic and dermoscopic images are introduced, including those 

concerning the steps of feature extraction and selection, and image classification. Hence, this review is 

highly valuable for those wishing the design and/or implementation of competent expert systems for the 

automated classification of skin lesions in images. 

This paper is organized as follows: a review of the main computational methods that have been applied 

to extract and select features from macroscopic and dermoscopic images of pigmented skin lesions is 

presented in Section 2. The main focus of that section is on the feature extraction step according to several 

clinical criteria. In addition, the feature selection process is addressed. The current state-of-the-art 

concerning the pigmented skin lesion classification, including the advantages and disadvantages of the 

reviewed methods, evaluation measures, and performance results for pattern and lesion classification, is 

presented in Section 3. Finally, conclusions and future trends about the computational methods of pigmented 

skin lesion classification are pointed out in the last section. 

2. Image analysis of pigmented skin lesions 

Computational methods regarding the feature extraction have been commonly developed based on the 

ABCD(E) rule, pattern analysis, seven-point checklist and Menzies’ method, which are examples of clinical 

approaches used for the diagnosis of skin cancer from images [67-69]. The first approach can be used to 

extract features from both macroscopic and dermoscopic images, whereas the other approaches are usually 

applied to dermoscopic images in order to identify more detailed pattern features on the surfaces of the 

lesions. The feature analysis based on these approaches, as well as the feature selection and extraction steps 

are presented with details in the following sections. 

2.1. Feature analysis based on clinical approaches 

The ABCD(E) rule is based on asymmetry, border, colour, diameter (or differential structures in the case 

of dermoscopic images), and evolution (or elevation) features, according to the criteria presented in Table 

1. Such rule has been widely used for the feature extraction and automatic diagnosis of pigmented skin 

lesions [10,70].  
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Table 1 Criteria of the ABCD(E) rule for the diagnosis of skin cancer from clinical and dermoscopy analysis. 

Feature 
Clinical analysis 

Feature 
Dermoscopy analysis a  

Benign lesion Malignant lesion Definition Score Weight 
factor 

Asymmetry (A) Shape is 
symmetric 

Shape is 
asymmetric Asymmetry (A) 

Border, colours or structures 
are asymmetric in 0, 1, or 2 
perpendicular axes 

0-2 1.3 

Border (B) Border is regular 
or well-defined  

Border is irregular 
or ill-defined Border (B) Abrupt cut-off of network at 

the border in 0-8 segments 0-8 0.1 

Colour (C) Colours are 
uniform 

Colours are non-
uniform Colour (C) Presence of six possible basic 

colours b  1-6 0.5 

Diameter (D) Size <6 mm Size ≥ 6 mm Differential 
structural (D) 

Presence of five differential 
structural components c 1-5 0.5 

Evolution (E) No change 
Changes in size, 
shape or shades of 
colour features 

    

Elevation (E) Smooth surface  High surface     
a Total dermatoscopy score (TDS) = (A score x 1.3) + (B score x 0.1) + (C score x 0.5) + (D score x 0.5). Diagnosis: TDS<4.75, benign 
melanocytic lesion; TDS of 4.75-5.45, suspicious lesion; TDS>5.45, lesion highly suspicious for melanoma. 
b White, red, light-brown, dark-brown, blue-grey, and black. 
c Network, structureless areas, branched streaks, dots, and globules. 

The feature extraction based on pattern analysis has also been used for the pigmented skin lesion 

automatic diagnosis [71-74]. This approach assists in diagnosis by determining the presence of specific 

patterns visible in dermoscopic images, which may be divided into global and local patterns [75], as detailed 

in Table 2. Global patterns are represented by textured structures present in most of the lesions. Some 

examples of such patterns are illustrated in Fig. 2. Local patterns are dermoscopic structures. Such patterns 

may be present or absent, as well as presenting irregular/regular or atypical/typical structures, as indicated 

in Table 2, which may define the type of lesion or whether it is benign or malignant. Examples of such 

patterns are illustrated in Fig. 3. 

Table 2 Pattern analysis in dermoscopic images. 

Global pattern Local pattern 

Reticular Pigmented network 
(present or absent/ typical or atypical)   

Globular  Dots/globules  
(present or absent/ regular or irregular)  

Cobblestone  Streaks  
(present or absent/ regular or irregular) 

Homogeneous  Blue-whitish veil  
(present or absent)  

Starburst  Blotches or pigmentation 
(present or absent/ regular or irregular)  

Parallel  Hypopigmentation  
(present or absent) 

Multicomponent  
(combination of three or more global patterns) 

Regression structures  
(present or absent) 

Non-specific 
(absent patterns)  

Vascular structures 
(present or absent)  
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Fig. 2 Examples of global patterns in dermatoscopy images: (a) reticular, (b) globular, (c) cobblestone, (d) 
homogeneous, (e) parallel and (f) starburst (images available in Argenziano et al. [76]). 

 

Fig. 3 Examples of local patterns in a dermatoscopy image: (a) atypical pigmented network, (b) irregular dots/globules, 
(c) blue-whitish veil, (d) irregular pigmentation and (e) irregular streaks (adapted from Celebi et al. [77]). 
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The pattern analysis consists of examining the size, uniformity and distribution of the above-mentioned 

patterns. The benign lesion structures are usually uniform; in other words, the lesions do not present several 

patterns in their structure. Therefore, the presence of at least three (multicomponent), parallel or nonspecific 

global patterns indicates a higher probability of being a melanoma (malignant lesion). Furthermore, the 

presence of local patterns, such as blue-whitish veil and regression structures, or even some patterns 

considered atypical, irregular or asymmetric may identify a melanoma [75]. Due to the low number of 

criteria to be analysed, the seven-point checklist and Menzies’ method were introduced for skin lesion 

diagnosis from dermoscopic images in order to simplify the common pattern analysis [67]. The criteria of 

both clinical approaches are detailed in Table 3.  

Table 3 Diagnostic criteria included the seven-point checklist and Menzies’ method. 

Seven-point checklist a Menzies’ method d 
Major criteria b Minor criteria c Colour of lesion Symmetry of pattern Positive feature 
Atypical pigmented network Irregular streaks One colour Symmetrical pattern  Blue-whitish veil 
Blue-whitish veil Irregular pigmentation  More than one colour Asymmetrical pattern Multiple brown dots 
Atypical vascular pattern Irregular dots/globules   Pseudopods 
 Regression structures   Radial streaming 
    Scarlike depigmentation 
    Peripheral black dots/globules 
    Multiple colours (5 or 6) 
    Multiple blue/grey dots 
    Broad pigment network 
a Seven-point total score < 3 = non-melanoma or ≥ 3 = melanoma. 
b Major criteria receive 2 points. 
c Minor criteria receive 1 point. 
d Diagnosis for benign lesions (symmetrical pattern and one colour) and malignant lesions (asymmetrical pattern, more than one colour and at 
least one positive feature). 

The seven-point checklist has been applied in the literature to achieve better accuracy for the 

computational diagnosis of dermoscopic images [24,78,79]. This method consists basically of seven criteria 

based on local patterns that may be applied to diagnose the malignancy in pigmented skin lesions, 

particularly melanomas, which are divided into major and minor criteria [75]. A total score of three or more 

points is more likely to be melanoma, for which the presence of each major criterion receive two points and 

each minor criterion receives one point [67]. The Menzies’ method allows for identifying colour patterns 

within the lesion and the asymmetry along any axis drawn through the centre of the lesion, as well as the 

number of positive features [67]. In malignant lesions, particularly melanomas, an asymmetric pattern, more 

than one colour, and at least one positive feature are usually presented, whereas the benign lesions present 

a symmetric pattern and only one colour [67]. Computational methods based on the Menzies’ criteria have 

been proposed to analyse the presence of six basic colour classes (white, red, light-brown, dark-brown, blue 

grey and black) for dermoscopic images [80,81].  

2.2. Feature extraction 

Skin lesion features can be extracted either according to a global or local manner in order to obtain 

information for classification. The most of works explore the global-features of the lesion, i.e., extract 
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features from all segmented region [82]. However, some studies have used local-features, which allow the 

characterization of different region of the lesion. Bag-of-feature (BoF) approach is a simple strategy that 

has been used to compute local features [11,71,83-85]. In general, skin lesion features are categorized into 

shape features, colour variation and/or texture analysis [9,86]. These features can be extracted to detect 

patterns [73], or diagnose skin lesions [82] from both macroscopic and dermoscopic images. Extracted 

features of pigmented skin lesions from both of images are summarized in Table 4 and discussed in the 

following sections.  

2.2.1. Shape features 

Shape features allow the assessment of lesion’s asymmetry or border’s irregularity. The asymmetry 

features may be examined according to dividing the region of the lesion under analysis into two sub-regions 

by an axis of symmetry, in order to analyse the similarity of the area by overlapping the two sub-regions of 

the lesion along the axis. From such an axis, the asymmetry index may be calculated by the difference 

between the two sub-regions of the lesion; for example, by applying the XOR operation between them [87]. 

In some studies, the axis of symmetry is defined based on the principal axis of inertia [87], major and minor 

axis orientation [12,88] and longest or shortest diameter [89]. 

Geometrical measures from the segmented lesion area have been commonly computed for assessing the 

lesion’s asymmetry and border’s irregularity [12,63,70,84,129]. Such measures include the area of the lesion 

(computed as the number of pixels inside the lesion region [10] or by applying the bit quads method [88]), 

aspect ratio, compactness, perimeter, greatest diameter, shortest diameter, equivalent, convex hull, 

eccentricity, solidity, rectangularity, entropy measures, circularity index (namely thinness ratio), and 

irregularity index. Shape features based on wavelet transform [12,61,106], Fourier transform [104] and 

fractal dimension [92,103] have also been used for assessing the border’s irregularity.  

Shape features of differential structures inside the lesion in dermoscopic images may also be considered 

[66], such as solid pigments of the lesions computed according to Chang et al. [87]. In other studies 

[63,93,96], the asymmetry is assessed, according to pre-defined regions inside the lesion under analysis. 

In order to identify the sharp transition between inside and outside regions of a lesion concerning its 

border, Iyatomi et al. [94,96] divided the lesion region into eight equiangular regions. For each region, the 

ratio of the colour intensity inside and outside the lesion and the gradient of the colour intensity were 

computed in particular colour channels, according to a pre-defined window centred at the border of the 

lesion. Whereas, Celebi et al. [88] computed the differences and ratios of two statistics (mean and standard 

deviation) over a particular colour channel, considering the following regions: lesion and inner and outer 

peripheral regions relative to the border of the lesion. 
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Table 4 Extracted features of pigmented skin lesions from both macroscopic and dermoscopic images. 

Feature References 

Shape  

Asymmetry index 
[87,90] a;  
[12,84,88,91] b. 

Statistical geometrical measures 
[9,10,61,87,92] a;  
[12,63,84,88,89,93-103] b. 

Statistical measures based on border’s gradient or periphery regions  
[9,10,61,70,104] a;  
[74,78,84,88,93,94,96,97,105] b. 

Border features 
(Irregularity index) 

[61,90,92,104] a;  
[12,89,103,106,107] b.   

Colour  

Statistical measures based on colour models 
[9,10,70,82,87,90] a;  
[63,71,73,84,88,93,94,96,101,105,108-113] b. 

Colour occurrence or percentage [74,81,102,103,113-116] b. 

Absolute or relative colour features 
[87] a;  
[77,88,93,94,96,99,113,117-119] b. 

Colour asymmetry [73,88,105,110] b. 
Histogram-based features 
(Colour distribution) 

[24,62,78,79,83,84,88,97,99,102,110,112] b. 

Colour features based on cluster analysis [102,112,120] b.  
Border’s gradient-based features [96,113] b. 
Texture  

Statistical  
[9,10,70]  a;  
[11,63,64,77,83,84,88,93,94,96,101,102,105,108-112,120-122] b. 

Model-based 
[90] a; 
[12,123,124] b. 

Filter-based [12,24,62,73,78,79,83,84,111,112,121,123] b. 
Other features  

Colour-texture features 
[82]  a;  
[72,124] b. 

High-level intuitive features [125] a. 
Manual information  [10,82] a. 
Diameter  [102] b. 
Differential structures [103,126] b. 

Evolution measures 
[127] a;  
[128] b. 

a Macroscopic images 
b Dermoscopic images 

 

2.2.2 Colour variation 

The RGB colour space is commonly used to represent the colours of skin lesions [63,110]. Other colour 

spaces have also been applied in order to obtain more specific information about a lesion’s colours, such as: 

normalized RGB [110,111], HSV [11,84,110], HVC [109], CMY [108], YUV [108], I1/2/3 [110], Opp 

[83,84], 𝐼"# [70], JCh [73], L*C*H [87], CIEXYZ [111], CIELAB [11,83,84] and CIELUV [11,110]. 

Statistical measures are widely applied to the feature extraction from skin lesion images [10,63,70,93]. 

The minimum, maximum, average, standard deviation, skewness and variance are examples of such 
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measures, which may be computed for each colour channel of the lesion region by using one or several 

colour models. Furthermore, these measures may also be applied to other regions associated with the 

lesion’s border, in order to identify a sharp transition between them, which indicates malignancy. The 

background skin (normal skin), and surrounding skin (inner or outer peripheral regions) are examples of 

such regions, which may be considered as part of the lesion. Peripheral regions may be defined by a 

recursive erosion process [93,110], a fast Euclidean distance transform algorithm [88], or a circular region 

with centre point upon the lesion’s centroid [87]. In addition, such regions may reduce the effects of 

peripheral inflammation and errors caused by automatic border detection, as proposed by Celebi et al. [88]. 

Skin lesion features based on relative colours have been proposed [77,88,93], in order to assess colour 

features from the different regions associated with the lesion. The relative colour consists of comparing each 

pixel value of the lesion to the average colour value of the surrounding skin. Furthermore, this feature may 

present advantages such as compensating the variation of colour of the image caused by illumination, and 

equalizing variations in skin colour among individuals [77].  

The occurrence of the possible basic colours present in the skin lesions has also been analysed [74,81], 

as well as the number or percentage of pixels within the segmented area for each of the basic colours [9,73].  

2.2.3 Texture analysis 

Texture analysis is frequently considered for image analysis of skin lesions, since it assists in 

discriminating between benign and malignant lesions by measuring the roughness of their structure. Texture 

descriptors with statistical-, model- and filter-based approaches [130], have been used for texture 

quantification of skin lesions. Among the various statistical-based texture descriptors applied in the 

literature, the grey-level co-occurrence matrix (GLCM) proposed by Haralick et al. [131] has been one of 

the most commonly used [63,84,101,105,110,111]. The GLCM is a statistical measure that computes the 

joint probability of occurrence of grey-levels considering two pixels spatially separated by a fixed vector. 

Several measures may be computed based on the GLCM, such as variance, entropy, dissimilarity, 

correlation, contrast, energy, maximum probability, inverse difference, angular second moment (ASM), 

mean, standard deviation and homogeneity. In Schaefer et al. [110], the authors computed the ratio and 

difference of the same co-occurrence features between different image regions.  

Skin lesion features from histograms, which are also statistical-based descriptors, are extracted by some 

researchers to represent texture features [11,84]. Tanaka et al. [121] computed some aforementioned 

statistical measures based on the intensity histogram, whereas Barata et al. [83] applied gradient histograms, 

such as the gradient amplitude and orientation to represent the texture feature. In order to compute the image 

gradient, the authors applied a Gaussian filter to the grey-level image for further computation of the gradient 

vector at each pixel using the well-known Sobel filter. Local binary pattern (LBP) that is a discriminative 
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rotation invariant feature descriptor [84,102,112], statistical measures based on pixel intensities [9,70], run-

length matrix [121], and entropy features [120], have also been applied to texture extraction based on 

statistical approaches. 

Model-based texture descriptors have also been proposed to assess the skin lesion’s texture, such as 

fractal dimensional [12], auto-regression [123], and Markov random fields (MRF) [124].  Among these, 

fractal dimension have been applied with the box-counting method (BCM), being one of the most commonly 

used methods, since it is simple and effective [132]. Image-based fractal dimension [132] is a procedure for 

splitting the image in several quadrants to quantify the irregularity level or self-similarity of the image’s 

fractals. 

Wavelet transform [12,71,112], Fourier transform [24,78,79,112,121], Gabor filtering [83,84,123], 

scale-invariant feature transform (SIFT) [84] and steerable pyramid transforms [73], which are filter-based 

texture descriptors, have also been proposed for feature extraction of skin lesion images. Such descriptors 

allow the decomposition of the input image into component parts in order to extract features from the 

structures of interest. Sobel, Hessian, Gaussian and difference of Gaussians (DoG) features have also been 

extracted based on bank of Gaussian filters [111]. Further details regarding texture analysis techniques for 

image feature extraction are presented in Xie [130]. 

2.2.4 Other features 

Skin lesion features based on shape, colour and texture properties have been commonly used for skin 

lesion recognition. However, other features have also been considered, such as information regarding the 

part of the body, size and gender, since they can assist in skin lesion diagnosis [10,82]. Colour-texture 

descriptors have also been recently used to assess skin lesion features; e.g., colour image analysis learning 

vector quantization (CIA-LVQ) in the RGB colour space [82], and joint distribution of colour (JDC) in the 

L*a*b* colour space [72]. Further details regarding colour-texture descriptors are presented in Xie [130]. 

The lesion’s diameter is another feature that can be used for skin lesion diagnosis. This feature is 

examined according to the size of the lesion, which is defined by the greatest distance between any two 

points of a lesion’s edge [65]. This feature is not commonly applied to skin lesion classification due to its 

great dependence on the image resolution [88], since the image size affects the number of pixels for each 

segmented lesion’s region. An application of this feature is presented in Møllersen et al. [102], in which the 

diameter of a lesion is defined as the length of the major axis of the best-fit ellipse. The differential structures 

of skin lesions may also be assessed, more specifically in dermoscopic images. For example, in Torre et al. 

[126] multidimensional receptive field histograms (MFHs) were obtained by means of Gaussian derivatives 

and a Laplacian Gaussian operator, in order to reproduce features of the local differential structures of skin 

lesions.  
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Elevation and evolution features can be assessed to assist in skin lesion classification process [66,133]. 

The former is a morphological feature that may be measured considering its surface. The latter may represent 

the historical evolution of the lesion in order to diagnose it, including changes in its shape, size, shades of 

colour, or surface features. To the best of our knowledge, few previous image analysis systems of skin 

lesions surveyed in the literature have used such features [127,128]. One of the reasons may be related to 

the complexity of feature extraction from the elevation criterion, or even the unavailability of a database 

with at least two images of the same lesion that must be taken over time to assess its evolution.  

Three-dimensional digital imaging may be designed to extract information about the elevation feature of 

skin lesions. For example, Hani et al. [134] and Fadzil et al. [135] proposed a method to measure the 

thickness of some skin lesion types from the 3D surface image. Lesion’s thickness is the elevation present 

between the base and the surface of the lesion. In addition, registration methods may be applied to track 

skin lesions in images [136], or to detect changes in their structure over time, as the algorithm introduced 

by Huang and Bergstresser [127]. The authors proposed a new method for the melanoma registration, based 

on bipartite graph matching, in order to find sufficiently good correspondences between successive images 

of multiple skin lesions. The authors used the Voronoi cells and distances between points to transform the 

point registration problem in images to a bipartite graph-matching problem. 

2.3. Feature selection 

A feature selection step [137] has been used for pattern analysis and skin lesion classification in order to 

select the most relevant features and reduce the dimensionality of the feature space so that irrelevant and/or 

redundant features are removed [93,98,108,121]. Moreover, such features may influence the performance 

of the classification process, i.e., render it a slower process [138]. Several benefits are associated with the 

application of feature selection schemes, such as [88]: 1) to reduce the feature extraction time, 2) to decrease 

the classification complexity, 3) to improve the classification accuracy rate, 4) to decrease training and 

testing time, and 5) to simplify the understanding and visualizing the data. 

Essentially, the feature selection process has the following steps: 1) feature subset selection, 2) feature 

subset evaluation, 3) stopping criterion, and 4) validation procedure [139]. Search strategies may be applied 

to define candidate subsets from extracted features of skin lesions, which are evaluated and compared to the 

previous best subset until a given stopping criterion is reached. This process is iterative, and it only finishes 

when it reaches the established stop criterion. Thus, the selected best subset should be verified for the 

specific problem, i.e., the skin lesion classification.  

Feature subset selection step consists of finding features through a given process of heuristic searches in 

order to identify a candidate feature subset for evaluation. Several search algorithms, such as best-first [108], 

ranker [12,108], incremental stepwise [93,98] and random [87,88], have been used for the feature subset 
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selection process. Exhaustive and genetic searches are other examples of such algorithms that may be 

applied [140]. These algorithms influence the search direction and execution time of the selection process 

depending on the adopted search strategy, which may be complete, sequential, or random [139,141]. 

Another model to establish a feature subset is applying embedded methods such as decision-tree algorithms, 

which incorporate the feature selection in its training process [138]. 

In evaluation step, the selected feature subset is then evaluated according to the type of search algorithm 

applied before. The filter model [141] has been commonly used for the evaluation process of skin lesion 

feature selection. This model allows for evaluating the goodness of selected features without using any 

classification algorithms. Each candidate subset is evaluated by means of applying an independent criterion, 

which may be based on distance1, information2, dependency3, or consistency4 measures, in order to compare 

it with the best current subset previously established. If the evaluated subset is considered the best, it 

becomes the best current subset. Examples of filter methods applied in the literature based on the 

aforementioned independent measures are: gain ratio feature selection (GRFS) [12], information gain 

measure [12], chi-squared [12], correlation-based feature selection (CFS) [10,12,61], ReliefF [12,88], 

mutual information-based feature selection (MIFS) [88], sequential feature selection (SFS) [80], generalized 

sequential feature selection (GSFS) [108], and fast correlation-based feature filter (FCBF) [110]. 

Wrapper [142], hybrid [141] and embedded [138] models can also be used to evaluate the selected feature 

subset by a search strategy. The evaluation of feature subsets based on the wrapper model is similar to the 

filter model. The main difference between these two models is the use of classification algorithms to 

evaluate each candidate subset in order to determine the most relevant subset, for which the classification 

algorithm tends to perform better when searching for such a subset [141]. The hybrid model combines 

properties of filter and wrapper models to evaluate feature subsets in order to consider the advantages of 

both models, as well as to deal with large data sets. The embedded model has a built-in mechanism to 

perform the feature selection; it incorporates the feature selection as part of the training process. The 

decision tree induction algorithms, such as classification and regression tree (CART), are examples of such 

a model [137].  

Feature selection methods based on a filter model [141] are more often preferred to other models due to 

the following advantages: computationally efficient, simpler and faster methods, independent evaluation 

criteria, and ability to overcome over-fitting [10,12,98]. Nevertheless, the features selected by using a filter 

                                                        
1 These measures try to find the feature that may separate the classes as far as possible by greater distance between them. 
2 These measures establish the information gain from a feature. 
3 These measures are also known as correlation measures applied to evaluate the ability to predict the value of one feature from the 
value of another. 
4 These measures consist of finding a minimum number of features that may separate classes as consistently as the full set of features 
may.  
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model may not be the most relevant for the application, whereas the wrapper model [142] may be applied 

to search for the most relevant features based on classification algorithms to improve the performance of 

the feature selection. The wrapper model is not commonly applied due to the high computational time, as 

demonstrated by Celebi et al. [88]. However, efficient search strategies may be proposed for this model to 

avoid the time-consuming task of classifying skin lesions. Although the hybrid model inherits the 

advantages of both filter and wrapper models, this model may be complex and also inherits the 

disadvantages of wrapper model. Methods based on an embedded model provide simplicity and a faster 

solution for the feature selection step compared to methods based on the filter model [137].  

The stopping criterion determines the situation in which the feature selection process must stop. Some 

examples of such criteria occur when: 1) the search is complete, 2) the predefined minimum number of 

features is achieved, 3) the predefined maximum number of the process is achieved, and 4) addition or 

removal of any feature occurs that worsens the outcome of the best found subset until that moment [141]. 

The validation procedure consists of verifying the best feature subset established by the previous steps. 

Hence, the validation process may be performed upon applying classifiers from a new set of features in 

order to measure the classification performance or error rate of the selected feature subset.  

Principal component analysis (PCA) [143] and linear discriminant analysis (LDA) [62], which are 

methods for space dimensionality reduction, have also been applied to feature selection [24,70,73]. 

Maglogiannis and Doukas [108] applied several classification methods to evaluate the obtained subsets by 

using feature selection algorithms such as the CFS, PCA and GSFS. Furthermore, the achieved results are 

compared to the ones obtained from all features without applying any feature selection algorithm. The 

authors concluded that the application of feature selection algorithms may reduce the complexity of the 

classification. On the other hand, the performance is not always good, and is highly dependent upon the 

classifier. Therefore, they opted to use all features for the skin lesion classification. On the other hand, Ma 

and Staunton [61] used a feature selection scheme based on correlation analysis for skin lesion classification 

based on a neural network, since it achieved better result than original feature-based classification. Arroyo 

and Zapirain [111] analysed the relevant features based on the minimum number of samples per leaf by 

using decision tree classifier. Several other study have achieved good classification results by using a feature 

selection scheme [80,84,110]. 

Another means of determining the most discerning features based on colour and texture was addressed 

by Barata et al. [11], who compared the features performed by using each individual feature, all the colour 

features, both texture and colour features, and the best texture and colour features. The authors concluded 

that the colour features provide better results than the use of texture features when used individually. On the 

other hand, Rastgoo et al. [84] evaluated the most discerning features between shape, colour and texture 

features and the evaluation revealed the potential of texture features for skin lesion classification. 
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3. Skin lesion classification  

The classification step consists of recognizing and interpreting the information about the pigmented skin 

lesions based on features extracted from images. The classification process generally occurs by randomly 

dividing the available image samples in training and test sets. The training step consists of developing a 

classification model to be used by one or more classifiers based on the samples of the training set. Each 

sample is composed of features extracted from a given image and its corresponding class value, which are 

applied as input data to the classifier for the learning process. The testing step consists of measuring the 

accuracy of the model learned by the training step over the test set. In addition, such a process may present 

several problems concerning the dataset, such as features containing different ranges, unbalanced dataset 

regarding the number of samples, and/or a large number of features. Therefore, this process may require 

pre-processing of data, in which several methods may be applied to overcome these problems. 

Feature normalization is a pre-processing step, in which methods may be applied in order to solve the 

problem of different ranges. The z-score transformation is a common method used for data normalization, 

which allows transforming all numeric features in values within the same range, as discussed by Celebi et 

al. [88] and by Cavalcanti and Scharcanski [70]. Therefore, this procedure prevents the feature with range 

of values greater than other features from influencing the results, since several classifiers may not deal 

properly with different ranges.  

Unbalanced datasets concerning the number of samples in each class is also a classification problem that 

may decrease the accuracy of the evaluation result, since the classifiers tend to be based on classes with the 

highest occurrence. Sampling techniques, such as over- and under-sampling [140,144], have been used to 

solve this problem [88,110]. Nevertheless, random under-sampling may remove important samples, and 

random over-sampling may lead to over-fitting. Synthetic minority oversampling technique (SMOTE) [145] 

is an over-sampling techniques for overcoming the over-fitting and expand the decision region of minority 

class samples. Such techniques can also be combined with ensemble methods for addressing unbalanced 

classes [110]. Another method to solve the unbalanced dataset problem was used by Barata et al. [11], in 

which the dataset is composed of 25 samples of melanoma and 151 samples of nevi. The authors repeated 

the melanoma features belonging to each training set until the same number of samples for both classes was 

obtained. Furthermore, they added Gaussian noise to each repeated feature set in order to prevent equal 

samples in the training set.  

As mentioned previously, feature selection [137], which is a pre-processing step in machine learning, 

can be addressed to deal with datasets contain a large number of features for skin lesion classification 

(Section 3.3). The classification methods used for skin lesion diagnosis, as well as its evaluation procedures, 

are presented with details in following sections. Furthermore, some results of recent studies for classification 

of skin lesion and its patterns are also provided. 
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3.1. Methods for classification 

Classification methods based on instance-based learning [140], decision trees [138], Bayesian learning 

[146], artificial neural networks (ANNs) [147], support vector machines (SVMs) [148], and ensemble 

methods [140], have been commonly applied to discriminate skin lesions in images. A description and the 

main advantages and disadvantages of such methods are summarized in the following, while their 

algorithms applied to the learning objective are presented in Table 5. 

Table 5 Classification methods applied to discriminate skin lesions from images. 

Classification Method References 
Instance-based learning  
KNN [11,63,70,73,83,109,149] 
KStar [108] 
LWL [108] 

Decision tree  

NBTree [64,108] 
AD-Tree [64] 
CART [70,80,102,108] 
J48/ C4.5/ C5.0 [10,64,77,87,106,111,150] 
C&R [106] 
LMT [10,12,24,79,151] 
Decision Stump [10,64] 

Bayesian network  

BayesNet [10,62,82,108] 
NBL [108] 
HNB [12] 
ANN  
MLP architecture [61,63,81,94,97,99,106,117] 
RBF network [108] 
SVM  
Linear kernel [125] 
RBF kernel [11,12,73,88,90,108,109,152] 
Polynomial kernel [63,110,123] 
PUK kernel [63] 

Ensemble of classifiers  

Homogeneous ensemble [110,112,153] 
Heterogeneous ensemble [82,109] 
Bagging [110] 
Random forest [12,63,64,83,84] 
Boosting [84,100,101,154] 
AdaBoost [73,83] 

Other methods  

Linear classifier [93,96,105] 
Regression analysis [104,108] 
Prototype-based [82] 
Discriminant analysis [80,102,155] 
Maximum likelihood [62,109,149] 

KNN: k-nearest neighbour; LWL: locally weighted learning; NBTree: naïve Bayes/decision tree; AD-Tree: alternative decision tree; CART: 
classification and regression trees; C&R: classification and regression; LMT: logistic model tree; RF: random forest; NBL: naïve Bayes 
multinomial; HNB: hidden naïve Bayes; ANN: artificial neural network; MLP: multilayer perceptron; RBF: radial basis function; SVM: support 
vector machine; PUK: Pearson VII function-based universal kernel. 
 

In instance-based classifiers [140], a distance function is used to assess which sample of the training set 

is closest to an unknown sample and then assigning the unknown sample to the class with the majority of 
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the nearest neighbours. These classifiers have been applied due to their simplicity of implementation and 

their facility to deal with the existence of correlated features. In addition, new samples can be added to the 

training set at any time. However, they are sensitive to the existence of irrelevant features, and they require 

a great deal of time for classifying large datasets. Barata et al. [11] used the k-nearest neighbours (KNN) 

algorithm to classify the lesions and compared several distance functions, such as Euclidean, Kolmogorov 

and Kullback–Leibler, in order to measure the distance of k-nearest neighbours from different k values. The 

authors concluded that it is not clear which of these three used distances is the best for such a problem, since 

all were considered to be the best for certain test situations. On the other hand, Rahman et al. [109] used the 

Bhattacharyya distance measure, since such a measure is based on the correlation between the colours and 

may perform better than the traditional Euclidean distance. 

A decision tree [138] has a structure similar to a flowchart, in which each internal node (non-leaf) 

represents a test of a feature, each branch represents a result of the test, and each external node (leaf) 

indicates a prediction of the class. Several methods based on decision trees have been frequently applied to 

classify skin lesions [10,12,24,77,106,108]. Understanding such a structure, as well as ease of rule 

generation, is quite straightforward. However, the excess of adjustments (over-fitting) and the difficulties 

in dealing with correlated features are the major drawbacks of decision trees. 

Bayesian learning-based methods [146] compute the probability of a given set of features to belong to 

each class, assuming that the features are independent. These methods have been applied to classify skin 

lesions particularly because of their fast training [10,12,108]. Although Bayesian methods provide fast 

training and no sensitivity to irrelevant features, they assume that the features need to be independent, which 

can be a disadvantage of these methods.  

ANNs [147] are parallel distributed systems composed of layers of input and output elements linked by 

weighted connections. During the learning phase, the weights are adjusted to predict the correct class based 

on the input samples. The multilayer perceptron (MLP) is one of the most applied architectures of ANNs 

[81,106], since such architecture presents good capability and flexibility to solve several non-separable 

problems. This architecture may include one or more layers of processing, also called hidden layers, placed 

between the input and output layers. The back-propagation is a supervised learning algorithm widely used 

in the MLP architecture [61], which consists of forward and backward processes applied to adjust the weight 

values of the connections. Although ANNs have been proposed to solve many pattern recognition problems, 

these classifiers may have long training time depending on the size of the training set. 

SVMs [148] involve a method based on statistical learning applied to building a hyper-plane to separate 

the data according to the defined classes. This kind of classifier has been commonly applied to classify skin 

lesions due to its good generalization properties. Furthermore, kernel functions simplify the process of 
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separating the non-linear data by using a simple hyper-plane in a high dimension feature space. However, 

these classifiers are sensitive to noise and the classification process is based on a binary class. The radial 

basis function (RBF) kernel have been commonly adopted in several studies [11,12,108] due to the several 

advantages compared to other kernels, such as: greater stability compared to the polynomial kernel and 

reduced number of hyper-parameters that need to be established compared to the polynomial and sigmoid 

kernels [88]. 

The ensemble methods [140] have been recently adopted to diagnoses skin lesions [82-84,110,156]. 

Ensemble models may be constructed with either several classification algorithms, classified as 

heterogeneous, or only with one classification algorithm, classified as homogeneous, which can be 

developed through data manipulation [157]. Average, weighted average, sum, product, maximum, minimum 

and median are some examples of integration strategies based on the outputs of classifiers. Voting methods 

from the candidates of a rank may also be used for this same purpose. The common algorithms applied to 

manipulate the training samples are the Bagging and Boosting algorithms [157]. Random Forest [158] and 

AdaBoost [159] are also popular ensemble methods. Random Forest is a variation of the Bagging algorithm 

that is used to create individual decision trees, whereas AdaBoost is a popular boosting algorithm that 

maintains a set of weighting systems over the training samples. Ensemble methods consist of combining the 

results of several classification models in order to develop a more robust system that provides more accurate 

results than by using a single classifier. However, such methods can present a high computational 

complexity. 

3.2. Evaluating the classification 

The main objective of the classification process of skin lesions is to achieve good results for 

distinguishing between different lesion classes. In order to fulfil this purpose, several classification models 

based on different feature subsets, samples and classifiers are evaluated by using test sets. Therefore, new 

samples are classified and the predicted class is compared to the known class to evaluate the classification 

performance. Among several evaluation procedures, the cross-validation (XVAL) procedure [140] is the 

most commonly used in the literature to evaluate the results of skin lesion classification, since it avoids 

over-fitting while testing the capacity of the classifier to generalize. The k-fold cross-validation [12,108] 

and leave-one-out [11,93] are examples of cross-validation procedures proposed for classifying skin lesions 

in images. The half-and-half test is another evaluation procedure, which was applied by Iyatomi et al. [96]. 

In addition, the authors evaluated the performance of classifiers using 10-fold cross-validation, leave-one-

out cross-validation and half-and-half tests, and they concluded that the results are almost equivalent and 

may be considered reasonable.  
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Statistical measures based on performance metrics [160] are computed to compare the performance of 

one or several classification models according to the outcomes of classifiers. Some possible outcomes of 

classifiers based on the predicted class and known class are: 1) true positive (TP), 2) true negative (TN), 3) 

false positive (FP), and 4) false negative (FN). These outcomes represent the number of correct (true) and 

incorrect (false) classification for each class (positive and negative). For example, in a classification process 

between two classes, one class may be considered positive and another negative. Usually, the positive 

samples represent the most important class to classify (e.g., skin cancer), and benign lesion stands for the 

negative samples. Therefore, the TP rate is the number of correctly classified positive samples, the TN rate 

is the number of correctly classified negative samples, the FP rate is the number of incorrectly classified 

negative samples, and the FN rate is the number of incorrectly classified positive samples.  

The aforementioned rates may be represented by a confusion matrix, which is the basis for several 

metrics used by researchers to measure the performance of the classification [10,12,81], such as: 1) the 

precision that is the percentage of correctly classified samples for each given class with respect to its true 

and false predictions, 2) the recall or sensitivity, which is the percentage of correctly classified positive 

samples with respect to all positive samples, 3) the specificity, which is the percentage of correctly classified 

negative samples with respect to all negative samples, and 4) the accuracy that is the percentage of correctly 

classified positive and negative samples based on all samples. Area under the ROC curve (AUC) is an 

additional term associated with the receiver operating characteristics (ROC) graph [160], which is also used 

to compare the performance of the classification, since it is a very useful tool for visualizing and evaluating 

classifiers [10,11,81]. Currently, such measure is commonly used and are able to provide a more robust 

classification performance measure than other evaluation measures [160]. 

3.3. Skin lesion classification performance 

For the skin lesion classification process, one or several techniques have been evaluated to achieve the 

best results. The performance of such a process depends on several issues, such as the segmented image, 

and extracted or selected features, as well as the classification method used. The classification process may 

be binary or multi-class, and includes different classes according to the classification goal, such as: 1) 

malignancy of the lesions (benign versus malignant) [12,106], and 2) distinct types of skin lesions 

(melanoma versus nevus [94,108], melanocytic versus non-melanocytic [93], and dysplastic versus non-

dysplastic versus melanotic [108]). Furthermore, skin lesion features are also classified in terms of: 1) border 

features (regular versus irregular [90,106] and irregularity level [95]), 2) presence of main colours existing 

in malignant lesions [81,112], 3) presence of features of the seven-point checklist [24,79,161], 4) presence 

of global patterns [72,73,162] and 5) presence of local patterns [71,128].  
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Table 6 summarizes the best results of recent studies concerning skin lesion classification. The table 

indicates the number and type of image used, the techniques employed in the segmentation step and feature 

selection, the number of extracted and selected features, the classification algorithms and the values of the 

evaluation measures used. The performance of several classifiers has been compared, e.g. in terms of the 

discrimination between benign lesions and melanomas, by several authors.  

Table 6 Results of recent studies focused on the skin lesion classification. 

Ref. Year 
Number 
of image  
(Type) 

Segmentation Feature selection 
(EF/ SF) Classifier Classification 

Mean results 
(Evaluation 
measures) 

[112] 2015 200 
(Derm.) - - 

(NM/ -) 
Ensemble method 
(SVM) Malignant/ benign 

91% (ACC), 97% 
(SE), 65% (SP), 92% 
(Prec.), 94% (FM), 
95% (AUC). 

[82] 2015 170 
(Macro.) 

K-means 
Clustering 

- 
(NM/ -) 

 Ensemble method  
(CLAM, CIA-LVQ, 
Naïve Bayes) 

Melanoma/ nevus 81% (ACC), 0.741 
(PPV), 0.859 (NPV). 

[105] 2015 968 
(Derm.) Thresholding 

Incremental 
Stepwise  
(828/ 25) 

Linear classifier Melanoma/ nevus/ 
BCC/ SK  

Melanoma: 90.48% 
(DR); 
Nevus: 82.51% 
(DR); 
BCC: 82.61% (DR); 
SK: 80.61% (DR). 

[84] 2015 180 
(Derm.) Thresholding PCA 

(NM/ NM) 
Ensemble method 
(Random forest) 

Melanoma/ 
dysplastic nevus 98% (SE), 70% (SP). 

[83] 2015 
DB1: 200 
DB2: 482 
(Derm.) 

NM Fusion strategies 
(NM/ NM) 

Ensemble method 
(Random forest) Melanoma/ nevus 

DB1: 98% (SE),  
90% (SP); 
DB2: 83% (SE), 76% 
(SP). 

[102] 2015 210 
(Derm.) NM 

Feature analysis/ 
wrapper + filter 
(59/ 19) 

Discriminant 
analysis 

Not-cut/ cut 
(benign lesion/ 
suspicious lesion 
and melanoma) 

81% (CR), 83% 
(SE), 80% (SP). 

[125] 2015 206 
(Macro.) - - 

(62/ -) SVM Melanoma/ non-
melanoma 

83.59% (ACC), 
91.01% (SE), 
73.45% (SP). 

[80] 2014 206 
(Derm.) NM SFS 

(53/ 7.6) 
Discriminant 
analysis Melanoma/ benign 86% (SE), 52% (SP), 

63.3% (CR). 

[110] 2014 564 
(Derm.) 

Thresholding, 
region-growing 
and merging 

FCBF  
(437/ 74) 

Ensemble method 
(SVM) Melanoma/ benign 

93.83% (ACC), 
93.76% (SE), 
93.84% (SP). 

[61] 2013 134 
(Macro.) - 

Correlation 
analysis 
(25/ 13) 

ANN Melanoma/ benign 0.83 (SE), 0.90 (SP), 
0.89 (AUC). 

[149] 2013 152 
(Macro.) Thresholding 

- 
(Stage one: 52; 
stage two: 12/ -) 

Stage one: KNN; 
Stage two: 
maximum likelihood 

Malignant/ benign 
99.34% (ACC), 
100% (SE), 97.78% 
(SP). 

[11] 2013 176  
(Derm.) Thresholding 

Individual and 
combined feature 
analysis  
(NM/ -) 

 Ensemble method 
(AdaBoost) Melanoma/ nevus 96% (SE), 80% (SP). 

[103] 2012 120 
(Derm.) 

Dynamic 
programming 

SFFS 
(NM/ NM) SVM Melanoma/ nevus 

Melanoma: 88.2% 
(SE), 91.30% (SP), 
0.880 (AUC); 
Nevus: 86.5% (SE), 
88.2% (SP), 0.824 
(AUC). 

[12] 2012 289 
(Derm.) Thresholding GRFS 

(35,455/ 23) 
Ensemble method  
(random forest) Malignant/ benign 91.26% (ACC), 

0.937 (AUC). 

[70] 2011 152 
(Macro.) Thresholding - 

(52/ -) 
KNN/ KNN-DT  
 Malignant/ benign 

96.71% (ACC), 
96.26% (SE), 
97.78% (SP). 

[104] 2010 167 
(Macro.) Ncut - 

(NM/ -) Regression analysis Melanoma/ benign 70.5% (ACC), 71.8% 
(SE), 69.8% (SP). 
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Ref. Year 
Number 
of image  
(Type) 

Segmentation Feature selection 
(EF/ SF) Classifier Classification 

Mean results 
(Evaluation 
measures) 

[93] 2010 655 
(Derm.) 

Thresholding, 
morphological 
operations 

Incremental 
Stepwise  
(428/ 2) 

Linear classifier Melanocytic/ 
non-melanocytic 

97.99% (SE), 
86.64% (SP). 

[10] 2009 152 
(Macro.) Thresholding CFS 

(45/ 5) LMT Melanoma/ nevus 
86% (ACC), 94% 
(SE), 68% (SP), 
0.890 (AUC). 

[106] 2009 30 
(Derm.) - - 

(NM/ -) C5.0 Malignant/ benign 93.30% (ACC), 80% 
(SE), 96% (SP). 

[108] 2009 3639 
(Derm.) NM - 

(31/ -) 
MLR/ SVM/ LWL/ 
CART Melanoma/ nevus 100% (ACC), 1.0 

(AUC). 

[108] 2009 3639 
(Derm.) NM - 

(31/ -) 
ANN/ SVM/  
Bayes networks 

Dysplastic/ 
non-dysplastic 

73.29% (ACC), 
0.688 (AUC)/  
76.08% (ACC), 
0.607 (AUC)/  
68.94% (ACC), 
0.663 (AUC). 

[108] 2009 3639 
(Derm.) NM - 

(31/ -) SVM 
Melanotic/ 
dysplastic/ 
non-dysplastic 

77.06% (ACC), 1.0% 
(AUC). 

[94] 2008 1258 
(Derm.)  

Thresholding, 
region-growing 

Incremental 
Stepwise  
(428/ 72) 

ANN Melanoma/ nevus 
94.10% (ACC), 
85.90% (SE), 86.0% 
(SP), 0.928 (AUC). 

[96] 2008 199 
(Derm.)  NM 

Incremental 
Stepwise  
(482/ 10) 

Linear classifier Melanoma/ 
nevus 

100% (SE), 95.9% 
(SP), 0.993 (AUC). 

[109] 2008 358 
(Derm.)  

FCM, 
thresholding 

PCA 
(128/ 10) 

Ensemble method 
(KNN, SVM, GML) 

Malignant/ benign/ 
dysplastic 75.69% (ACC). 

[88] 2007 564 
(Derm.)  

Region-growing 
and merging 

CFS 
(473/ 18) SVM Melanoma/ 

benign 

92.34% (SE), 
93.33% (SP), 0.966 
(AUC). 

Ref.: reference; Macro.: macroscopic; Derm.: dermoscopic; BCC: basal cell carcinoma; SK: seborrheic keratosis; EF: extracted features; SF: 
selected features; NM: non-mentioned; ACC: accuracy; SE: sensitivity; SP: specificity; Prec.: precision; FM: F-Measure; AUC: area under the 
ROC curve; PPV: positive predictive value; NPV: negative predictive value; DR: detection rate; CR: correct rate; DB: database; Ncut: normalized 
cut; FCM: fuzzy c-means; GRFS: gain ratio feature selection; CFS: correlation-based feature selection; PCA: principal component analysis; SFS: 
sequential feature selection; SFFS: sequential floating feature selection; FCBF: fast correlation-based feature filter; LMT: logistic model tree; 
MLR: multinomial logistic regression; SVM: support vector machine; LWL: locally weighted learning; CART: classification and regression 
trees; ANN: artificial neural network; GML: Gaussian maximum likelihood; KNN: k-nearest neighbours; KNN-DT: k-nearest neighbours-
decision tree; FKNN: fuzzy k-nearest neighbours; CLAM: cluster-based adaptive metric; CIA-LVQ: colour image analysis-leaning vector 
quantization. 

Zortea et al. [80] compared the classification performance of quadratic discriminant analysis (QDA), 

linear discriminant analysis (LDA) and classification and regression trees (CART), and obtained the best 

results with QDA. In the study of Rastgoo et al. [84], better results were achieved using a random forest 

than a gradient boosting and SVM classifier. Likewise, Barata et al. [83] have also obtained the best results 

by applying a random forest than using AdaBoost, SVM and KNN. Schaefer et al. [110] proposed an 

ensemble method based on a SVM (polynomial kernel), non-pairwise measure of diversity (fuzzy Shannon), 

and neural network based on classifier fusion, which obtained the best results when compared with other 

ensemble methods, as well as with individual SVM classifier. 

Ensemble methods have performed better than individual classifiers in several studies [11,109], whereas 

Alcón et al. [10] obtained the best results in both the individual logistic model tree (LMT) classifier and 

AdaBoost ensemble method. Meanwhile, the authors considered the LMT classifier more useful due to the 

complexity computation of the ensemble model. Consequently, there is no ideal method to solve all 
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problems in skin lesion classification, as may be observed in findings in the literature. The performance of 

the classification relies on several conditions, mainly on discriminative features, as previously discussed. 

The features extracted from the lesion have also been used for pattern detection or classification in order 

to assist in skin lesion diagnosis. Table 7 summarizes the best results of recent studies concerning global 

and local pattern classification in dermoscopic images. The table indicates the number of image used, the 

target of the detection or classification, and the values of the evaluation measures.  

Table 7 Results of recent studies focused on the global and local pattern analysis in dermoscopic images. The 
references of research about local features also include the works focused on the seven-point checklist method. 

Reference Year Number  
of images Detection/classification Mean results 

(Evaluation measures) 
Global pattern   	  

[73] 2013 350 Reti./ Glob./ Cob./ Homo./ Paral./ Starb./ 
Mult.	 89.28% (SE), 93.75% (SP), 0.986 (AUC). 

[162] 2012 180 Reti./ Glob./ Cob./ Homo./ Paral./ Starb./	 93.08% (SE), 91.45% (SP), 0.948 (AUC).	
[72] 2012 325 Reti./ Glob./ Cob./ Homo./ Paral./	 86.8% (ACC).	
[74] 2011 160 Reti.; Glob./	 89% (ACC); 95% (ACC). 
[71] 2011 360 Mult.	 NM 
[98] 2009 100 Reti./ Glob./ Cob./ Homo./ Paral./	 94% (ACC) 
[124] 2009 100 Reti./ Glob./ Cob./ Homo./ Paral./	 86% (ACC) 
[96] 2008 213 Paral. ridge; paral. furrow; fibrillar	 0.985 (AUC); 0.931 (AUC); 0.890 (AUC). 
[121] 2008 44 Reti./ Glob./ Homo./	 94 (ACC) 
Pigmented network     
[112] 2015 NM Typical 74% (ACC), 0.82 (AUC), 79% (Prec.). 
[163] 2014 122 Present/ absent; typical/ atypical 85% (ACC), 0.821 (AUC); 100% (ACC). 
[111] 2014 220 Present/ absent 86% (SE), 81.67% (SP). 
[100] 2012 200 Present/ absent  86.2% (ACC), 91.1% (SE), 82.1% (SP). 
[62] 2011 734 Present/ absent  0.922 (AUC) 
[71] 2011 360 Melanoma/ benign NM 
[24] 2010 115 Atypical/ absent 80% (SE), 82% (SP). 
[128] 2010 NM Present/ absent NM 

[101] 2010 436 Present/ absent; absent/ typical/ atypical 93% (ACC), 0.935 (Prec.), 0.933 (Rec.);  
82% (ACC), 0.820 (Prec.), 0.823 (Rec.). 

[64] 2010 106 Melanoma/ benign 95.4% (ACC) 
[164] 2008 173	 Typical/ atypical	 85% (ACC) 
[165] 2006 60 No network/ partial/ complete 88.3% (ACC) 
[166] 2006 30 Typical/ atypical NM 
[122] 2004 155 Present/ absent 80% (ACC) 
[155] 1998 NM Present/ absent NM 
Dots/globules     

[112] 2015 NM Absent; typical; atypical 
47% (ACC), 0.53 (AUC), 47% (Prec.); 
70% (ACC), 0.55 (AUC), 39% (Prec.); 
61% (ACC), 0.51 (AUC), 29% (Prec.). 

[63] 2015 108	 Malignant/ non-malignant	 0.903 (ACC), 0.884 (SE), 0.923 (SP).	
[128] 2010 NM Present/ absent NM 
[71] 2011 360 Melanoma/ benign NM 
[155] 1998 NM Present/ absent NM 
Streaks     
[112] 2015 NM Absent 85% (ACC), 0.79 (AUC), 95% (Prec.). 

[154] 2013 945 Present/ absent; regular/ irregular; absent/ 
regular/ irregular 

78.3% (ACC), 83.2% (AUC); 83.6% (ACC), 
88.9% (AUC); 76.1% (ACC), 85% (AUC). 

[152] 2012 99 absent/ regular/ irregular 91% (ACC) 
[151] 2010 53 Present/ absent 86% (SE), 88% (SP). 
[24] 2010 200 Irregular/ absent 86% (SE), 88% (SP). 
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Reference Year Number  
of images Detection/classification Mean results 

(Evaluation measures) 
[78] 2005 10 Present/ absent NM 
Blue-whitish veil     
[112] 2015 NM Absent 90% (ACC), 0.96 (AUC), 99% (Prec.). 
[118] 2013 200; 100 Present/ absent 87% (ACC); 67% (ACC). 
[150] 2011 887 Present/ absent 80.50% (SE), 90.93% (SP). 
[74] 2011 160 Present/ absent 86% (ACC) 
[71] 2011 360 Melanoma/ benign NM 
[24] 2010 110 Present/ absent 90% (SE), 93% (SP). 
[151] 2010 135 Present/ absent 87% (SE), 85% (SP). 

[77] 2008 100; 545 Present/ absent; Melanoma/ benign 84.33% (SE), 96.19% (SP); 69.35% (SE), 
89.97% (SP). 

Blotches     
[24] 2010 110 Irregular/ absent 87% (SE), 90% (SP). 
[99] 2009 424 Melanoma/ benign 81.2% (ACC) 
[120] 2009 50 Present/ absent NM 
[117] 2005 512 Melanoma/ benign 77% (ACC) 
Hypopigmentation     
[97] 2011 244 Melanoma/ nevus 0.952 (AUC) 
Regression 
structures     

[112] 2015 NM Absent 89% (ACC), 0.86 (AUC), 98% (Prec.). 
[24] 2010 110  Present/ absent 80% (SE), 83% (SP). 
[151] 2010 80 Present/ absent 80% (SE), 83% (SP). 
Vascular 
structures     

[166] 2006 NM Present/ absent NM 
NM: non-mentioned; ACC: accuracy; SE: sensitivity; SP: specificity; AUC: area under the ROC curve; Prec.: precision; Rec.: recall; Reti.: 
reticular; Glob.: globular; Cob.: cobblestone; Homo.: homogeneous; Paral.: parallel; Starb.: starburst; Multi.: multicomponent. 

Several methods have been proposed for the pattern analysis task in skin lesion diagnosis. Some of these 

methods have also used feature selection techniques, and the performance of several classifiers has also 

been taken into account [62,63,73]. One concern in this task is in identifying the presence of global patterns, 

since few studies have been done on such patterns in automatic diagnosis of skin lesions. To the best of our 

knowledge, only one study dealing with the classification of all global patterns of skin lesions has been 

proposed [73], and no previous study has addressed the issue to identify the absence of such patterns. Indeed, 

it should be noted that the multicomponent pattern and the absence of patterns can indicate a higher 

probability of being a malignant lesion. 

Abbas et al. [73] proposed the classification of skin lesion global patterns by using AdaBoost algorithm 

based on colour and texture properties from a perceptually uniform colour space. Furthermore, the authors 

developed a multi-label learning algorithm (AdaBoost.MC) to solve the problem of multicomponent pattern. 

This pattern is determined by fusing the results produced by AdaBoost.MC based on maximum a posteriori 

(MAP) and robust ranking principles. The method achieved superior results compared with the multi-label 

SVM and KNN.  

Local pattern detection of dermoscopy images is a challenging task to assist in discriminating between 

benign and malignant skin lesions. The presence of local patterns, such as blue-whitish veil and regression 

structures, or even some patterns considered atypical, irregular or asymmetric, may identify a malignant 
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lesion. To the best of our knowledge, no previous study has dealt with all skin lesion local patterns. Leo et 

al. [24] proposed a method based on LMT to classify five local patterns based on the seven-point checklist 

method. The authors segmented the lesion colour by using PCA, 2D histogram construction, peak-picking 

algorithm, and histogram and lesion partitioning, in order to detect a blue-whitish veil, irregular 

pigmentation, and regression structures. In addition, the authors combined structural and spectral methods 

to extract texture features, such as median filter, close-opening operation, fast Fourier transform (FFT), 

high-pass filtering, inverse fast Fourier transform (IFFT) and suitable thresholding, in order to detect the 

atypical pigment network, and irregular streaks. The authors achieved good results in the detection of such 

local patterns. 

Most studies have been proposed for the pigmented network detection [100,111,163]. In addition, other 

studies have considered feature extracted from patterns for discriminating between benign and malignant 

skin lesions [63,64M,77]. Maglogiannis and Delibasis [63] classified the skin lesion into malignant and non-

malignant and achieved superior results with inclusion of the dot-related features to the lesion-related 

features. The SVM classifier (polynomial kernel) yielded better results than MLP, KNN, random forest and 

SVM (PUC kernel) based on dot-related features. The dots were segmented using a circularity function and 

definition of diffusivity after enhancing dark circular structures using inverse non-linear diffusion.  

4. Discussion 

Dermoscopic images have been widely used for diagnosis of pigmented skin lesions [167,168], since 

they allow suitable visualization with more details of pigmentation patterns on the surface of the lesion. 

Furthermore, previous clinical studies have addressed an increase of sensitivity of the melanoma diagnosis 

by dermoscopic compared to diagnosis by macroscopic image [169]. Among the several skin lesion 

diagnostic methods using dermoscopic images [67], the ABCD rule has been commonly applied to extract 

features for computational analysis [84,149]. This rule allows for easy understanding and provides 

simplicity of application while showing reliable results for the melanoma diagnosis. On other hand, previous 

clinical studies [69] reported that methods based on pattern analysis performed better than the ABCD rule 

for the diagnosis of melanocytic skin lesions. In recent years, descriptors mainly based on shape, colour and 

texture have been proposed to identify and classify patterns in skin lesion images, as well as to discriminate 

benign and malignant lesions. Pattern analysis of pigmented skin lesions has shown promising results and 

may continue to be the focus of intense research in the coming years [73,81]. Fig. 4 illustrates the distribution 

of the methods that have been proposed for skin lesion classification reviewed in this article according to 

the main feature used. 
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Fig. 4 Distribution of the reviewed skin lesion classification methods according to the main feature used. 

The classification process of skin lesions in images must be effective, since it is crucial to assist 

dermatologists in the diagnosis of these lesions by means of CAD systems. In addition, the evaluation and 

improvement of the performance of classifiers are essential for the pattern recognition research field [58]. 

A relevant problem that affects the performance of classifiers is the definition of the meaningful features 

for representing the classes. Consequently, the feature extraction and selection steps are very important to 

achieve better performance for the computational diagnosis of skin lesions in images. The application of 

several descriptions may be required considering the large number of features extracted from images. For 

dealing with this issue, feature selection methods have been applied to establish the most relevant features 

[61,80,84,110], since these methods allow removing the redundant and/or irrelevant features. As a 

consequence, the feature extraction time, the training and testing computational load and the classification 

complexity are all reduced, while the classification performance may be improved. The result of the feature 

selection process depends on the search strategy and evaluation model applied as well as their established 

parameters. In regard to the classification process, the performance depends on several factors, such as the 

extracted and selected features, established parameters and chosen classification method. The classification 

algorithms should be chosen based on the classification problem and available data regarding advantages 

and disadvantages of each algorithm. Fig. 5 illustrates the distribution of the classification algorithms used 

in the methods reviewed in this article for skin lesion classification. 
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Fig. 5 Distribution of the classification algorithms used by the reviewed methods for skin lesion classification. 

Classification methods based on a decision tree have been used by many authors for the skin lesion 

classification [10,12,24]. The simplicity of the structure in terms of ease of understanding and visualization, 

as well as the easy rule generation, is one of the important advantages of this method. Ensemble methods 

[140], which aim to combine the strengths of different classifiers, have also been commonly proposed to 

improve the performance of the classification of skin lesions. These methods have performed better than 

individual classifiers [11,110]. The SVM classifier [148] has also been applied to discriminate skin lesions 

due to its good generalization and simplification of the non-linear data separation by means of kernel 

functions [63,73]. Despite the long training time, ANNs have been proposed in various studies [61,81,106] 

to deal with complex pattern recognition problems. Recently, the linear classifier [93], regression analysis 

[104], prototype-based classifier [82], discriminant analysis [80] and maximum likelihood [149], have also 

been proposed to solve problems of skin lesion classification. 

5. Conclusion and future trends 

Pigmented skin lesion classification is an area of great research interest due to its importance in skin 

cancer prevention, as well as in the early diagnosis. This review provides an overview of current 

developments of computational methods for skin lesion image classification. Studies specifically addressing 

automatic methods applied to the feature selection and extraction steps, based on several clinical approaches, 

were presented in this review. In addition, the skin lesion classification step was addressed by including 

classifiers and evaluation procedures, as well as some performance results for pattern and lesion 

classification. 
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From this review, one may conclude that several studies focused on skin lesion classification have been 

proposed for use in CAD systems. Such systems aim at an effective computational diagnosis of pigmented 

skin lesions to assist dermatologists in their diagnosis. Although this research topic has been addressed in 

several studies, resulting in successful systems, new methodologies may be proposed to fill gaps that still 

have not been fully addressed, as well as to improve the performance of existing methods. Most studies 

involve extraction of several features from dermoscopic images and comparison of two or more 

classification methods to identify benign and malignant lesions. However, some studies used feature 

selection methods to achieve a better classification performance. Detection and classification of skin lesion 

patterns have also been the goal in several studies. Recently, global and local pattern recognition has been 

of great interest to researchers. 

In conclusion, future trends regarding image computational analysis of pigmented skin lesions involve 

searching for new methods aiming to develop more efficient and effective expert systems for the 

computational diagnosis based on macroscopic and dermoscopic images. Hence, several issues may be 

addressed to achieve this goal, in particular: 1) the evolution features may be better explored in order to 

develop methods to analyse changes in size, shape, shades of colour and surface features on skin lesions - 

extracted features based on evolution criterion along with the other criteria features may complement the 

diagnosis; 2) the development and evaluation of new computational methods to identify the presence of 

global patterns, mainly the starburst and multicomponent patterns, since few studies have explored such 

patterns; 3) the lack of computational methods to detect some skin lesion local patterns and access their 

irregularity that can also be important to assist in diagnosis of specific lesions; 4) the development of new 

approaches for colour and asymmetry patterns, and positive feature analysis based on Menzies’s method is 

important for future applications of this method for computational diagnosis of skin lesions; 5) in order to 

find more relevant features for the given problem, different feature selection models may be compared; and 

6) the evaluation of new classifiers, ensemble models and parameter optimisation need to be addressed in 

order to classify skin lesions and to improve on the current results. 

Computational methods based on the issues aforementioned may perform better and more effectively in 

diagnosing skin lesions in images. In addition, such methods may cover several problems regarding skin 

lesion classification, which convert CAD systems into more complete expert systems for diagnosing such 

lesions based on macroscopic and dermoscopic images. 
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