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Abstract. In this paper we consider an attracting heteroclinic cycle made by a 1-dimensional
and a 2-dimensional separatrices between two hyperbolic saddles having complex eigenva-
lues. The basin of the global attractor exhibits historic behaviour and, from the asymptotic
properties of these non-converging time averages, we obtain a complete set of invariants un-
der topological conjugacy in a neighborhood of the cycle. These invariants are determined
by the quotient of the real parts of the eigenvalues of the equilibria, a linear combination of
their imaginary components and also the transition maps between two cross sections on the
separatrices.

1. Introduction

The classification of vector fields according to their topological properties is a major con-
cern in the study of dynamical systems, and it has been often addressed in recent years in
order to distinguish what seems to be similar dynamical systems and to study the stability
of their properties. Dimension three is the lowest dimension where one finds chaos for flows,
but even in this low-dimensional setting a vast catalogue of exotic dynamical phenomena is
already known. For instance, the Lorenz attractor [26, 9, 25], or the homoclinic cycle associ-
ated to a saddle-focus studied by Shilnikov [20, 21], or else the spiralling attractors generated
by heteroclinic networks that Bykov introduced in [3, 4]. The latter has recently attracted
more attention due to the need to understand the global dynamical properties induced by
the non-real eigenvalues at the equilibria and the presence of homoclinic or heteroclinic
networks; see [11] for background material, related accounts and references therein.
It is known that a vector field f which exhibits a heteroclinic tangency cannot be struc-

turally stable [18]. This gives rise to interesting invariants under topological conjugacy and
implies the existence of an uncountable number of different conjugacy classes in any small
neighborhood of f . However, it might be possible to describe all possible conjugacy classes
with finitely many independent real parameters, which would provide, in particular, a work-
able description of the systems near f . If this is the case, it is said that the modulus of
stability of f is finite and equal to the minimum number of parameters.
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1.1. Modulus for heteroclinic connections. Regarding invariants for vector fields on 3-
dimensional manifolds, Dufraine discussed in [7] vector fields with two saddle-focus equilibria
σ1 and σ2, with eigenvalues

−C1 ± i ω1 and E1 (1.1)

E2 ± i ω2 and −C2

where
ω1, ω2 > 0, C1 > E1 > 0, C2 > E2 > 0. (1.2)

It is also assumed that the equilibria are connected by their 1-dimensional invariant manifolds
(unstable for σ1 and stable for σ2). Aware of the invariant γ1 = C1

E2
introduced by Palis in

[17], which involves the eigenvalues not related with the connection manifold, the author
computes another conjugacy invariant associated to the complex parts of the eigenvalues of
the vector field at the equilibria, namely ω1 + γ1 ω2. Dufraine also claims that these two
invariants constitute a complete set if the transition map along the 1-dimensional connection
is a homothety-rotation.
Generalizing this approach, but this time aiming at a complete characterization up to

topological equivalence, Bonatti and Dufraine considered in [2] the same setting of [7] while
assuming that the transition map along the 1-dimensional connection, when expressed in

suitable coordinates, is linear, with matrix

(
1 0
0 λ

)
for some λ ≥ 1, and conformality

constant c = 1
2
(λ + 1

λ
). Then they showed that a complete set of invariants for orientation

preserving topological equivalence essentially depends on Palis’ invariant and c. More pre-
cisely, given two such vector fields whose transition maps have conformality constants c and c̃
sufficiently small (a size measured by an adequate continuous function ψ ≥ 1 which depends
on ω1, ω2, C1 and E2), then the vector fields are topologically equivalent in a neighborhood
of the corresponding connections, and they are positively topologically equivalent if and only
if one of the following conditions is satisfied: either

c = c̃ = 1 and ω1 − γ1 ω2 = 0 = ω̃1 − γ̃1 ω̃2 (1.3)

or else
(ω1 − γ1 ω2) (ω̃1 − γ̃1 ω̃2) > 0.

Although not relevant to our setting, we notice that the authors also proved that, when c
and c̃ are both too big, then a complete set of invariants is made by the quotient ω1

γ1 ω2
and

the value at (ω1

C1
, ω2

E2
, c) of a function related to ψ.

Finally, in [22], Simó and Suśın analyzed vector fields with a heteroclinic 2-dimensional
connection between σ1 and σ2, and proved that the classes of conjugacy of these systems
can be characterized by one parameter only, depending on the eigenvalues of the equilibria
which are not related to the two-dimensional manifold, namely

γ2 =
C2

E1

.

1.2. Modulus for heteroclinic cycles. Concerning heteroclinic cycles, for planar vector
fields and based on Bowen’s example, Takens described in [23] a complete set of topo-
logical invariants under topological conjugacies for attracting heteroclinic cycles with two
1-dimensional connections between two hyperbolic saddles with real eigenvalues −C1 < 0,
E1 > 0 and −C2 < 0, E2 > 0, respectively. Takens assumes that the transition maps
on 1-dimensional cross sections are linear, namely the identity map and x 7→ a x for some
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0 < a < 1. The set of the three invariants characterized by Takens includes, as expected,
the ones previously reported by Palis in [17] associated to each 1-dimensional connection of
the cycle, that is,

γ1 =
C1

E2

and γ2 =
C2

E1

.

In addition to these, Takens found another invariant which is primarily determined by the
transition maps and is given by

1

E1

(1 + γ1) log a.

Takens’ construction of the conjugacy uses asymptotic properties of non-converging Birkhoff
time averages, the so called historic behavior [19], which we will recall in Subsection 3.2.

1.3. Modulus of stability for a Bykov attractor. In this work, we will consider vector
fields acting on the 3-dimensional sphere with two hyperbolic equilibria admitting complex
eigenvalues satisfying (1.1) and (1.2), and exhibiting both a one-dimensional separatrix as
in [7] and a two-dimensional connection like the one in [22]. This network is called a Bykov
attractor. The behavior of such a vector field f in the vicinity of the connections is essen-
tially given, up to conjugacy, by the linear part of f in linearizing neighborhoods of the
equilibria and by the transition maps between two discs transversal to f and contained in
those neighborhoods. Therefore, we expect to revisit the two invariants described in [7], the
one introduced in [22] and the invariant Takens found in [23].
Following the strategy of Takens [23], we will select suitable 2-dimensional cross sections at

the connections and assume, as done in [23], [2] and [3], that in appropriate coordinates the
transition maps are linear, whose 2×2 matrices are diagonal and have non-zero determinants,

namely

(
1
a

0
0 a

)
and

(
1 0
0 λ

)
, for some 0 < a < 1 and some λ ≥ 1. We will assume, as

done in [23] for a heteroclinic connection between two saddles with real eigenvalues, that the
transition along the one-dimensional connection is the identity map (that is, λ = 1) for all
the vector fields under consideration. This simplifies the computations without demanding
more invariants. Indeed, according to Bonatti and Dufraine’s result (1.3), only if we are
looking for an orientation preserving topological equivalence is it required that either ω1

γ1ω2
is

equal to 1 for each conjugated pair of vector fields or the sign of ω1 − γ1 ω2 is identical for
both vector fields. We observe that, since γ1 and ω1 + γ1ω2 are invariants by conjugacy (cf.
[7]), using the equality

ω1 + γ1ω2 = ω1

(
1 +

γ1ω2

ω1

)
we conclude that the value of ω1

γ1ω2
is equal for two conjugate Bykov attractors if and only if

the values of ω1 and ω2 are the same for the two vector fields. This outcome resembles the
topological invariants found by Dufraine in [7] for homoclinic orbits of saddle-focus type, the
so called Shilnikov cycles.
We will also suppose, as in [23], that the transitions along the one-dimensional and two-

dimensional connections happen instantaneously. This is a reasonable assumption due to
the fact that, as the Bykov attractor is asymptotically stable (cf. [15]), if P belongs to its
basin then the period of time spent by the orbit (φ(t, P ))t∈R+ inside small neighborhoods
of σ1 and σ2 tends to infinity as t → +∞, whereas the time used to travel between these
two neighborhoods remains uniformly bounded in length. Afterwards, we will analyze the
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sequence of hitting times of each orbit at chosen cross sections and show that a complete set
of invariants under topological conjugacy for these Bykov vector fields is given by

γ1 =
C1

E2

, γ2 =
C2

E1

, ω1 + γ1 ω2,
1

E1

(1 + γ1) log a.

2. Description of the vector fields

Let f : S3 → R4 be a Cr, r ≥ 3, vector field on the C∞ Riemannian 3-dimensional
differential manifold

S3 = {(x1, x2, x3, x4) ∈ R4 : x21 + x22 + x23 + x24 = 1}

whose corresponding flow is given by the unique solutions t ∈ R 7→ x(t) = φ(t, x0) ∈ S3 of
the initial-value problem {

ẋ(t) = f(x(t))
x(0) = x0.

We will request that the organizing center of f satisfies the following conditions:

P1. The vector field f is equivariant under the action of Z2 ⊕ Z2 on S3 induced by the
two linear maps on R4

Γ1(x1, x2, x3, x4) = (−x1,−x2, x3, x4)
Γ2(x1, x2, x3, x4) = (x1, x2,−x3, x4).

That is, f ◦ Γ1 = Γ1 ◦ f and f ◦ Γ2 = Γ2 ◦ f .

P2. The set Fix (Z2 ⊕ Z2) = {Q ∈ S3 : Γ1(Q) = Γ2(Q) = Q} reduces to two equilibria,
namely σ1 = (0, 0, 0, 1) and σ2 = (0, 0, 0,−1), which are hyperbolic saddle-foci whose
eigenvalues are, respectively,

−C1 ± ω1 i and E1

E2 ± ω2 i and −C2

where

ω1 > 0, ω2 > 0, C1 > E1 > 0, C2 > E2 > 0. (2.1)

P3. The flow-invariant circle Fix (Z2(Γ1)) = {Q ∈ S3 : Γ1(Q) = Q} consists of the two
equilibria, σ1 and σ2, and two heteroclinic trajectories from σ1 to σ2 we denote by
[σ1 → σ2]

ext and [σ1 → σ2]
int, whose union will be simply called [σ1 → σ2].

P4. The flow-invariant sphere Fix (Z2(Γ2)) = {Q ∈ S3 : Γ2(Q) = Q} is made of the two
equilibria σ1 and σ2 and a two-dimensional heteroclinic connection from σ2 to σ1.

P5. The saddle-foci σ1 and σ2 have the same chirality (which means that near σ1 and σ2
all trajectories turn in the same direction around the one-dimensional connections
[σ1 → σ2]

ext and [σ1 → σ2]
int; see [16] for more information).
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Figure 1. Heteroclinic connections of the organizing center: (a) The invariant
circle Fix (Γ1), parameterized in S3 by x23 + x24 = 1, consists of σ1 and σ2 and two
trajectories connecting them. (b) The invariant sphere Fix (Γ2), parameterized in
S3 by x21 + x22 + x24 = 1, is a two-dimensional connection between σ2 and σ1.

We denote by Xr
Byk(S

3) the set of Cr, r ≥ 3, smooth Z2 ⊕Z2–equivariant vector fields on S3

that satisfy the assumptions (P1)–(P5), endowed with the Cr–Whitney topology. Figure 1
illustrates the previous information concerning Fix (Γ1) and Fix (Γ2).
The two equilibria σ1 and σ2, the two trajectories listed in (P3) and the two-dimensional

heteroclinic connection from σ2 to σ1 refered to in (P4) build a heteroclinic network we will
denote hereafter by Af . This set is the global Bykov attractor of the dynamical system f in
an open set V 0 ⊂ S3. More precisely, the heteroclinic network Af is asymptotically stable,
that is, there exists an open neighborhood V 0 of Af in S3 such that every solution starting
in V 0 remains inside V 0 for all positive times and is forward asymptotic to the network Af .

Remark 2.1. The assumptions (P1)–(P5) define a degenerate set of vector fields exhibiting
heteroclinic connections, a dynamical phenomenon which is natural within systems with
symmetry. If we slightly perturb a vector field in Xr

Byk(S
3) in order to break the connection

Fix(Z2(Γ2)) while preserving the Γ1–equivariance, generically we obtain what the authors of
[16] call a Bykov cycle, with saturated horseshoes accumulating on it. Finding a complete
set of invariants for these Bykov cycles is still an open problem.

3. Main definitions

3.1. Invariants under conjugacy. Given two systems ẋ = f1(x) and ẋ = f2(x), defined in
domains D1 ⊂ S3 and D2 ⊂ S3, respectively, let φi(t, x0) be the unique solution of ẋ = fi(x)
with initial condition x(0) = x0, for i ∈ {1, 2}. We say that the corresponding flows are
topologically equivalent in subregions U1 ⊂ D1 and U2 ⊂ D2 if there exists a homeomorphism
h : U1 → U2 which maps solutions of the first system onto solutions of the second preserving
the time orientation. If h is also time preserving, that is, if for every x ∈ S3 and every t ∈ R,
we have φ1(t, h(x)) = h(φ2(t, x)), the flows are said to be topologically conjugate and h is
called a topological conjugacy.
A functional I defined on a set V of vector fields is an invariant under topological conjugacy

if, whenever two vector fields f and f̃ in V are conjugate, then I(f) = I(f̃). A set of
invariants under topological conjugacy is said to be complete if, given two systems with
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equal invariants, there exists a topological conjugacy between the corresponding flows. For
the sake of simplicity, in what follows we will talk about a topological conjugacy between
two vector fields while meaning a conjugacy defined on some neighbourhood of the global
attractors of the associated flows.

3.2. Historic behavior. We say that the orbit of a point P by a flow φ : R×X → X has
historic behavior if, for some continuous function G : X → R, the Birkhoff averages of G
along the orbit of P (

1

t

∫ t

0

G(φ(s, P )) ds

)
t∈R+

does not converge.

4. Constants

For future use, we settle the following notation:

γ1 =
C1

E2

γ2 =
C2

E1

δ1 =
C1

E1

δ2 =
C2

E2

K =
1

E1

(ω1 + γ1 ω2) τ =
1

E1

(1 + γ1) δ = γ1γ2 = δ1δ2 =
C1C2

E1E2

.

According to the assumptions stated in (2.1), we have K > 0, τ > 0, δ1 > 1 and δ2 > 1.

5. Main results

There are well-known examples of dynamical systems with interesting sets of orbits ex-
hibiting historic behavior, as the logistic family [10], the example of Bowen [23], the full
shifts on finite symbols [10, 24, 1, 5, 13], Gaunersdorfer’s systems on a simplex [8] and the
Lorenz attractor [14]. Following the arguments of Takens in [23] and Gaunersdorfer in [8],
we will add to this list another example in Proposition 5.1. Indeed, although the points in
the attractor Af do not have historic behavior since the ω-limit and α-limit of their orbits
are either σ1 or σ2, all elements in its proper basin of attraction

B(Af ) = {P ∈ S3 : the accumulation points of (φ(t, P ))t∈R+ belong to Af} \ Af

display this kind of behavior.

Proposition 5.1. Let f be a vector field in Xr
Byk(S

3). Given a continuous map G : S3 → R
and P ∈ B(Af ), there exist a sequence (tk)k∈N, which depend on P and G, such that

lim
i→+∞

1

t2i

∫ t2i

0

G(φ(t, P )) dt =
1

1 + γ1
G(σ1) +

γ1
1 + γ1

G(σ2)

and

lim
i→+∞

1

t2i+1

∫ t2i+1

0

G(φ(t, P )) dt =
γ2

1 + γ2
G(σ1) +

1

1 + γ2
G(σ2).

Consequently, every point in B(Af ) has historic behavior.

As happens in the context of Bowen’s planar vector fields [23], the previous result is the
source of four invariants under topological conjugacy, generated by the sequences of hitting
times at two cross sections appropriately chosen in a neighborhood of the attractor Af . We
will also show that they build a complete set of invariants.
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Theorem A. Let f be a vector field in Xr
Byk(S

3). Then γ1, γ2, ω1 + γ1ω2 and τ log a form
a complete set of invariants for f under topological conjugacy.

6. Dynamics in B(Af )

We will analyze the dynamics near the network Af of a vector field f ∈ Xr
Byk(S

3), r ≥ 3,
using local maps that approximate the dynamics near and between the two equilibria in the
network.

6.1. Local coordinates. In order to describe the dynamics in a neighborhood of the Bykov
cycle Af of f , we need a workable expression of the Poincaré map of f at a suitable cross
section inside this neighborhood. For that, up to a conjugacy, we will select the linearizing
coordinates near the equilibria σ1 and σ2 introduced in [6]. In these coordinates, and after
a linear rescaling of the variables, if needed, we consider two cylindrical neighborhoods Vσ1

and Vσ2 in S3 of σ1 and σ2, respectively, with base-radius 1 and height 2 (see Figure 2).
Moreover, the boundaries of Vσ1 and Vσ2 have three components:

(1) The cylinder wall, parameterized in cylindrical coordinates (ρ, θ, z) by

θ ∈ [0, 2π], |z| ≤ 1 7→ (1, θ, z).

(2) Two discs, the top and bottom of each cylinder, parameterized by

ρ ∈ [0, 1], θ ∈ [0, 2π] 7→ (ρ, θ,±1).

Observe that the local stable manifold W s
loc(σ1) of the equilibrium σ1 is the disk in Vσ1

given by {(ρ, θ, z) : 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, z = 0}. The local stable manifold W s
loc(σ2) of σ2

is the z-axis in Vσ2 ; the local unstable manifold W u
loc(σ2) of σ2 is parameterized by z = 0 in

Vσ2 .




W   u
loc 

In  (    )σ2

Out  (    )σ2

σ2 


W   u

loc

1

2
σ1

W   s
loc 

+

+

In  (    )σ2
-

Out  (    )σ2-

Out  (    )σ1
+

In  (    )σ1
-

Out  (    )σ1
-

In  (    )σ1
+

Figure 2. Local cylindrical coordinates in Vσ2 and Vσ1 , near σ2 and σ1. Left: The
flow enters the cylinder Vσ2 crossing transversely the top/bottom In (σ2) and leaves
it transversely through the wall Out (σ2). Right: The flow enters the cylinder Vσ1

transverse to the wall In (σ1) and leaves it transversely across the top/bottom

Out (σ1).
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In Vσ1 , we will use the following notation:

Out+(σ1) := top of Vσ1 , that is, {(ρ, θ, 1) : 0 ≤ ρ < 1, θ ∈ [0, 2π] }.
Out−(σ1) := bottom of Vσ1 , that is, {(ρ, θ, −1) : 0 ≤ ρ < 1, θ ∈ [0, 2π] }.
In+(σ1) := upper part of the cylinder wall of Vσ1 , that is, the set

{(1, θ, z) : θ ∈ [0, 2π], 0 < z < 1 } .
In−(σ1) := lower part of the cylinder wall of Vσ1 , that is, the set

{(1, θ, z) : θ ∈ [0, 2π], −1 < z < 0 } .
In (σ1) := In+(σ1) ∪ In−(σ1); its elements enter Vσ1 in positive time.

Out (σ1) := Out+(σ1) ∪Out−(σ1); its elements leave Vσ1 in positive time.

By construction, the flow is transverse to these sections. Similarly, we define the cross
sections for the linearization around σ2. We will refer to In (σ2), the top and the bottom
of Vσ2 , consisting of points that enter Vσ2 in positive time; Out (σ2), the cylinder wall of
Vσ2 , made of points that go inside Vσ2 in negative time, with Out+(σ2) denoting its upper
part and Out−(σ2) its lower part. Notice that [σ1 → σ2] connects points with z > 0 in Vσ1

(respectively z < 0) to points with z > 0 (respectively z < 0) in Vσ2 .
Let

Σ1 = Out (σ1) and Σ2 = Out (σ2) (6.1)

be two relative-open cross sections transverse to the connections [σ1 → σ2]
ext and the invari-

ant sphere Fix (Γ2), respectively. Geometrically each connected component of Σ1 \ [σ1 → σ2]
is a punctured disk; on the other hand, Σ2 \Fix (Γ2) is an annulus, as illustrated in Figure 3.

Σ2

Figure 3. Σ1 and Σ2.

6.2. Local maps near the saddle-foci. As the dynamics sends points with z > 0 in Vσ1

(respectively z < 0) to points with z > 0 (respectively z < 0) in Vσ2 , and is symmetric with
respect to the two-dimensional sphere Fix (Γ2), it is enough to analyze the orbits of initial
conditions (ρ, θ, z) in the invariant upper part z > 0.
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In cylindrical coordinates (ρ, θ, z) the linearization of the dynamics at σ1 and σ2 is specified
by the following equations:

ρ̇ = −C1ρ

θ̇ = ω1

ż = E1z
and


ρ̇ = E2ρ

θ̇ = ω2

ż = −C2z.
(6.2)

Therefore, a trajectory whose initial condition is (1, θ, z) ∈ In+(σ1) arrives at Out+(σ1) after
a period of time equal to

− log z

E1

. (6.3)

Moreover, the trajectory of such a point (1, θ, z) leaves Vσ1 through Out+(σ1) at the point
of Out+(σ1) given by

Φ+
1 (1, θ, z) =

(
zδ1 + S1(1, θ, z),

[
− ω1

E1

log z + θ + S2(1, θ, z)

]
mod 2π, 1

)
(6.4)

where S1, S2 are smooth functions such that, for i = 1, 2 and every k, ℓ ∈ N0,∣∣∣∣∂k+ℓ Si(1, θ, z)

∂θk ∂zℓ

∣∣∣∣ = O(zδ1 (1+ε)) (6.5)

for some positive constant ε < 1 (cf. [6]). Dually, a point (ρ, θ, 1) ∈ In+(σ2) leaves Vσ2

through Out+(σ2) after a period of time equal to

− log ρ

E2

(6.6)

at the point of Out+(σ2)

Φ+
2 (ρ, θ, 1) =

(
1,

[
− ω2

E2

log ρ+ θ + T1(ρ, θ, 1)

]
mod 2π, ρδ2 + T2(ρ, θ, 1)

)
(6.7)

where T1, T2 satisfy a condition similar to (6.5). The maps S1, S2, T1 and T2 represent
asymptotically small terms that vanish when either ρ or z goes to zero.

6.3. The first transition. Points in Out+(σ1) near W
u(σ1) are mapped into In+(σ2) along

a flow-box around the connection [σ1 → σ2]
ext. Up to a change of coordinates (see [23,

§3.1], [2, §1.1]), corresponding to homotheties and rotations which leave invariant the local
expressions of the flows in neighborhoods of the equilibria, we may assume that the transition
map

Ψ+
1→2 : Out+(σ1) → In+(σ2)

is the identity map. This assumption is compatible with the hypothesis (P3), and admissible
due to the fact that the equilibria σ1 and σ2 have the same chirality (cf. (P5)).
Denote by η+ the map

η+ = Φ+
2 ◦Ψ+

1→2 ◦ Φ+
1 : In+(σ1) → Out+(σ2).

Up to higher order terms (we will replace by dots), from (6.4) and (6.7) we infer that the
expression of η+ in local coordinates is given by

η+(1, θ, z) =

(
1,

[
− ω1E2 + δ1ω2E1

E1E2

log z + θ

]
mod 2π, zδ1δ2

)
+ (. . .) (6.8)
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or, in a simpler notation (see Section 4),

η+(1, θ, z) =
(
1, (−K log z + θ) mod 2π, zδ

)
+ (. . .). (6.9)

6.4. The second transition. Up to the previously mentioned change of coordinates, the
action of the linear part of the transition map

Ψ+
2→1 : Out+(σ2) → In+(σ1)

may be seen (cf. [4]) as a composition of transpositions (either rotations of the coordinate
axes or homothetic changes of scales). In what follows, we will assume that

Ψ+
2→1(1, θ, z) =

(
1,

1

a
θ, a z

)
(6.10)

for some 0 < a < 1.

6.5. The Poincaré map. The f−solution of every initial condition (1, θ, z) ∈ B(Af ) ∩
In+(σ1) returns to In+(σ1), thus defining a first return map

P+ = Ψ+
2→1 ◦ η+ : B(Af ) ∩ In+(σ1) → In+(σ1) (6.11)

which is as smooth as the vector field f and acts as follows:

P+(1, θ, z) =

(
1,

1

a
[(−K log z + θ) mod 2π] , a zδ

)
+ (. . .).

In an analogous way, we define the return map P− from In−(σ1) to itself.

7. Hitting times

In what follows, we will obtain estimates of the amount of time a trajectory spends between
consecutive isolating blocks. We are assuming, as done by Gaunersdorfer [8] and Takens
in [23], that the transitions from Out+(σ2) to In+(σ1) and from Out+(σ1) to In+(σ2) are
instantaneous.
Starting with the initial condition (1, θ0, z0) ∈ Out+(σ2) at the time t0, its orbit hits

Out+(σ1) after a time interval equal to

t1 = − 1

E1

log (a z0) (7.1)

at the point

(ρ1, θ1, 1) = Φ+
1 ◦Ψ+

2→1(1, θ0, z0) = Φ+
1

(
1,

1

a
θ0, a z0

)
that is,

(ρ1, θ1, 1) =

=

(
(a z0)

δ1 + S1(1,
1

a
θ0, a z0),

[
− ω1

E1

log (a z0) +
1

a
θ0 + S2(1,

1

a
θ0, a z0)

]
mod 2π, 1

)
.

Then, the orbit goes instantaneously to In+(σ2) and proceeds to Out+(σ2), hitting the point

(1, θ2, z2) = Φ+
2 (ρ1, θ1, 1) ∈ Out+(σ2)
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whose second and third coordinates are (see (6.7))

θ2 =

(
− ω2

E2

log ρ1 + θ1 + T1(ρ1, θ1, 1)

)
mod 2π

=

[
− ω2

E2

log

(
(a z0)

δ1 + S1(1,
1

a
θ0, a z0)

)
+ θ1 + T1(ρ1, θ1, 1)

]
mod 2π

z2 = ρδ21 + T2(ρ1, θ1, 1)

=

(
(a z0)

δ1 + S1(1,
1

a
θ0, a z0)

)δ2

+ T2(ρ1, θ1, 1)

and spending in the whole path a time equal to

t2 = t1 +

(
− 1

E2

log ρ1

)
that is,

t2 = t1 −
1

E2

log

(
(a z0)

δ1 + S1(1,
1

a
θ0, a z0)

)
= t1 −

δ1
E2

log (a z0) +O((az0)
δ1 ε). (7.2)

And so on for the other time values.

We may assume, without loss of generality, that t0 = 0: this amounts to consider the
solutions starting at Σ2, a valid step since every orbit in B(Af ) eventually crosses this
cylinder. Notice also that, as the transition maps are linear with diagonal matrices, up
to higher order terms the sequence of times (tj)j∈N depend essentially on the cylindrical
coordinates ρ and z. Figure 4 summarizes the previous information.




σ2 

σ1

Σ 1

θ  , z  ) 22

(   )1

1

0

0

t ,2 t  ...4

(   )


a

0

0

1
a

t ,1 t ,3 t  ...5

(1, θ  , z  ) 00 (ρ , θ  ,1)11

Figure 4. The sequence (ti)i∈N0
of hitting times for a point (1, θ0, z0) ∈ Out+(σ2).
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8. The invariants

In this section, we will examine how the hitting times sequences generate the set of in-
variants we will use. Starting with a point P = (1, θ0, z0) ∈ Out+(σ2) at the time t0 = 0,
consider the sequences of times (tj)j ∈N constructed in the previous subsection and define for

each i ∈ N0 = N ∪ {0} P2i := φ(t2i, P ) = (1, θ2i, z2i) ∈ Out+(σ2)

P2i+1 := φ(t2i+1, P ) = (ρ2i+1, θ2i+1, 1) ∈ Out+(σ1).
(8.1)

We divide the trajectory (φ(t, P ))t∈R+
0
in periods of time corresponding to its sojourns in

either Vσ1 (that is, the differences t2i+1 − t2i for i ∈ N0) or inside Vσ2 (that is, t2i+2 − t2i+1

for i ∈ N0) during its travel paths that begin and end at Out+(σ2).

Lemma 8.1. Let P = (1, θ0, z0) ∈ Out+(σ2) and take the defined sequence (tj)j ∈N0. Then:

(1) limi→+∞ (t2i+1 − t2i)− γ2 (t2i − t2i−1) = − 1
E1

log a.

(2) limi→+∞ (t2i+2 − t2i+1)− γ1 (t2i+1 − t2i) = 0.

(3) limi→+∞ (t2i+2 − t2i)− δ (t2i − t2i−2) = −τ log a.

(4) For each i ∈ N, there exists Ri ∈ R such that
∑∞

i=1 i |Ri| <∞ and

(t2i+2 − t2i)− δ (t2i − t2i−2) = −τ log a+Ri.

Proof. Using (7.1) and (7.2), we may write

(t2i+1 − t2i)− γ2 (t2i − t2i−1) = − 1

E1

log
(
a ρδ22i−1 +O

(
ρ
δ2(1+ε)
2i−1

))
+
γ2
E2

log (ρ2i−1).

Summoning the fact that

log
(
a ρδ22i−1 +O

(
ρ
δ2(1+ε)
2i−1

))
= log

a ρδ22i−1

1 +
O
(
ρ
δ2(1+ε)
2i−1

)
a ρδ22i−1


= log a+ δ2 log ρ2i−1 + log

(
1 +O

(
ρδ2 ε2i−1

))
= log a+ δ2 log ρ2i−1 +O

(
ρδ2 ε2i−1

)
we deduce that

(t2i+1 − t2i)− γ2 (t2i − t2i−1) = − 1

E1

log a− C2

E1E2

log (ρ2i−1) +
C2

E1E2

log (ρ2i−1) +O
(
ρδ2 ε2i−1

)
= − 1

E1

log a+O
(
ρδ2 ε2i−1

)
.

Therefore, as limi→+∞ ρδ2 ε2i−1 = 0 due to the asymptotic stability of Af , we get

lim
i→+∞

(t2i+1 − t2i)− γ2 (t2i − t2i−1) = − 1

E1

log a.
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Similarly,

(t2i+2 − t2i+1)− γ1 (t2i+1 − t2i) = − 1

E2

log
(
(a z2i)

δ1 +O
(
(a z2i)

δ1(1+ε)
))

− γ1
E1

log (a z2i) =

= − C1

E1E2

log (a z2i) +
C1

E1E2

log (a z2i) +O
(
(a z2i)

δ1 ε
)

(8.2)

thus

lim
i→+∞

(t2i+2 − t2i+1)− γ1 (t2i+1 − t2i) = 0.

Up to higher order terms (we will replace by dots), we have

t2i+2 − t2i = − 1

E1

log (a z2i)−
1

E2

log (ρ2i+1) + . . .

= − 1

E1

log a− 1

E1

log
(
ρδ22i−1

)
− 1

E2

log
(
(a z2i)

δ1
)
+ . . .

= − 1

E1

log a− δ2
E1

log
(
(a z2i−2)

δ1
)
− δ1
E2

log a − δ1
E2

log (z2i) + . . .

= − 1

E1

log a− δ

E1

log (a z2i−2)−
δ1
E2

log a − δ1
E2

log
(
(ρ2i−1)

δ2
)
+ . . .

= − 1

E1

log a− δ

E1

log a − δ

E1

log (z2i−2)−
δ1
E2

log a − δ

E2

log
(
(a z2i−2)

δ1
)
+ . . .

= − 1

E1

log a− δ

E1

log a − δ

E1

log (z2i−2)−
δ1
E2

log a − δδ1
E2

log ((a z2i−2)) + . . .

= −
[
1

E1

+
δ

E1

+
δ1
E2

+
δδ1
E2

]
log a−

[
δ

E1

+
δδ1
E2

]
log (z2i−2) + . . . .

On the other hand,

t2i − t2i−2 = − 1

E1

log (a z2i−2)−
1

E2

log (ρ2i−1) + . . .

= − 1

E1

log a− 1

E1

log (z2i−2)−
1

E2

log
(
(a z2i−2)

δ1
)
+ . . .

= −
[
1

E1

+
δ1
E2

]
log a−

[
δ1
E2

+
1

E1

]
log (z2i−2) + . . . .

Therefore,

lim
i→+∞

(t2i+2 − t2i)− δ (t2i − t2i−2) = −
[
1

E1

+
δ1
E2

]
log a = −τ log a.

For each i ∈ N0, let

Ti = t2i+2 − t2i.

Then,

Ti − δ Ti−1 = (t2i+2 − t2i)− δ (t2i − t2i−2) = −τ log a+O((a z2i)
δ1 ε).

So, if we define

i ∈ N 7→ Ri = O((a z2i)
δ1 ε)
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then, as

i
√
i |Ri| = i

√
i |O((a z2i)δ1 ε)| = i

√
i
∣∣∣O ((a z2i) δ1 ε

i

)∣∣∣
lim

i→+∞
i
√
i = 1 and 0 < (a z2i)

δ1 ε < O((a z0)
i)

we obtain
lim sup
i→+∞

i
√
i |Ri| ≤ a z0 < 1.

Hence, using the root test, we conclude that the series
∑∞

i=1 i |Ri| converges. �
A straightforward computation gives additional information on the speed of convergence

of the previous sequences and the connection between the return times sequences and the
invariant ω1 + γ1 ω2.

Corollary 8.2.

(1) limi→+∞
t2i+2 − t2i+1

t2i+1 − t2i
= γ1.

(2) limi→+∞
t2i+1 − t2i
t2i − t2i−1

= γ2.

(3) limi→+∞
t2i+2 − t2i
t2i − t2i−2

= δ.

(4) limi→+∞
ω1 (t2i+1 − t2i)+ω2 (t2i+2 − t2i+1)

t2i+2 − t2i
= (ω1 + γ1 ω2)

1
γ1 +1

.

Proof. The first three items are immediate. Concerning the last one, it is enough to notice
that

ω1 (t2i+1 − t2i) + ω2 (t2i+2 − t2i+1)

(t2i+2 − t2i+1) + (t2i+1 − t2i)
=

=
ω1 (t2i+1 − t2i) + ω2 (t2i+2 − t2i+1)

t2i+1 − t2i
× t2i+1 − t2i

(t2i+2 − t2i+1) + (t2i+1 − t2i)

and use the equalities

lim
i→+∞

t2i+2 − t2i+1

t2i+1 − t2i
= γ1 and lim

i→+∞

t2i+1 − t2i
(t2i+2 − t2i+1) + (t2i+1 − t2i)

=
1

γ1 + 1
.

�

9. Proof of Proposition 5.1

The reasoning presented in this section follows Takens’ proof of Theorem 1 in [23]; a
proof is included for the reader’s convenience. Let P ∈ B(Af ) and (ti)i∈N0

its hitting times
sequence. Taking into account the estimates obtained in Section 8, consider ℓ ∈ N0 big
enough so that the remainders in the computations to prove Lemma 8.1 are arbitrarily
small. Then, for every continuous map G : S3 → R we have

1

t2ℓ+2i − t2ℓ

∫ t2ℓ+2i

t2ℓ

G(φ(t, P )) dt =
1

t2ℓ+2i − t2ℓ

i−1∑
k=0

[∫ t2ℓ+2k+2

t2ℓ+2k

G(φ(t, P )) dt

]
=

=
1

t2ℓ+2i − t2ℓ

i−1∑
k=0

[∫ t2ℓ+2k+1

t2ℓ+2k

G(φ(t, P )) dt+

∫ t2ℓ+2k+2

t2ℓ+2k+1

G(φ(t, P )) dt

]
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and so, applying Lemma 8.1(2), we get

lim
i→+∞

1

t2ℓ+2i − t2ℓ

∫ t2ℓ+2i

t2ℓ

G(φ(t, P )) dt =

= lim
i→+∞

1

t2ℓ+2i − t2ℓ

i−1∑
k=0

[(t2ℓ+2k+1 − t2ℓ+2k)G(σ1) + (t2ℓ+2k+2 − t2ℓ+2k+1)G(σ2)]

= lim
i→+∞

1

t2ℓ+2i − t2ℓ

i−1∑
k=0

[(t2ℓ+2k+1 − t2ℓ+2k)G(σ1) + γ1 (t2ℓ+2k+1 − t2ℓ+2k)G(σ2)]

= lim
i→+∞

1

t2ℓ+2i − t2ℓ

i−1∑
k=0

(t2ℓ+2k+1 − t2ℓ+2k) [G(σ1) + γ1G(σ2)]

= [G(σ1) + γ1G(σ2)] lim
i→+∞

1

t2ℓ+2i − t2ℓ

i−1∑
k=0

(t2ℓ+2k+1 − t2ℓ+2k) .

Additionally,

[G(σ1) + γ1G(σ2)] lim
i→+∞

1

t2ℓ+2i − t2ℓ

i−1∑
k=0

(t2ℓ+2k+1 − t2ℓ+2k) =
1

1 + γ1
G(σ1) +

γ1
1 + γ1

G(σ2)

because, during the period of time [0, t2ℓ+2i], the ratio between the time spent in the lin-
earizing neighborhood of σ1 an the total t2ℓ+2i − t2ℓ approaches

1
1+γ1

as i goes to +∞.

We observe that we may replace P by either σ1 or σ2 in the previous computation due
to the fact that its orbit alternately approaches one of these two equilibria as the time
goes to infinity, and G is continuous. Moreover, while changing (t2ℓ+2k+2 − t2ℓ+2k+1) into
γ1 (t2ℓ+2k+1 − t2ℓ+2k), we are omitting the higher order terms explicit in (8.2); yet, this does

not affect the limit of the averages
(

1
t2ℓ+2i−t2ℓ

∑i−1
k=0 (t2ℓ+2k+1 − t2ℓ+2k)

)
i∈N

since the remain-

der O
(
(a z2ℓ+2i)

δ1 ε
)
goes exponentially fast to zero (cf. (6.2)), so the corresponding series

converges; besides, limi→+∞ t2ℓ+2i − t2ℓ = +∞ (cf. Section 7).

An analogous computation yields the second part of Proposition 5.1:

lim
i→+∞

1

t2ℓ+2i+1 − t2ℓ

∫ t2ℓ+2i+1

t2ℓ

G(φ(t, P )) dt =
γ2

1 + γ2
G(σ1) +

1

1 + γ2
G(σ2).

Notice now that(
γ2

1 + γ2
G(σ1) +

1

1 + γ2
G(σ2)

)
−
(

1

1 + γ1
G(σ1) +

γ1
1 + γ1

G(σ2)

)
=

=

(
1− γ1 γ2

(1 + γ1)(1 + γ2)

)
[G(σ2)−G(σ1)] .

So, if we choose a continuous map G : S3 → R such that G(σ1) ̸= G(σ2) (whose existence is
guaranteed by Urysohn’s Lemma on the compact metric space S3), then, as by assumption
we have γ1 γ2 > 1 (see Section 4), we conclude that

γ2
1 + γ2

G(σ1) +
1

1 + γ2
G(σ2) ̸=

1

1 + γ1
G(σ1) +

γ1
1 + γ1

G(σ2)
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and therefore

lim
i→+∞

1

t2ℓ+2i − t2ℓ

∫ t2ℓ+2i

t2ℓ

G(φ(t, P )) dt ̸= lim
i→+∞

1

t2ℓ+2i+1 − t2ℓ

∫ t2ℓ+2i+1

t2ℓ

G(φ(t, P )) dt

confirming that the sequence of Birkhoff averages of G along the orbit of P does not converge.

Remark 9.1. As limi→+∞
t2i+2 − t2i
t2i − t2i−2

= δ, the historic behavior in B(Af ) is of type B1 according

to the labeling proposed in [12].

10. Proof of Theorem A

We already know from [17], [23], [7] and [22] that the numbers γ1, γ2, τ log a and ω1+γ1 ω2

are invariants under topological conjugacy. We are left to prove that these invariants form a
complete set. The argument we will present was suggested by Takens’ ideas in [23], although
we had to clarify several significant details of [23] and make a few adjustments.
Let f and g be vector fields in Xr

Byk(S
3) with invariants

γ1, γ2, ω1 + γ1ω2, τ log a

and
γ1, γ2, ω1 + γ1 ω2, τ log a

respectively, and such that

γ1 = γ1, γ2 = γ2, ω1 + γ1ω2 = ω1 + γ1ω2, τ log a = τ log a. (10.1)

We will show that these numbers enable us to construct a conjugacy between f and g in a
neighborhood of the respective heteroclinic cycles Af and Ag. Notice that for a conjugacy
between f and g to exist it is necessary that the conjugated orbits have hitting times se-
quences, with respect to fixed cross sections, that are uniformly close. With this information
in mind, we will start associating to f and any point P in a fixed cross section Σ another

point P̃ whose f−trajectory has a sequence of hitting times (at a possibly different but close

cross section Σ̃) which is determined by and uniformly close to the hitting times sequence of
P , but is easier to work with (see, for instance, the computation (10.13)). This is done by
slightly adjusting the cross section Σ (which a topological conjugacy needs not to preserve)
using the flow along the orbit of P ; and then to find an injective and continuous way of
recovering the orbits from the hitting times sequences. Afterwards, repeating this procedure
with g we find a point Q whose g−trajectory has hitting times at some cross section equal

to the ones of P̃ . Due to the fact that the invariants of f and g are the same, the map that
sends P to Q is the aimed conjugacy. In the next subsections we will explain in detail this
construction.

10.1. A sequence of time intervals. Fix P = (ρ0, θ0, z0) ∈ B(Af ) and let (ti)i∈N0
be the

times sequence defined in (8.1). We start defining, for each i ∈ N0, a finite family of numbers

T̃
(i)

0 , T̃
(i)

1 , T̃
(i)

2 , . . . , T̃
(i)

i

satisfying the following properties

T̃
(i)

i = Ti = t2i+2 − t2i

T̃
(i)

j − δ T̃
(i)

j−1 = −τ log a, ∀ j ∈ {1, 2, . . . , i}. (10.2)

For instance, as Ti = t2i+2 − t2i and t0 = 0, we deduce from the previous equalities that
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T̃
(0)

0 = T0 = t2 − t0 = t2

T̃
(1)

1 = T1 = t4 − t2, T̃
(1)

0 =
T̃

(1)
1 + τ log a

δ
=
T1 + τ log a

δ

T̃
(2)

2 = T2 = t6 − t4, T̃
(2)

1 =
T2 + τ log a

δ
, T̃

(2)
0 =

T2 + (1 + δ) τ log a

δ2

T̃
(3)

3 = T3 = t8 − t6, T̃
(3)

2 =
T3 + τ log a

δ
, T̃

(3)
1 =

T3 + (1 + δ) τ log a

δ2

T̃
(3)

0 =
T3 + (1 + δ + δ2) τ log a

δ3
.

By finite induction, it is straightforward to generalize these examples and show that, for
every i ∈ N,

T̃
(i)

0 =
Ti + (

∑i−1
j=0 δ

j) τ log a

δi
(10.3)

Therefore,

Lemma 10.1. For every i ∈ N0, we have T̃
(i+1)

0 − T̃
(i)

0 = Ri+1

δi+1 .

Proof. This is immediate after (10.3) and Lemma 8.1(4):

T̃
(i+1)

0 − T̃
(i)

0 =
Ti+1 + τ log a

(∑i
j=0 δ

j
)

δi+1
−
Ti + τ log a

(∑i−1
j=0 δ

j
)

δi

=
Ti+1 − δTi

δi+1
+
τ log a

(∑i
j=0 δ

j −
∑i

j=1 δ
j
)

δi+1

=
Ti+1 − δTi

δi+1
+
τ log a

δi+1
=
Ri+1

δi+1
.

�

Now, Lemma 10.1 yields

T̃
(i)

0 = T̃
(i−1)

0 +
Ri

δi

= T̃
(i−2)

0 +
Ri−1

δi−1
+
Ri

δi

= T̃
(i−3)

0 +
Ri−2

δi−2
+
Ri−1

δi−1
+
Ri

δi

...

= T̃
(0)

0 +
i∑

j=1

Rj

δj

As δ > 1, the series
∑∞

j=1
Rj

δj
converges, and so the sequence

(
T̃

(i)
0

)
i∈N0

converges. Denote

its limit by

T̃0 := lim
i→+∞

T̃
(i)

0 = T
(0)
0 +

∞∑
j=1

Rj

δj
= T0 +

∞∑
j=1

Rj

δj
. (10.4)
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Remark 10.2. A small change on the value of t2 (or on any other time value ti) with the same

order of magnitude of O(zc0), for a positive constant c, does not alter the limit T̃0, because
such a perturbation only requires us to consider a slightly different value for each Ri.

10.2. A sequence of adjusted hitting times. For i ≥ 1, consider the sequence (T̃i)i∈N0

satisfying

T̃i = δ T̃i−1 − τ log a ∀ i ∈ N (10.5)

where T̃0 was computed in (10.4). For example,

T̃1 = δ T̃0 − τ log a

T̃2 = δ2 T̃0 − (1 + δ) τ log a

T̃3 = δ3 T̃0 − (1 + δ + δ2) τ log a.

Lemma 10.3. The series
∑+∞

i=0 (Ti − T̃i) converges.

Proof. We notice that, by construction, for every i ∈ N0 we have |Ti − T̃i| ≤
∑∞

j=i+1 |Rj|.
Consequently, for every ℓ ∈ N0, we get

ℓ∑
i=0

|Ti − T̃i| ≤
ℓ∑

i=0

∞∑
j=i+1

|Rj|

= (|R1|+ |R2|+ |R3| . . .) + (|R2|+ |R3|+ |R4| . . .) + (|R3|+ |R4|+ . . .) + . . .

= |R1|+ 2 |R2|+ 3 |R3|+ . . .+ i |Ri|+ . . .

=
ℓ∑

i=1

i |Ri|.

As, according to Lemma 8.1(4), the series
∑+∞

i=1 i |Ri| converges, the proof is complete.

Notice that this result implies that limi→+∞(Ti − T̃i) = 0. �
Lemma 10.3 ensures that we may take a sequence

(
t̃2i
)
i∈N0

of positive real numbers such

that

t̃0 = 0

T̃i = t̃2i+2 − t̃2i

lim
i→+∞

(t2i − t̃2i) = 0. (10.6)

Moreover, by construction (see (10.5)) we have

(t̃2i+2 − t̃2i)− δ (t̃2i − t̃2i−2) = −τ log a. (10.7)

Afterwards, we take a sequence
(
t̃2i+1

)
i∈N0

satisfying, for every i ∈ N0,

t̃2i+2 − t̃2i+1 = γ1 (t̃2i+1 − t̃2i). (10.8)

Therefore,

ω1

(
t̃2i+1 − t̃2i

)
+ ω2

(
t̃2i+2 − t̃2i+1

)(
t̃2i+2 − t̃2i

) =
ω1

(
t̃2i+1 − t̃2i

)
+ γ1 ω2

(
t̃2i+1 − t̃2i

)(
t̃2i+2 − t̃2i+1

)
+
(
t̃2i+1 − t̃2i

)
=

ω1 + γ1 ω2

γ1 + 1
. (10.9)
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Lemma 10.4. The following equalities hold:

(1) limi→+∞ (t2i+1 − t̃2i+1) = 0.

(2) limi→+∞ (t̃2i+1 − t̃2i)− γ2 (t̃2i − t̃2i−1) = − 1
E1

log a.

Proof. Taking into account (10.8), we have

t̃2i+1 − t2i+1 =
t̃2i+2 + γ1 t̃2i

1 + γ1
− t2i+1 =

t̃2i+2 + γ1 t̃2i − t2i+1 − γ1 t2i+1

1 + γ1

and so, from (10.6), we conclude that

lim
i→+∞

(1 + γ1)
(
t̃2i+1 − t2i+1

)
− [(t2i+2 − t2i+1)− γ1 (t2i+1 − t2i)] =

= lim
i→+∞

(
t̃2i+2 + γ1 t̃2i − t2i+1 − γ1 t2i+1

)
− [(t2i+2 − t2i+1)− γ1 (t2i+1 − t2i)]

= lim
i→+∞

(t̃2i+2 − t2i+2) + γ1 (t̃2i − t2i) = 0.

Therefore, using the information of Lemma 8.1(2), we get

lim
i→+∞

t̃2i+1 − t2i+1 = 0.

Concerning the second part of the lemma, notice that[
(t̃2i+1 − t̃2i)− γ2 (t̃2i − t̃2i−1)

]
− [(t2i+1 − t2i)− γ2 (t2i − t2i−1)] =

= (t̃2i+1 − t2i+1)− (t̃2i − t2i)− γ2 (t̃2i − t̃2i) + γ2 (t̃2i−1 − t2i−1)

thus, from Lemma 10.4(1), the Definition (10.6) and Lemma 8.1(1) we obtain

lim
i→+∞

(t̃2i+1 − t̃2i)− γ2 (t̃2i − t̃2i−1) = lim
i→+∞

(t2i+1 − t2i)− γ2 (t2i − t2i−1) = − 1

E1

log a.

�

As we are mainly interested in conjugacies and the asymptotic behavior of the sequence
(ti)i∈N0

, the construction of
(
t̃2i
)
i∈N0

must be independent of the starting difference t2 − t0,

and so irrespective of the size of the cross sections (with a smaller section we may miss the
first few intersections of the orbits with the sections). More precisely,

Lemma 10.5. Consider N ∈ N0, the difference TN = t2N+2 − t2N and the sequence(
T̃

(i)
0,N

)
i∈N0

defined as in (10.2) but starting with TN instead of T0. Then

T̃0,N := lim
i→+∞

T̃
(i)

0,N = T̃N .

Proof. Consider N = 1 and observe that, according to (10.3),

T̃
(i)

0,1 =
Ti+1 + (

∑i−1
j=0 δ

j) τ log a

δi

so

T̃
(i+1)

0,1 − T̃
(i)

0,1 =
Ri+2

δi+1
.
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Therefore

T̃0,1 = T1 +
+∞∑
j=1

Rj+1

δj
= δ T̃0 − τ log a.

By induction in N , we get

T̃0,N = TN +
+∞∑
j=1

Rj+N

δj
= δN T̃0 −

(
N−1∑
j=0

δj

)
τ log a = T̃N .

�
Consequently, up to a shift of the indices from i to i− 2N , we obtain the same sequence(
t̃i
)
i∈N0

if we build it using the equalities in (10.6) and (10.8) but starting with t2N = 0 and

T̃N instead of t0 = 0 and T̃0.

10.3. Realization of the sequence of times. As any solution of f in B(Af ) eventually
hits Out (σ2), we may apply the previous construction to all the orbits of f in B(Af ). So,
given any P0 ∈ B(Af ), we take the first non-negative hitting time of the forward orbit of P0

at Out (σ2), defined by

tΣ2(P0) = min {t ∈ R+
0 : φ(t, P0) ∈ Out (σ2)}.

As Out+(σ2) and Out−(σ2) are relative-open sets, this first-hitting-time map is continuous
with P0. Afterwards, given

P = φ(tΣ2(P0), P0) = (1, θ0, z0) ∈ Out (σ2)

we consider its hitting times sequence
(
t
(P )
i

)
i∈N0

and build the sequence
(
t̃

(P )
i

)
i∈N0

as

explained in the previous section.
We now proceed as follows. Adjusting the cross sections Σ1 and Σ2 we find a point

P̃ ∈ Out (σ2) in the f−trajectory of P whose hitting times sequence is precisely
(
t̃

(P )
i

)
i∈N0

.

Notice that the new cross sections are close to the previous ones since the sequences (ti)i∈N0

and
(
t̃i
)
i∈N0

are uniformly close (cf. (10.6) and Lemma 10.4(1)). We are left to show that

there exists only one such trajectory with hitting times sequence
(
t̃

(P )
i

)
i∈N0

.

Uniqueness of P̃ . Given a sequence of times
(
t̃i
)
i∈N0

satisfying t̃0 = 0, Lemma 10.4 and the

properties (10.6), (10.7), (10.8) and (10.9), one may recover from its terms the coordinates
of a point (1, θ0, z0) ∈ Out+(σ2) whose ith hitting time is precisely t̃i. Firstly, we solve the
equation (see (7.1))

t̃1 = − 1

E1

log (a z0) (10.10)

obtaining z0. Then, using (7.2)

t̃2 = t̃1 −
1

E2

log (ρ1) (10.11)

we compute ρ1. And so on, getting from such a sequence of times all the values of the radial
and height cylindrical coordinates (ρ2i+1)i∈N0

and (z2i)i∈N0
of the successive hitting points

at Out+(σ1) and Out+(σ2), respectively. Not knowing an explicit expression for the function
S1, however, nothing has been disclosed about θ0 from these computations.

20



Concerning the evolution in R+ of the angular coordinates, the spinning in average inside
the cylinders is given, for every i ∈ N0, by

θ2i+2 − 1
a
θ2i

t̃2i+2 − t̃2i
=

(θ2i+2 − θ2i+1) + (θ2i+1 − 1
a
θ2i)

t̃2i+2 − t̃2i

=
ω2 (t̃2i+2 − t̃2i+1) + ω1 (t̃2i+1 − t̃2i)

t̃2i+2 − t̃2i

=
ω1 + γ1 ω2

γ1 + 1
(10.12)

(cf. (6.2) and (10.9)). Moreover, (10.8) indicates that

θ2i+1 − 1
a
θ2i

θ2i+2 − θ2i+1

=
ω1 (t̃2i+1 − t̃2i)

ω2

(
t̃2i+2 − t̃2i+1

) =
ω1

γ1 ω2

.

So

θ2i+2 − θ2i = (θ2i+2 − θ2i+1) +

(
θ2i+1 −

1

a
θ2i

)
+

1

a
θ2i

= (θ2i+2 − θ2i+1)

(
ω1

γ1 ω2

+ 1

)
+

1

a
θ2i

= ω2 (t̃2i+2 − t̃2i+1)

(
ω1

γ1 ω2

+ 1

)
+

1

a
θ2i

=
ω1 + γ1 ω2

γ1
(t̃2i+2 − t̃2i+1) +

1

a
θ2i.

On the other hand, from (10.12) we get

θ2i+2 − θ2i =

(
θ2i+2 −

1

a
θ2i

)
+ θ2i

(
1

a
− 1

)
=

ω1 + γ1 ω2

γ1 + 1
(t̃2i+2 − t̃2i) + θ2i

(
1

a
− 1

)
.

Consequently,

ω1 + γ1 ω2

γ1
(t̃2i+2 − t̃2i+1) +

1

a
θ2i =

ω1 + γ1 ω2

γ1 + 1
(t̃2i+2 − t̃2i) + θ2i

(
1

a
− 1

)
from which the angular coordinate θ2i is uniquely determined:

θ2i = (ω1 + γ1 ω2)

[
t̃2i+2 − t̃2i
γ1 + 1

− t̃2i+2 − t̃2i+1

γ1

]
. (10.13)

In particular, we confirm that there is a unique solution θ0.

10.4. The conjugacy between f and g. Let σ1 and σ2 be the two hyperbolic saddle-foci
of g whose eigenvalues are, respectively,

−C1 ± ω1 i and E1

E2 ± ω2 i and −C2

where
ω1 > 0, ω2 > 0, C1 > E1 > 0 and C2 > E2 > 0

21



whose values define the invariants of g which, by assumption, satisfy the equalities (10.1).
Consider linearizing neighborhoods of σ1 and σ2, with the corresponding cylindrical coor-

dinates, and take a point P = (1, z0, θ0) ∈ Σ2 ∩ Out+(σ2), the corresponding hitting times
sequence (ti)i∈N0

at cross sections Σ1 and Σ2 and the sequence of times
(
t̃i
)
i∈N0

obtained in

Subsection 10.2. Next, we find a unique point QP , given in local coordinates by (1, z0, θ0),
as done for f in Subsection 10.3 using estimates similar to (10.10), (10.11) and (10.13):

z0 =
e−E1 t̃1

a
(10.14)

ρ1 = e−E2 (t̃2−t̃1)

θ0 = (ω1 + γ1 ω2)

[
t̃2

γ1 + 1
− t̃2 − t̃1

γ1

]
. (10.15)

The set of these points build cross sections Σ1 and Σ2 for g at which the points QP have the
prescribed hitting times

(
t̃i
)
i∈N0

by the action of g. Afterwards, we take the map

H : P ∈ Σ2 ∩Out+(σ2) 7→ QP

and extend it using the flows φ and φ of f and g, respectively: for every t ∈ R, set
H(φt(P )) = φt(H(P )). An analogous construction is repeated for Out−(σ2).

Lemma 10.6. H is a conjugacy.

Proof. Firstly, given two initial points P1 ̸= P2 in Σ2∩Out+(σ2), their hitting times sequences
(cf. (7.1) and (7.2)) are not only different but not even uniformly close due to the expanding
components of the saddle-type dynamics in the linearizing neighborhoods of σ1 and σ2.
Therefore, P1 and P2 are mapped under H into different points. So H is injective.
Notice that, for this conclusion, it is essential that Af and Ag are global attractors,

ensuring that the ρ and z coordinates decrease to 0 as time goes to +∞ along the orbits
of initial conditions different from the equilibria. This in turn implies that: (i) the time
deviations (which are expressed by the maps Sj and Tj in the formulas of Subsection 6.2)
from the time estimates done in Section 7 are asymptotically arbitrarily small, and so their
impact is negligible; (ii) the time increments caused by the twisting around the equilibria (cf
item (4) of Corollary 8.2) are the same for f and g because ω1 + γ1 ω2 = ω1 + γ1 ω2, and so
their impact may be discarded. We also remark that, if we repeat the previous construction
starting with g instead of f , we obtain a map that must be the inverse of H. And, indeed,
so it is since ω1 + γ1 ω2 = ω1 + γ1 ω2, because the angular deviations, due to the twisting
around the equilibria and which intervene in the computation (10.15), are the same for f
and g.
Secondly, if P1 and P2 are close enough, then the first terms of the corresponding hitting

times sequences are sufficiently near to ensure that P̃1 is arbitrarily close to P̃2 (cf. (10.14)
and (10.15)). ThusH is continuous in Σ2∩Out+(σ2), and its extension to B(Af ) is continuous
by definition. This ends the proofs of the lemma and Theorem A.
Finally, we observe that the conjugacy H extends to Af .

�
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Centro de Matemática da Univ. do Porto, Rua do Campo Alegre, 687, 4169-007 Porto,
Portugal

E-mail address: alexandre.rodrigues@fc.up.pt

23


