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Existence, uniqueness and analyticity

of space-periodic solutions

to the regularised long-wave equation

Abstract

We consider space-periodic evolutionary and travelling-wave solutions to the regu-
larised long-wave equation (RLWE) with damping and forcing. We establish exis-
tence, uniqueness and smoothness of the evolutionary solutions for smooth initial
conditions, and global in time spatial analyticity of such solutions for analytical ini-
tial conditions. The width of the analyticity strip decays at most polynomially. We
prove existence of travelling-wave solutions and uniqueness of travelling waves of
a sufficiently small norm. The importance of damping is demonstrated by showing
that the problem of finding travelling-wave solutions to the undamped RLWE is not
well-posed. Finally, we demonstrate the asymptotic convergence of the power series
expansion of travelling waves for a weak forcing.

1 Introduction

The regularised long-wave equation (RLWE), also known as the Benjamin–
Bona–Mahony (BBM) equation, is a model for the propagation of one-dimen-
sional, unidirectional small-amplitude long waves in nonlinear dispersive me-
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dia, being of great interest in the study of propagation of long waves in shallow
waters [10] such as tsunami driven by an earthquake [39] and drift waves in
a controlled nuclear fusion plasma [17,19]. It was first derived by Peregrine
[32], then by Benjamin et al. [3], as an alternative to the Korteweg-de Vries
(KdV) equation [10], in response to mathematical difficulties associated with
the KdV equation, such as the existence and stability of solutions and other
problems related to the dispersion term [3,34]. The RLWE was later derived
by He & Salat [17] as a model for nonlinear drift waves in plasmas, with a
periodic driving term and a linear damping term introduced ad hoc to study
transition to chaos.

The understanding of the evolution of nonlinear physical systems such as the
RLWE requires a combined effort of numerical and analytical studies. Nu-
merically simulated nonlinear evolution of a driven-damped RLWE, under the
forcing of a periodic wave, has been analyzed in a series of papers. He & Chian
[14] discovered a new type of synchronization, the so-called on-off collective
imperfect phase synchronization, in the turbulent state of RLWE solutions.
In the driver frame, solutions to the RLWE can be represented as a set of
coupled oscillators in Fourier space. As the system evolves in time, the oscil-
lators in different spatial scales intermittently adjust themselves to collective
imperfect phase synchronization, inducing strong bursts in the wave energy.
Rempel & Chian [33] demonstrated that non-attracting chaotic sets known
as “chaotic saddles” are responsible for transient and intermittent dynamics
in the RLWE. As the driver amplitude is increased, the system undergoes
a transition from quasiperiodicity to temporal chaos, then to spatiotemporal
chaos. The resulting time series in the spatiotemporal chaos regime display
random switching between laminar and bursty phases. Rempel & Chian [33]
identified temporally and spatiotemporally chaotic saddles which are respon-
sible for the laminar and bursty phases, respectively. Prior to the transition
to permanent spatiotemporal chaos, a spatiotemporally chaotic saddle is re-
sponsible for chaotic transients that mimic the dynamics of the post-transition
attractor. Chian et al. [7] applied the Fourier-Lyapunov analysis to prove the
duality of amplitude and phase synchronization in the RLWE due to multi-
scale interactions in chaotic saddles at the onset of permanent spatiotemporal
chaos. By computing the power-phase spectral entropy and the time-averaged
power-phase spectra, they showed that the laminar/bursty states in the on-off
spatiotemporal intermittency correspond, respectively, to the chaotic saddles
with higher/lower degrees of amplitude-phase synchronization across spatial
scales.

From an analytical perspective, several works have presented studies on the
existence, uniqueness and stability of solutions to the RLWE. In the seminal
paper [3], Benjamin et al. proved the existence and uniqueness of nonperi-
odic solutions to the initial-value problem for the RLWE in R1. While for the
initial data in Sobolev spaces Hs(R1) for s ≥ 0 this problem for the RLWE
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is well-posed [5], it is ill-posed for s < 0 [31]. The stability of solitary-wave
solutions to the RLWE was shown by Bona [4]; existence and stability of such
solutions to the generalized BBM equation is examined in [42] (see also ref-
erences therein). For the generalised RLWE with an arbitrary nonlinearity
and a stronger damping described by the Laplacian, space-periodic solutions
have strong finite-dimensional global attractors [40,41] (see also [8,38,37]) in
the Sobolev spaces H1(T1) and H2(T1); the attractors consist of real analyt-
ical solutions [9]. Jafari et al. [20] (see also[11]) found exact travelling-wave
solutions to the RLWE using the simplest equation method [22,23].

All the aforementioned papers examine the RLWE in its original form, with-
out the additional damping term introduced by He and Salat [17]. The goal of
the present paper is to present the mathematical theory of space-periodic solu-
tions to the driven-damped RLWE. We begin by proving existence, uniqueness
(section 2) and spatial analyticity (section 3) of space-periodic evolutionary
solutions to the RLWE. In section 4 we show the existence of travelling-wave
solutions to the damped RLWE, as well as uniqueness of solutions whose norm
does not exceed a certain threshold (and hence a travelling-wave solution is
unique, provided the forcing is sufficiently week). In section 5 we construct,
in the form of infinite power series in the inverse wave speed, a family of fast
space-periodic travelling waves that are formal asymptotic solutions to the
zero-force RLWE without damping. We do not prove convergence of these
asymptotic power series; by construction, upon truncation, the series repre-
sent travelling-wave solutions to the undamped RLWE with some weak forcing,
whose amplitude can be of the order of any negative power of the wave speed.
This shows that in the absence of damping, finding travelling-wave solutions
to the RLWE is not a well-posed problem. The amplitude of forcing in nu-
merical investigations [13,14,15,16,17,33,34,39] of the RLWE was small. This
has suggested to consider the asymptotic expansions of solutions for a weak
forcing; we do this in section 6.

2 Existence and uniqueness of evolutionary solutions

In this section we consider evolutionary solutions to the RLWE:

∂

∂t
(ϕ− aϕ′′) + bϕ′ + cϕϕ′ + dϕ+ e(x, t) = 0, (1)

where ′ denotes differentiation in x ∈ R1, a, b, c and d are real constants, and
a > 0. The forcing e(x, t) is prescribed.

Existence and uniqueness of the classical solutions to the forced BBM equation
(aka the non-damped RLWE, i.e., (1) for d = 0) on the entire line R1 (the
domain of the x variable) was proved in [3] under the assumption that the
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initial “energy”
∫∞
−∞(ϕ2 + (ϕ′)2) dx is finite, the forcing is continuous and

has a finite Lebesgue norm. By contrast, we consider solutions periodic in x
(assuming without any loss of generality that the period is 2π); existence and
uniqueness of space-periodic solutions to the BBM equation without forcing
was proved (using different techniques) in [28,36] (see also [29]).

Theorem 1. Suppose ϕ0(x) ∈ C∞(R1) is 2π-periodic and e(x, t) ∈ C∞(R1×R
1
+)

is 2π-periodic for any t ≥ 0. For any constants a > 0, b, c and d there exists a
unique 2π-periodic solution to the RLWE, ϕ(x, t) ∈ C∞(R1 × R1

+), such that
ϕ(x, t)|t=0 = ϕ0(x).

Proof exploits the general ideas involved in proofs of similar statements for
equations of the hydrodynamic type (see, e.g., [25]).

i. We use the Fourier-Galerkin method and consider an approximation to the
solution

ϕ(N)(x, t) =
∑

n

ϕ̂ (N)
n (t) eınx,

where ϕ̂ (N)
n = 0 for |n| > N . The approximate Fourier coefficients ϕ̂ (N)

n (t)
satisfy the equations obtained by the orthogonal projection in L2([0, 2π]) of the
RLWE onto the subspace spanned by the Fourier harmonics eınx for |n| ≤ N :

(1 + an2) ˙̂ϕ (N)
n + (d+ ıbn)ϕ̂ (N)

n + ıc
∑

m

mϕ̂ (N)
m ϕ̂

(N)
n−m + ên(t) = 0, (2)

ϕ̂ (N)
n (t)

∣∣∣∣
t=0

= ϕ̂0,n,

where the dot denotes differentiation in time, and ên(t) and ϕ̂0,n are the Fourier
coefficients of e(x, t) and ϕ0(x), respectively:

e(x, t) =
∑

n

ên(t) e
ınx, ϕ0(x) =

∑

n

ϕ̂0,n e
ınx .

We employ the seminorms ‖ · ‖s defined as follows: for f(x) =
∑
n f̂n e

ınx,

‖f‖2s =





∑

n

|f̂n|2|n|2s, s > 0;

∑

n

|f̂n|2(max(|n|, 1))2s, s ≤ 0.

For s ≥ 0, ‖ · ‖20+ ‖ · ‖2s is the square of the norm in the Sobolev space Hs(T1)
of 2π-periodic functions.

ii. An energy bound, on which all our constructions are based, is obtained by

multiplying (2) by ϕ̂
(N)
−n = ϕ̂

(N)
n and summing the results over all n:

1

2

d

dt

(
‖ϕ(N)‖20 + a‖ϕ(N)‖21

)
+ d‖ϕ(N)‖20 = −

∑

n

ϕ̂
(N)
−n ên(t). (3)
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The sums involving constants b and c vanish, since by periodicity

ıb
∑

n

nϕ̂ (N)
n ϕ̂

(N)
−n =

b

2π

∫ 2π

0
ϕ(N) d

dx
ϕ(N) dx =

b

4π

∫ 2π

0

d

dx
(ϕ(N))2 dx = 0

and

ıc
∑

m,n

mϕ̂ (N)
m ϕ̂

(N)
n−mϕ̂

(N)
−n =

c

2π

∫ 2π

0
(ϕ(N))2

d

dx
ϕ(N) dx =

c

6π

∫ 2π

0

d

dx
(ϕ(N))3 dx = 0.

By Gronwall’s lemma, identity (3) implies the inequality

(
‖ϕ(N)‖20 + a‖ϕ(N)‖21

)1/2 ≤ C0(t)

(recall that a > 0), where

C0(t) ≡
(
‖ϕ0‖20 + a‖ϕ0‖21

)1/2
ed̃t+

∫ t

0
‖e(x, τ)‖0 ed̃(t−τ) dτ,

d̃ =





0, d ≥ 0,

|d|, d < 0.

From this inequality we infer bounds, that are uniform in N : ‖ϕ(N)‖s ≤ Cs(t)
for s = 0 and 1 (we can set C1(t) = C0(t)/

√
a).

iii We derive now bounds, that are uniform in N , for ‖ϕ(N)‖s, where s > 0 is
arbitrary.

For s > 1, multiply (2) by ϕ̂
(N)
−n |n|2s(1 + an2)−1 and sum the results over n:

1

2

d

dt
‖ϕ(N)‖2s =−

∑

n

(d+ ıbn)|n|2s
1 + an2

ϕ̂ (N)
n ϕ̂

(N)
−n − ıc

∑

m,n

m|n|2s
1 + an2

ϕ̂ (N)
m ϕ̂

(N)
n−mϕ̂

(N)
−n

−
∑

n

|n|2s
1 + an2

ϕ̂
(N)
−n ên(t). (4)

We bound each sum in the r.h.s. By the Cauchy-Bunyakovsky-Schwarz in-
equality,

−
∑

n

d|n|2s
1 + an2

ϕ̂ (N)
n ϕ̂

(N)
−n ≤ d̃

a
‖ϕ(N)‖s‖ϕ(N)‖s−2.

By changing the index of summation n→ −n, we establish

∑

n

ıbn|n|2s
1 + an2

ϕ̂ (N)
n ϕ̂

(N)
−n = 0.

To bound the third sum, note that, by the same inequality,

∑

n

|n|s+1

1 + an2
|ϕ̂ (N)

−n | ≤ Q1‖ϕ(N)‖s (5)
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for Q1 =

(
2
∑

n>0

(
n

1 + an2

)2
)1/2

and any s ≥ 0,

and

|m| |n|s−1 ≤ Q2,s(|m|s + |n−m|s) (6)

for all m, n, s ≥ 1 and some suitable constants Q2,s. Therefore,

∣∣∣∣∣c
∑

m,n

m|n|2s
1 + an2

ϕ̂ (N)
m ϕ̂

(N)
n−mϕ̂

(N)
−n

∣∣∣∣∣

≤|c|
∑

n

(
∑

m

Q2,s(|m|s + |n−m|s)|ϕ̂ (N)
m ||ϕ̂ (N)

n−m|
)

|n|s+1

1 + an2
|ϕ̂ (N)

−n |

≤2|c|Q2,s‖ϕ(N)‖s‖ϕ(N)‖0Q1‖ϕ(N)‖s = Q3,s‖ϕ(N)‖0‖ϕ(N)‖2s,

where Q3,s = 2|c|Q1Q2,s. Finally,

∣∣∣∣∣
∑

n

|n|2s
1 + an2

ϕ̂
(N)
−n ên(t)

∣∣∣∣∣ ≤
1

a
‖ϕ(N)‖s‖e(x, t)‖s−2.

Collecting all the bounds, we obtain from (4):

1

2

d

dt
‖ϕ(N)‖2s ≤

d̃

a
‖ϕ(N)‖s‖ϕ(N)‖s−2+Q3,s‖ϕ(N)‖0‖ϕ(N)‖2s+

1

a
‖ϕ(N)‖s‖e(x, t)‖s−2,

i.e.

d

dt
‖ϕ(N)‖s ≤

d̃

a
‖ϕ(N)‖s−2 +Q3,s‖ϕ(N)‖0‖ϕ(N)‖s +

1

a
‖e(x, t)‖s−2.

Using Gronwall’s lemma, we deduce by induction from this inequality bounds,
that are uniform in N :

‖ϕ(N)(x, t)‖s ≤‖ϕ(N)(x, 0)‖s e−Q3,s

∫ t

0
C0(τ) dτ

+
1

a

∫ t

0

(
d̃Cs−2(τ) + ‖e(x, τ)‖s−2

)
e−Q3,s

∫ t

τ
C0(τ ′) dτ ′ dτ (7)

for all even s ≥ 2. We denote the r.h.s. of (7) by Cs(t). By interpolation,
‖ϕ(N)(x, t)‖s ≤ Cs(t) ≡ C1−µ

S+2(t)C
µ
S(t) holds true for any s ≥ 0, where S ≥ 0

is integer, 0 ≤ µ ≤ 1 and s = (1 − µ)(S + 2) + µS. (The specific form of the
bounding functions Cs(t) is not important for our purposes.)

iv. We derive now bounds for ‖ϕ̇(N)‖s that are uniform in N .
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Multiply (2) by ˙̂ϕ
(N)
−n |n|2s(1 + an2)−1 and sum the results over n:

‖ϕ̇(N)‖2s =−
∑

n

(d+ ıbn)|n|2s
1 + an2

ϕ̂ (N)
n

˙̂ϕ
(N)
−n − ıc

∑

m,n

m|n|2s
1 + an2

ϕ̂ (N)
m ϕ̂

(N)
n−m

˙̂ϕ
(N)
−n

−
∑

n

|n|2s
1 + an2

˙̂ϕ
(N)
−n ên(t). (8)

We derive bounds for each sum in the r.h.s. for s ≥ 0. Clearly,

∣∣∣∣∣
∑

n

(d+ ıbn)|n|2s
1 + an2

ϕ̂ (N)
n

˙̂ϕ
(N)
−n

∣∣∣∣∣ ≤ Q4 ‖ϕ̇(N)‖s‖ϕ(N)‖s−1,

where Q4 is a constant such that Q4(1 + an2) ≥ max(1, |n|)(|d| + |b||n|) for
all n. For s = 0, the second sum can be bounded as follows:

∣∣∣∣∣c
∑

m,n

m

1 + an2
ϕ̂ (N)
m ϕ̂

(N)
n−m

˙̂ϕ
(N)
−n

∣∣∣∣∣ ≤ Q3,0‖ϕ(N)‖0‖ϕ(N)‖1‖ϕ̇(N)‖0,

where

Q3,0 = |c|
(
∑

n

(1 + an2)−2

)1/2

.

For s ≥ 1, we use inequalities (5) applied to ϕ̇(N) instead of ϕ(N) and (6):

∣∣∣∣∣c
∑

m,n

m|n|2s
1 + an2

ϕ̂ (N)
m ϕ̂

(N)
n−m

˙̂ϕ
(N)
−n

∣∣∣∣∣

≤|c|
∑

n

(
∑

m

Q2,s(|m|s + |n−m|s)|ϕ̂ (N)
m ||ϕ̂ (N)

n−m|
)

|n|s+1

1 + an2
| ˙̂ϕ (N)

−n |

≤2|c|Q2,s‖ϕ(N)‖s‖ϕ(N)‖0Q1‖ϕ̇(N)‖s = Q3,s‖ϕ(N)‖0‖ϕ(N)‖s‖ϕ̇(N)‖s.

Finally, for s ≥ 0 the last sum satisfies the inequality

∣∣∣∣∣
∑

n

|n|2s
1 + an2

˙̂ϕ
(N)
−n ên(t)

∣∣∣∣∣ ≤ max(1, a−1) ‖ϕ̇(N)‖s‖e(x, t)‖s−2.

Collecting the bounds, we obtain for s = 0 and s ≥ 1 from (8):

‖ϕ̇(N)‖s ≤ Q4 ‖ϕ(N)‖s−1+Q3,s‖ϕ(N)‖0‖ϕ(N)‖max(s,1)+max(1, a−1) ‖e(x, t)‖s−2.
(9)

By induction, (9) yields a bound that is uniform in N , for any integer s ≥ 0.
We denote the r.h.s. of 9 by Ds(t). By interpolation, for any s ≥ 0

‖ϕ̇(N)(x, t)‖s ≤ D1−µ
S+1(t)D

µ
S(t) ≡ Ds(t) (10)

at any time t ≥ 0, where S ≥ 0 is integer, 0 ≤ µ ≤ 1 and s = (1−µ)(S+1)+µS.
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v. Differentiating (2) in time, we find

(1 + an2)¨̂ϕ (N)
n + (d+ ıbn) ˙̂ϕ (N)

n + ıc
∑

m

m( ˙̂ϕ (N)
m ϕ̂

(N)
n−m + ϕ̂ (N)

m
˙̂ϕ
(N)
n−m) + ėn(t) = 0.

Using this equation and the bounds for ‖ϕ(N)‖s and ‖ϕ̇(N)‖s obtained above
for arbitrarily large s, it is easy to show that | ¨̂ϕ (N)

n | are uniformly bounded in
N for each n.

Consider a time interval [0, T ] for some T > 0. We have demonstrated that, for
each n, | ˙̂ϕ (N)

n (t)| and | ¨̂ϕ (N)
n (t)| are uniformly bounded in N and t ∈ [0, T ], and

hence the sets of functions ϕ̂ (N)
n (t) and ˙̂ϕ (N)

n (t) are equicontinuous. Therefore,
applying the Arzelà–Ascoli theorem and using the diagonal process, we can
choose a subsequence Nk → ∞ such that
1) for each n, ϕ(Nk)

n and ϕ̇(Nk)
n uniformly converge to some continuous functions

ϕn and δn; furthermore, δn = ϕ̇n, as can be seen by letting Nk → ∞ in the
relation

ϕ̂ (N)
n (t) = ϕn(0) +

∫ t

0

˙̂ϕ (N)
n (τ) dτ ;

2) the bounds

‖ϕ(x, t)‖s ≤ Cs(t) (11)

and

‖ϕ̇(x, t)‖s ≤ Ds(t) (12)

hold true for the limit functions

ϕ(x, t) =
∑

n

ϕn(t) e
ınx, ϕ̇(x, t) =

∑

n

ϕ̇n(t) e
ınx

(this can be shown by considering inequalities (7) and (10) for Nk → ∞).

Thus, at each time t the limit functions ϕ(x, t) and ϕ̇(x, t) are infinitely smooth
in x (provided the initial data and the forcing are infinitely smooth). In the
limit Nk → ∞, the Galerkin equation (2) becomes

(1 + an2)ϕ̇n + (d+ ıbn)ϕn + ıc
∑

m

mϕmϕn−m + ên(t) = 0 (13)

(passing to the limit in the infinite sum in m is possible, because the sum con-
verges uniformly in N). Relations (13) imply that ϕ(x, t) satisfies the original
RLWE in the classical sense.

Differentiating the RLWE s − 1 times in t, we incrementally establish (by
induction in s) that ∂s

∂ts
(ϕ− aϕ′′) and hence ∂sϕ/∂ts are continuous in time;

this proves that ϕ(x, t) ∈ C∞(R1 × R1
+).

Finally, if there exist two distinct smooth solutions to the RLWE, application
of Gronwall’s lemma to the linear equation for the difference between them
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establishes that the difference is zero. In particular, the limit functions ob-
tained for different subsequences Nk → ∞ and/or on different time intervals
[0, T ] necessarily coincide. Q.E.D.

3 Spatial analyticity of evolutionary solutions

Temporal analyticity of solutions to the zero-force BBM equation was proved
in [3]. These authors analysed convergence of Taylor’s expansion of the solution
in time, employing an integral operator that maps the m-th time derivative of
the solution to the time derivative of order m+ 1. Here we prove the spatial
analyticity of ϕ by the techniques of [43].

For any σ > 0 we define the Gevrey–Sobolev seminorms of f(x) =
∑
n f̂n e

ınx

by the relation

f 2
σ,s =





∑

n

|f̂n|2 |n|2s e2σ|n|, s > 0;

∑

n

|f̂n|2 (max(|n|, 1))2s e2σ|n|, s ≤ 0.

Functions, whose Gevrey–Sobolev norms are finite, are analytic; the first index
σ is a lower estimate of the width of the analyticity strip of f around the real
axis on the complex plane.

We also introduce a seminorm

|||f |||2 =
∑

n

(|n|+ a|n|3)|f̂n|2

equivalent to ‖ · ‖3/2.

Theorem 2. Suppose ϕ0(x) and e(x, t) satisfy the conditions of Theorem 1 and
are analytic in x: for some constants σ > 0 and β > 0, ϕ0(x) σ, 3/2 <∞ and
e(x, t) β, 0 is uniformly bounded in time. Then the solution to the RLWE is
analytic in x at any t ≥ 0, and the width of its analyticity strip around the real
axis decreases in time at most exponentially. For d ≥ 0, the width decreases
in time at most algebraically.

Proof. We will show that at any time t the solutions to the Fourier–Galerkin
system of equations (2), that were considered in Theorem 1, for some κ(t) > 0
have Gevrey–Sobolev norms ϕ(N)(x, t) κ(t), 3/2, that are bounded uniformly
in N . This will imply that the solution to the RLWE, ϕ(x, t), also have finite
norms ϕ(x, t) κ(t), 3/2, this proving Theorem 2.
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For a given N , we consider a transformation

ϕ̂ (N)
n (t) = ŵ(N)

n (t) exp

(
− β|n|
1 + |||w(N)(x, t)|||1+ε

)
, (14)

w(N)(x, t) =
∑

n

ŵ(N)
n (t) eınx,

where ε ≤ 1 is a positive constant. For brevity, we henceforth omit the super-
script (N) in ŵ(N)

n . We seek a solution to the system of nonlinear equations
(14) in the form

ŵn(t) = ϕ̂n(t) exp(ψ(t)|n|),
where ψ(t) > 0 satisfies the equation

ψ(t)


1 +



∑

|n|≤N

(|n|+ a|n|3) e2ψ(t)|n| |ϕ̂ (N)
n (t)|2



(1+ε)/2


 = β.

It has a unique solution for any t ≥ 0, because the l.h.s. is a continuous
monotonically increasing unbounded function of ψ, that vanishes for ψ = 0.
We assume without any loss of generality that

β ≤ σ
(
1 + ( ϕ0

2
σ, 1/2 + a ϕ0

2
σ, 3/2)

(1+ε)/2
)
,

whereby ‖w(N)(x, t)‖3/2 are bounded uniformly in N at t = 0.

Substitution (14) transforms the Fourier–Galerkin equations (2) into the sys-
tem of equations

(1 + an2) ˙̂wn + β(1 + ε)(|n|+ a|n|3) ŵn
|||w|||ε

(1 + |||w|||1+ε)2
d

dt
|||w|||+ (d+ ıbn)ŵn

+ ıc
∑

m

mŵmŵn−m eγ(|n|−|k|−|n−k|)+ên(t) e
γ|n| = 0,

where it is denoted γ = β / (1 + |||w|||1+ε).

Multiplying the equation by w−n = ŵn and summing up the results over n,
we find

1

2

d

dt

(
‖w‖20 + a‖w‖21 + 2β(1 + ε)I(|||w|||)

)
+ d‖w‖20

+ ıc
∑

m,n

mŵmŵn−mŵ−n e
γ(|n|−|m|−|n−m|)+

∑

n

ên(t) e
γ|n| ŵ−n = 0, (15)

where it is denoted

I(q) =
∫ q

0

u2+ε

(1 + u1+ε)2
du.

10



For 0 < ε < 1 and large q,

I(q) = (1− ε)−1 q1−ε +O(q−2ε). (16)

We transform now the sum

∑
≡ ıc

∑

m,n

mŵmŵn−mŵ−n eγ(|n|−|m|−|n−m|) .

It remains unaltered when we change the index m→ n−m, as well as when
we change the indices m→ −n, n→ m−n. Summing the two sums obtained
by these changes of indices with the original sum, we find

∑
=

ıc

3

∑

m,n

nŵmŵn−mŵ−n (e
γ(|n|−|m|−|n−m|)− eγ(|n−m|−|n|−|m|)).

By virtue of the inequalities | eµ′ − eµ
′′ | ≤ |µ′ − µ′′| that holds true for any

µ′ ≤ 0 and µ′′ ≤ 0, and |n|µ ≤ |m|µ + |n−m|µ for any 0 ≤ µ ≤ 1, the above
relation implies

∣∣∣
∑∣∣∣ ≤ 2|c|

3
γ
∑

m,n

|n|1−ε/2(|m|ε/2 + |n−m|ε/2)|m| |ŵm||ŵn−m||ŵ−n|. (17)

By the Cauchy-Bunyakovsky-Schwarz inequality, for ε > 0

∣∣∣∣∣
∑

n

|n|1−ε/2|ŵ−n|
∣∣∣∣∣ =

∣∣∣∣∣
∑

n

|n|−(1+ε)/2|n|3/2|ŵ−n|
∣∣∣∣∣ ≤

(
∑

n

|n|−1−ε

)1/2
‖w‖3/2.

(18)
By the Cauchy-Bunyakovsky-Schwarz and Hölder’s inequalities, for 0 ≤ ε ≤ 1

∣∣∣∣∣
∑

m

|m|1+ε/2|ŵm||ŵn−m|
∣∣∣∣∣ ≤ ‖w‖0‖w‖1+ε/2

=‖w‖0
(
∑

m

(|m|3|ŵm|2)ε|m|2|ŵm|2)1−ε
)1/2

≤ ‖w‖0‖w‖ε3/2‖w‖1−ε1 (19)

and ∣∣∣∣∣
∑

m

|m||n−m|ε/2|ŵm||ŵn−m|
∣∣∣∣∣ ≤ ‖w‖ε/2‖w‖1. (20)

Inequalities (17)–(20) imply

∣∣∣
∑∣∣∣ ≤2|c|

3
γ (‖w‖0‖w‖ε3/2‖w‖1−ε1 + ‖w‖ε/2‖w‖1)

(
∑

n

|n|−1−ε

)1/2
‖w‖3/2

≤Q5 (‖w‖0 + ‖w‖ε/2) ‖w‖1−ε1 ,

where Q5 =
2β|c|
3

(
∑

n

|n|−1−ε

)1/2
.

11



Thus, we find from (15):

1

2

d

dt

(
‖w‖20 + a‖w‖21 + 2β(1 + ε)I(|||w|||)

)

≤− d‖w‖20 +Q5 (‖w‖0 + ‖w‖ε/2)‖w‖1−ε1 + e β, 0‖w‖0,

whereby
dζ

dt
≤ −dζ + Q5

a
ζ1−ε + e β, 0, (21)

where it is denoted

ζ2 = ‖w(N)‖20 + a‖w(N)‖21 + 2β(1 + ε)I(|||w(N)|||).

For d < 0, by Gronwall’s lemma ζ ≤ ζ0 eµt for any µ > −d; since also
2β(1 + ε)I(|||w(N)|||) ≤ ζ2 and by virtue of (16), we have |||w(N)||| ≤ ζ1 e2µt/(1−ε);
here ζ0 and ζ1 are suitable positive constants. Consequently,

ϕ(N)
β/(1+ζ1+ε

1
e(2µ(1+ε)/(1−ε))t),1 ≤ ϕ(N)

β/(1+|||w(N)|||1+ε),1 = ‖w(N)‖1 ≤
ζ0√
a
eµt .

This bound is uniform in N , and therefore in the limit Nk → ∞ we obtain

ϕ β/(1+ζ1+ε
1 e(2µ(1+ε)/(1−ε))t),1 ≤

ζ0√
a
eµt .

Hence the width of the analyticity strip of ϕ around the real axis is bounded
from below by an exponentially decaying quantity, β/(1+ζ1+ε1 e(2µ(1+ε)/(1−ε))t).

For d ≥ 0, (21) reduces to

dζ

dt
≤ Q5 ζ

1−ε + e β, 0.

Integrating this inequality yields ζε ≤ ζ2t+ζ3. Since 2β(1+ε)I(|||w(N)|||) ≤ ζ2,
(16) implies |||w(N)|||1+ε ≤ ζ4t

2(1+ε)/(ε(1−ε)) + ζ5. Consequently,

ϕ(N)
β/(1+ζ5+ζ4t2(1+ε)/(ε(1−ε))),1 ≤ ϕ(N)

β/(1+|||w(N)|||1+ε),1

=‖w(N)‖1 ≤ (ζ2t+ ζ3)
1/ε/

√
a,

where all ζi are suitable positive constants. Since this bound is uniform in N ,
we obtain in the limit Nk → ∞

ϕ β/(1+ζ5+ζ4t2(1+ε)/(ε(1−ε))),1 ≤ (ζ2t + ζ3)
1/ε/

√
a.

Therefore, for d ≥ 0 the width of the analyticity strip of ϕ around the real
axis is bounded from below by the quantity β/(1+ζ5+ζ4t

2(1+ε)/(ε(1−ε))), which

12



decays algebraically. Within the allowed interval 0 < ε < 1, the exponent
2(1 + ε)/(ε(1 − ε)) takes the minimal value for ε =

√
2 − 1. The optimal

exponent that we have thus found is 2(
√
2 + 1)2. Q.E.D.

4 Existence and uniqueness of travelling-wave solutions

When the forcing has the form e(x, t) = e(ξ) for ξ = x− Ωt, the RLWE may
have travelling-wave solutions such that ϕ(x, t) = ϕ(ξ). We establish now their
existence.

Substituting ϕ(x, t) = ϕ(ξ) into the RLWE we obtain an equation for the
wave profile ϕ:

− Ω(ϕ′ − aϕ′′′) + bϕ′ + cϕϕ′ + dϕ+ e(ξ) = 0, (22)

where ′ denotes henceforth differentiation in ξ ∈ R1. 2π-periodicity in x trans-
lates to 2π-periodicity in ξ.

Theorem 3. Suppose aΩd 6= 0. If e(ξ) ∈ C∞(R1) is 2π-periodic, then there
exists a 2π-periodic solution to (22), ϕ(ξ) ∈ C∞(R1), for any constants a > 0,
b, c and d 6= 0. If the forcing is weak:

‖e‖0 <
|d|

2
√∑

n 6=0 |pn|2
, (23)

where quantities pn are defined in (26) below, the travelling-wave solution to
the RLWE is unique.

Proof.

i. We seek a solution to (22) in the form of a Fourier series

ϕ(ξ) =
∑

n

ϕ̂n eınξ .

The travelling-wave RLWE then reduces to the system of equations

− ın(1 + an2)Ωϕ̂n + (d+ ıbn)ϕ̂n +
ıcn

2

∑

m

ϕ̂mϕ̂n−m + ên = 0. (24)

Equation (24) for n = 0 (i.e., the average of (22) over ξ) yields ϕ̂0 = −ê0/d.

Dividing (24) by −ı(aΩn3 + (Ω + cê0/d− b)n + ıd), we obtain for n 6= 0

ϕ̂n = pn
∑

06=m6=n

ϕ̂mϕ̂n−m + qn, (25)

13



where it is denoted

pn =
cn

2(aΩn3 + (Ω + cê0/d− b)n + ıd)
, (26)

qn =− ıên
aΩn3 + (Ω + cê0/d− b)n + ıd

. (27)

The system of equations (25) does not involve an equation for n = 0. To
simplify notation, we henceforth formally assume that ϕ̂0 = 0 in (25).

ii. We have thus rendered the travelling-wave RLWE as a fixed-point problem
ϕ = Aϕ, where the operator A is defined by the r.h.s. of (25):

A :
∑

n 6=0

ϕn(t) e
ınξ 7→

∑

n 6=0


pn

∑

06=m6=n

ϕ̂mϕ̂n−m + qn


 eınξ .

We will seek a solution in the subspace of zero-mean functions of the Sobolev
space H1(T1) (the norm ‖ · ‖2 in Hs(T1) was defined in the previous section).
Existence of solutions to the fixed-point problem (25) is guaranteed by the
Leray–Schauder principle ([26], see also [25]) under two conditions:

1) Any solution to the equation

ϕ = µAϕ (28)

belongs to a ball in H1(T1) of a radius independent of µ for 0 ≤ µ ≤ 1.

2) The operator A : H1(T1) → H1(T1) is compact, i.e., A(ϕn) strongly con-
verges in H1(T1) for any sequence ϕn, weakly converging in H1(T1).

To establish 1), note that (28) is equivalent to the system of equations

(−ın(1 + an2)Ω + d+ ıbn)ϕ̂n +
ıµcn

2

∑

m

ϕ̂mϕ̂n−m + µên = 0.

We multiply this equation for n 6= 0 by ϕ̂−n and sum the results over n to find

d‖ϕ‖20 = −µ
∑

n

ϕ̂nên,

which implies

‖ϕ‖0 ≤ µ‖e‖0/|d|.

We multiply now (25) by |n|2s+2ϕ̂−n; summation over n then yields

‖ϕ‖2s+1 = µ
∑

n 6=0

pn|n|2s+2
∑

06=m6=n

ϕ̂mϕ̂n−mϕ̂−n + µ
∑

n 6=0

qn|n|2s+2ϕ̂−n.

14



By virtue of the inequality |n|2s ≤ Rs(|m|2s + |n −m|2s), valid for all s > 0
and Rs = max(22s−1, 1),

‖ϕ‖2s+1 ≤ µRs+1

∑

06=m6=n 6=0

|pn||n|s+1(|m|s+1 + |n−m|s+1)|ϕ̂m||ϕ̂n−m||ϕ̂−n|

+ µ


∑

n 6=0

|qn|2|n|2s+2



1/2

‖ϕ‖s+1

≤ µRs+1

∑

n 6=0

|pn||n|s+1|ϕ̂−n| 2‖ϕ‖0‖ϕ‖s+1 + µ

(
sup
n 6=0

|qn||n|3
)
‖e‖s−2‖ϕ‖s+1

≤ 2µRs+1‖ϕ‖0‖ϕ‖s+1‖ϕ‖s


∑

n 6=0

|pn|2|n|2


1/2

+ µ

(
sup
n 6=0

|qn||n|3
)
‖e‖s−2‖ϕ‖s+1,

whereby

‖ϕ‖s+1 ≤ 2µRs+1


∑

n 6=0

|pn|2|n|2


1/2

‖ϕ‖0‖ϕ‖s + µ

(
sup
n 6=0

|qn||n|3
)
‖e‖s−2. (29)

Assuming here s = 0 we find that any solution ϕ to the problem (28) for
0 ≤ µ ≤ 1 belongs to the ball

‖ϕ‖1 ≤
(
2‖e‖0
|d|

)2

∑

n 6=0

|pn|2|n|2


1/2

+

(
sup
n 6=0

|qn||n|3
)
‖e‖−2,

as required.

To establish 2), consider a weakly converging sequence ϕk(ξ) in H1(T1). By
properties of weak convergence, functions ϕk(ξ) are uniformly bounded in
H1(T1): ‖ϕk‖1 ≤ A. By the Sobolev embedding theorem, weak convergence in
H1(T1) implies strong convergence in H1(T1): for any ǫ > 0 and s < 1 there
exists K(s) such that ‖ϕk′ − ϕk

′′‖s ≤ ǫ provided k′ > K(s) and k′′ > K(s).
We need to show that

‖A(ϕk
′

)−A(ϕk
′′

)‖1 =
∥∥∥∥∥∥

∑

n 6=0


pn

∑

06=m6=n

(
ϕ̂k

′

mϕ̂
k′

n−m − ϕ̂k
′′

m ϕ̂
k′′

n−m

)

 eınξ

∥∥∥∥∥∥
1

→ 0

for k′, k′′ → ∞. In terms of θ k
′,k′′ = ϕ k′ − ϕ k′′ and θ̂ k

′,k′′ = ϕ̂ k′ − ϕ̂ k′′,

‖A(ϕk
′

)−A(ϕk
′′

)‖21

=
∑

n 6=0


|pn|2|n|2

∑

06=m6=n

(ϕ̂ k′

m θ̂ k
′,k′′

n−m + ϕ̂ k′′

n−m θ̂
k′,k′′

m )
∑

06=l 6=−n

(ϕ̂ k′

l θ̂ k
′,k′′

−n−l + ϕ̂ k′′

−n−l θ̂
k′,k′′

l )




≤
∑

n 6=0

|pn|2|n|2 (‖ϕk
′′‖0 + ‖ϕk′‖0)2‖θ k

′,k′′‖20 ≤ 4A2



∑

n 6=0

|pn|2|n|2

 ‖θ k′,k′′‖20.
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This proves the required strong convergence of A(ϕk) in H1(T1) for k → ∞.

iii. Solutions ϕ to the travelling-wave RLWE have finite norms in any Sobolev
space Hs(T1) and hence are infinitely differentiable. This follows directly from
inequality (29) for µ = 1 in combination with induction in integer s > 0.

iv. The number of solutions to the travelling-wave RLWE for given parameter
values is unknown, unless the coefficients pn and/or the energy ‖ϕ‖0 are small,
in which case the solution is unique.

Suppose there exist two solutions ϕ′ and ϕ′′. We denote θ = ϕ′ − ϕ′′ and
θ̂ = ϕ̂′ − ϕ̂′′ and find

‖θ‖20 = ‖A(ϕ′)−A(ϕ′′)‖20

=
∑

n 6=0


|pn|2

∑

06=m6=n

(ϕ̂ ′
m θ̂n−m + ϕ̂ ′′

n−m θ̂m)
∑

06=l 6=−n

(ϕ̂ ′
l θ̂−n−l + ϕ̂ ′′

−n−l θ̂l)




≤
∑

n 6=0

|pn|2 (‖ϕ′‖0 + ‖ϕ′′‖0)2‖θ‖20.

Thus coexistence of distinct solutions satisfying

‖ϕ‖0 <

4

∑

n 6=0

|pn|2



−1/2

is ruled out. Since any solution to the travelling-wave RLWE has a bounded
norm ‖ϕ‖0 ≤ ‖e‖0/|d|, the problem has a unique solution provided inequality
(23) holds true. Q.E.D.

5 Non-well-posedness of the non-damped travelling-wave RLWE

A problem of physical relevance is said, following Hadamard, to be well-posed,
if it possesses a solution that is unique and depends continuously on the data.
The evolutionary problem for the non-damped (d = 0) RLWE (the BBM equa-
tion) is well-posed [3]. Instead of developing the existence theory for travelling
waves for d = 0, we show here that, by contrast, the travelling-wave problem
for the RLWE (22) for d = 0 is not well-posed, since arbitrarily large solutions
can exist for a forcing of whichever small amplitude.

We consider fast oscillating (both in space and time) solutions to (22) of the
form

ϕ(ξ) = ΩβΦ(η), η ≡ Ωαξ (30)
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in the limit Ω → ∞. Substituting the ansatz (30) into (22) yields

− Ω1+α+βΦ′ + aΩ1+3α+βΦ′′′ + bΩα+βΦ′ + cΩα+2βΦΦ′ + e(η) = 0, (31)

the prime ′ denoting in this section differentiation in the fast variable η. In
this section we assume a > 0 and c < 0 (the important condition here is c 6= 0;
the convention about the sign of c is technical since (31) has the symmetry
Φ → −Φ, c → −c). Note that for such coefficients we might reduce equation
(31) to the one for a = b = c = 1 (provided b 6= 0) by appropriately rescaling
Ω, η and Φ.

The two terms defining the nature of the problem, i.e., the ones involving the
third-order derivative and the nonlinearity, balance each other if β = 1 + 2α.
If α and β are rational, it is natural to seek Φ in the form of power series in
Ω−1 in an appropriate fractional power. The simplest case is α = 1, β = 3.
For these parameter values we consider the series

Φ(η) =
∑

i≥0

Ω−iΦi(η). (32)

Substituting (32) into (31), expanding and collecting all the terms involving
Ω7−i for some i ≥ 0, we obtain a hierarchy of equations for Φi(η):

− Φ′
i−2 + aΦ′′′

i + bΦ′
i−3 + c

i∑

j=0

ΦjΦ
′
i−j = 0 (33)

(assuming that the amplitude of the forcing e(η) is so small that it does not
contribute to (33) at this level).

i. For i = 0, (33) reduces to

Φ′′′
0 −QΦ0Φ

′
0 = 0, (34)

where it is denoted Q = −c/a (by our convention Q > 0). Integrating (34)
in η once, we find

Φ′′
0 =

1

2
(QΦ2

0 + C1). (35)

Using the standard techniques, we reduce the order of (35) by regarding Φ0 as
a new independent variable and Φ′

0 as an unknown function of this variable;
integrating (35) in Φ0 then yields

(Φ′
0)

2 = P(Φ0) ≡
Q

3
Φ3

0 + C1Φ0 + C0, (36)

where C1 and C0 are some constants. We assume henceforth 4C3
1 < −9QC2

0 ,
whereby the polynomial P(Φ0) in the r.h.s. of (36) has three distinct real roots
λ1 < λ2 < λ3 (see a sketch of the plot of P(Φ0) in Fig. 1).
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Fig. 1. A plot of the cubic polynomial P(Φ0) in the r.h.s. of (36) for Q = 3, C0 = 6.5,
C1 = −7.

Solutions to (36) can be expressed in terms of the Weierstrass elliptic function
(see [2,1])

℘(z;ω1, ω2) =
1

z2
+

∑

|n1|+|n2|6=0

(
1

(z + 2n1ω1 + 2n2ω2)2
− 1

(2n1ω1 + 2n2ω2)2

)

that is holomorphic and double-periodic, the periods being 2ω1 and 2ω2, and
solves equations (

d

dz
℘
)2

= 4℘3 − g2℘− g3 (37)

and
z =

∫ ∞

℘(z;ω1,ω2)
(4Φ3 − g2Φ− g3)

−1/2dΦ (38)

on the complex plane z ∈ C1. The Weierstrass elliptic function was em-
ployed to solve a generalised BBM equation in [30]. The rescaled function
Φ̃ = (Q/12)Φ0 satisfies ODE (37) for g2 = −QC1/12 and g3 = −Q2C0/144.
The half-periods ωi can be found from the conditions

g2 = 60
∑

|n1|+|n2|6=0

(2n1ω1 + 2n2ω2)
−4, g3 = 140

∑

|n1|+|n2|6=0

(2n1ω1 + 2n2ω2)
−6.

Since the roots of the r.h.s. of (37), ei = (Q/12)λi, are real, one of the half-
periods (say, ω1) is real, and the other one (respectively, ω2) is imaginary.
Separating variables in (37) and taking into account (38), we find

Φ̃(η) = ℘
(∫ ∞

Φ̃(η0)
(4Φ3 − g2Φ− g3)

−1/2dΦ+ η0 − η; ω1, ω2

)
. (39)

The three quantities ℘(ω1;ω1, ω2), ℘(ω2;ω1, ω2) and ℘(ω1+ω2;ω1, ω2) coincide
with the roots ei, and hence, by (38),

ω1 =
∫ ∞

e3
(4Φ3 − g2Φ− g3)

−1/2dΦ, ω2 =
∫ e3

e2
(4Φ3 − g2Φ− g3)

−1/2dΦ.
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This removes the ambiguity in the choice of branches of the square root in
the path of integration in the r.h.s. of (39). Using the addition formula for
the Weierstrass elliptic function and the relations ℘(ω1 + ω2;ω1, ω2) = e2,
℘′(ω1+ω2;ω1, ω2) = 0, we obtain from (39) the solution in the form that does
not involve complex numbers:

Φ̃(η) = e2 +
(e2 − e1)(e2 − e3)

℘
(∫ e2

Φ̃(η0)
(4Φ3 − g2Φ− g3)

−1/2dΦ + η0 − η; ω1, ω2

)
− e2

.

Furthermore, we can represent the solution in terms of the Jacobi elliptic

functions of modulus k =
√
(e2 − e1)/(e3 − e1) using the identities (see [2,1])

℘
(

q√
e3 − e1

; ω1, ω2

)
= e1+

e3 − e1
sn2(q)

= e2+(e3−e1)
dn2(q)

sn2(q)
= e3+(e3−e1)

cn2(q)

sn2(q)
.

However, rather than applying the above results of the theory of elliptic func-
tions, it appears more instructive to establish the properties of the solution
that are important for our purposes by directly inspecting (34)–(36). Con-
sider a solution to the ODE (36) such that λ1 < Φ0(0) < λ2. To be specific,
let Φ′

0(0) satisfying (36) be positive. Thus, on increasing η, Φ0 is growing till
it approaches the value λ2. The ODE (36) can be expressed as

Φ′
0 = C(Φ0)

√
λ2 − Φ0.

For Φ0 ≈ λ2, C(Φ0) ≈
√
Q(λ2 −λ1)(λ3 −λ2)/3 is a smooth function bounded

from below by a positive constant. Consequently, Φ0 takes the limit value λ2 at
a finite η = η0. For Φ0 = λ2, the r.h.s. of (35) is non-zero, and hence at η = η0
the sign of Φ′

0 changes and Φ0 begins to decrease. Separation of variables in
(36) yields

±
∫ λ2

Φ0(η)

(
Q

3
Φ3 + C1Φ + C0

)−1/2

dΦ = η − η0,

where the sign in the l.h.s. is ‘−’ for η < η0 and ‘+’ for η > η0. By virtue of this
relation, Φ0(η) is a symmetric function of η about η0: Φ0(η0+η) = Φ0(η0−η).

By a similar argument, Φ0 continues to decrease till Φ0(η1) = λ1 for some
η = η1, and subsequently the process repeats itself: there exists an infinite
sequence ηk such that Φ0(η2k) = λ2 and Φ0(η2k+1) = λ1. Moreover, Φ0(η) is
symmetric in η about each ηk. Thus, Φ0(η) is periodic in η, with the half-
period E/2 = ηk+1 − ηk (this value being independent of k). In what follows
we fix the origin of the variable η by letting η1 = 0. Plots of a sample solution
Φ0(η) to (36)–(34) computed for Q = 3, C0 = 6.5, C1 = −7 and its derivative
Φ′

0(η) are shown in Fig. 2.
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Fig. 2. Plots of a sample solution Φ0(η) to (36) for Q = 3, C0 = 6.5, C1 = −7 (left
panel) and its derivative Φ′

0(η) (right panel).

ii. For i > 0, (33) becomes

aLΦi − Φ′
i−2 + bΦ′

i−3 + c
i−1∑

j=1

ΦjΦ
′
i−j = 0, (40)

for i = 1 reducing to

LΦ1 = 0. (41)

Here L is the operator of linearisation of (34) in the vicinity of Φ0(η):

Lf = f ′′′
i −Q(Φ0f)

′.

It is assumed to act in the Lebesgue space of zero-mean functions that have
the same period E in η as Φ0. The adjoint operator is

L∗f = −f ′′′
i +Q{Φ0f

′},

where

〈f〉 = 1

E

∫ E/2

−E/2
f(η) dη and {f} = f − 〈f〉

denote the average of function f over the period E of Φ0 and its oscillatory
part, respectively. Evidently, operators L and L∗ map the subspace of even
functions (i.e., such that f(η) = f(−η) ), into the subspace of odd functions
(i.e., f(η) = −f(−η) ), and vice versa.

In order to determine the solvability conditions for equations (40), we need
to examine the kernel of L∗. By (34), L∗{Φ0} = 0. Differentiating (34) in η
yields LΦ′

0 = 0 (this is a manifestation of translation invariance of equations
(36)–(34) ). Thus, the kernels of L and L∗ are at least one-dimensional. Actu-
ally, generically dim kerL = dimkerL∗ = 2, the kernels involving generalised
eigenfunctions and the operators having 2×2 Jordan cells associated with the
eigenvalue 0. To see this, consider solutions to the problems

S ′′
ν −Q(Φ0Sν − ν) = 0, Sν(0) = 1, S ′

ν(0) = 0
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Fig. 3. A plot of the function S computed for a sample solution Φ0 to (36) shown
in Fig. 2.

and the linear combination S(η) = µS0(η)+(1−µ)S1(η), where µ is found from
the condition S ′(E/2) = 0. As we have established, Φ0 is symmetric about the
points kE/2, where k is integer. Using this, it is easy to show that S(η) is also
symmetric about these points, and thus is E-periodic. By construction, S(η)
satisfies the equations

S ′′′
i −Q(Φ0S)

′ = 0 ⇔ L{S} = Q〈S〉Φ′
0. (42)

Thus, L{S} 6= 0 unless 〈S〉 = 0, but L2{S} = 0, i.e., {S} is a generalised
eigenfunction associated with the eigenvalue 0 (clearly, Φ′

0 and {S} are linearly
independent: the former eigenfunction is odd while the latter is even). The
respective odd generalised eigenfunction from the kernel of L∗ is {∫ η0 {S} dη}.

We present in Fig. 3 a plot of the function S that was computed for a sample
solution to (34)–(36) Φ0 shown in Fig. 2. 〈S〉 = 0.93314 is non-zero beyond
numerical accuracy (the Lebesgue norm of S is 6.54875). We have checked
numerically that the kernel of L is two-dimensional.

The theorem on the Fredholm alternative implies that an equation of the form

Lf = u (43)

is solvable in the space of zero-mean E-periodic functions whenever

∫ E/2

−E/2
u(η){Φ0} dη = 0, (44)

and then the solution can be found up to an arbitrary additive term κΦ′
0.

(More precisely, the Fredholm alternative theorem is stated for linear problems
where the operator is a sum of the identity operator and a compact one [21,27];
however, by considering (44) in the Fourier space, it is simple to show that
after integrating the equation three times, we obtain a problem equivalent to
(44), for which the theorem on Fredholm alternative is readily applicable.) In
particular, the problem (41) has a general solution Φ1 = κ1Φ

′
0, where κ1 is an

arbitrary constant.
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iii. Thus, (40) specifies Φi up to an arbitrary additive term κiΦ
′
0. In prin-

ciple, one starts solving (40) for a given i > 1 by satisfying the solvability
condition (44) and determining from it the coefficient κj for an appropriate
j < i. However, we can just set all κi = 0. Then all functions Φi are even,
equations (40) have odd non-homogeneous parts, and, {Φ0} being even, the
solvability conditions (44) are trivially satisfied. In particular, Φ1 = 0 and
Φ2 = {S}/(Q〈S〉).

We have therefore shown that one can recursively solve equations (40) in all
orders and determine all terms in the power series (32). By construction, a
truncated series (32)

ΦI(η) =
I∑

i=0

Ω−iΦi(η)

is a solution to (31) for the forcing

e(η) =
6−I∑

i=min(7−2I,4−I)

Ωiei(η)

(where all ei(η) are of the order of unity). Thus, we have found an oscillatory
solution to the original RLWE (22) for waves for d = 0, whose amplitude
grows as O(Ω3), despite it is sustained by the forcing O(Ω6−I) which, for large
I and Ω can be made arbitrarily small with any fixed number of derivatives.
This shows that the undamped RLWE for waves gives rise to a problem that
is not well-posed.

Several remarks are in order. Our construction is not applicable for d 6= 0
technically because the damping term breaks the symmetry of the solution,
and we cannot argue any more that the solvability conditions are automatically
satisfied. One might try to overcome this by employing the general procedure,
whereby one reintroduces the terms κiΦ

′
0 from the kernel of the operator

of linearisation L into Φi for i > 0 and satisfies the solvability conditions
by solving the respective equations in κi. However, the system of equations
obtained from the solvability conditions does not have a solution. The reason
for this failure lies in the fact that while we are constructing a family of
solutions to the travelling-wave RLWE that are supposed to grow with Ω
unboundedly as Ωβ, any travelling-wave solution to the RLWE for d 6= 0 has
a bounded norm ‖ϕ‖0 ≤ ‖e‖0/|d|.

The family of travelling waves that we have constructed for d = 0 is non-
unique: asymptotic solutions can be obtained for any α > 0, β = 1 + 2α with
the leading-order term Φ0 satisfying equations (34)–(36). A similar analysis
can also be attempted for α ≤ 0, but in this case the equation for the leading
term in the expansion of Φ differs from (34).
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6 Asymptotic expansion for a weak forcing

We consider now the travelling-wave RLWE (22) for the forcing proportional
to a small parameter ǫ, i.e., we assume in this section that the term e(ξ) in
(22) is changed to ǫe(ξ). In this case a solution to (22) can be sought as an
asymptotic power series

ϕ(ξ) =
∑

k>0

ϕ(k)(ξ)ǫk. (45)

Substituting the series into (22), we obtain a transport system of equations

Mϕ(1) =− e(ξ); (46)

Mϕ(k) =− c

2

d

dξ

k−1∑

l=1

ϕ(l)ϕ(k−l), k > 1. (47)

Here M denotes the operator M : ϕ 7→ −Ω(ϕ′ − aϕ′′′) + bϕ′ + dϕ, where ′

denotes the derivative in ξ. Existence of solutions to these problems follows
from Theorem 3 applied for c = 0.

In terms of the Fourier coefficients of ϕ(k) these equations take the form,
respectively,

ϕ̂(1)
n =qn; (48)

ϕ̂(k)
n =pn

∑

m

k−1∑

l=1

ϕ̂(l)
m ϕ̂

(k−l)
n−m , k > 1, (49)

where

pn =
cn

2(aΩn3 + (Ω− b)n+ ıd)
, qn = − ıên

aΩn3 + (Ω− b)n + ıd
.

Unlike in the previous section, now we do not single out the equation for
n = 0, since that would imply an undesirable dependence of pn and qn on ǫ,
as in (26)–(27). Note that ϕ̂

(k)
0 = 0 for k > 1.

These relations imply

ϕ̂(k)
n =

∑

m1,...,mk
m1+...+mk=n

ζm1,...,mk
qm1 ...qmk

.

By (48), for k = 1 just a single term for m1 = n is present in this sum, which
is ζn = 1 for any n. By (49), the recurrence relation

ζm1,...,mk+1
= pm1+...+mk+1

(
ζm1ζm2,...,mk+1

+ ...+ ζm1,...,ml
ζml+1,...,mk+1

+...+ ζm1,...,mk
ζmk+1

)

holds (there are k terms in the sum in parenthesis here).
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Theorem 4. Power series (45) is an asymptotic expansion in ǫ of the solution
ϕ(ξ) to the travelling-wave RLWE.

Proof. For K > 1, the residual

θ(ξ) = ϕ(ξ)−
K−1∑

k=1

ϕ(k)(ξ)ǫk

satisfies the equation

Mθ = − c
2

d

dξ

2K−2∑

k=K

(
ǫk

k−1∑

l=1

ϕ(l)ϕ(k−l)

)
. (50)

Multiplying (46) by ϕ(1), we find ‖ϕ(1)‖0 ≤ ‖e‖0/|d|. Multiplying (49) by ϕ̂
(k)
−n

and summing over n 6= 0, we obtain

‖ϕ(k)‖20 =
k−1∑

l=1

∑

n 6=0

pnϕ̂
(k)
−n

(
∑

m

ϕ̂(l)
m ϕ̂

(k−l)
n−m

)

≤
k−1∑

l=1



∑

n 6=0

|pn|2


1/2

‖ϕ(k)‖0‖ϕ(l)‖0‖ϕ(k−l)‖0,

whereby

‖ϕ(k)‖0 ≤
k−1∑

l=1


∑

n 6=0

|pn|2


1/2

‖ϕ(l)‖0‖ϕ(k−l)‖0.

This establishes (using induction in k) that all ϕ(k) have finite norms ‖ϕ(k)‖0.

In the Fourier space, equation (50) in

θ(ξ) =
∑

n

θ̂n eınξ

takes the form

θ̂n = pn
2K−2∑

k=K

ǫk
(
k−1∑

l=1

∑

m

ϕ̂(l)
m ϕ̂

(k−l)
n−m

)
.

Multiplying it by θ̂−n and summing over n 6= 0, we find

‖θ‖20 =
2K−2∑

k=K


ǫk

k−1∑

l=1

∑

n 6=0

pnθ̂−n

(
∑

m

ϕ̂(l)
m ϕ̂

(k−l)
n−m

)


≤
2K−2∑

k=K


ǫk

k−1∑

l=1



∑

n 6=0

|pn|2


1/2

‖θ‖0‖ϕ(l)‖0‖ϕ(k−l)‖0


 ,
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and hence

‖θ‖0 ≤
2K−2∑

k=K


ǫk

k−1∑

l=1


∑

n 6=0

|pn|2


1/2

‖ϕ(l)‖0‖ϕ(k−l)‖0


 = O(ǫK).

Q.E.D.

7 Concluding remarks

We have presented mathematical results concerning existence, uniqueness,
spatial analyticity and well-posedness of space-periodic evolutionary and tra-
velling-wave solutions to the RLWE with forcing and damping. This work has
been necessitated by the ongoing intensive numerical study of various regimes
exhibited by solutions to this equation [13,14,15,16,17,33,34,39].

The techniques used here to analyse the RLWE can also be applied to the
closely related Korteweg-de Vries equation. Well-posedness of problems that
can be stated for this equation is still a topic of active investigation. Under
the condition of spatial periodicity, the Cauchy problem for the KdV equation
was recently proved to be locally well-posed in a class of analytic functions
that can be extended holomorphically in a symmetric strip of the complex
plane around the x-axis [18]. While we have proved (section 3) that the width
of the analyticity strip decays at most polynomially, it was shown in [18] that
the uniform radius of spatial analyticity of solutions to the KdV equation does
not shrink as time goes by.

In the limit of high wave speed, power series expansions of travelling-wave
solutions to the RLWE and the KdV equation differ only in minor details.
Thus, upon introduction of the necessary but non-essential modifications (in
particular, β = 2α is now required in the ansatz (30), the simplest case being
α = 1, β = 2), our construction (see section 5) establishes the lack of con-
tinuity of space-periodic travelling-wave solutions to the KdV equation with
respect to small-amplitude forcing. (Other exact travelling-wave solutions to
the KdV equation with external forcing were recently derived, that involve
Jacobi elliptic functions [35,24]; see also [12].)

The following problems remain open: Does no shrinking of the width of the
analyticity strip occur for solutions to the RLWE as this happens for space-
periodic solutions to the KdV equation? We have not proved convergence
of the asymptotic power series that we have constructed for travelling-wave
solutions in sections 3 and 6; do they converge? Are evolutionary solutions
to the RLWE analytic in time? For the sake of completeness, one would like
to extend our results on existence of travelling waves to cover the case of
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the absence of damping (d = 0). Finally, we have not studied stability of
our travelling-wave solutions to short- or large-scale perturbations; while the
former problem can be addressed numerically, the latter one can be tackled
by using the homogenisation methods similar to those employed in the study
of the large-scale magnetic field generation [44].

Another extension of our work would be an investigation of the shallow-water
wave equation proposed by Camassa and Holm [6], which could be modified
by adding linear damping and external forcing.
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