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Abstract –Transition to hyperchaotic regimes in Rayleigh-Bénard convection in a square period-
icity cell is studied by three-dimensional numerical simulations. By fixing the Prandtl number at
P = 0.3 and varying the Rayleigh number as a control parameter, a bifurcation diagram is con-
structed where a route to hyperchaos involving quasiperiodic regimes with two and three incom-
mensurate frequencies, multistability, chaotic intermittent attractors and a sequence of boundary
and interior crises is shown. The three largest Lyapunov exponents exhibit a linear scaling with
the Rayleigh number and are positive in the final hyperchaotic attractor. Thus, a route to weak
turbulence is found.

Introduction. – Thermal convection refers to the
motion of a heat-conducting fluid due to the presence of
temperature differences. Convective flows are of interest
in many areas ranging from technological processes (cool-
ing of electronic devices, drying, material processing) to
natural phenomena (convection in the terrestrial atmo-
sphere, oceans, mantle, outer core and stellar convection).
Origin of magnetic fields of many astrophysical objects
is explained in the framework of the dynamo theory [1],
where magnetic fields are generated by convective motions
of electrically conducting fluids in their interior; chaotic
convective flows play an important role in the fast dynamo
theory.

Thermal convection in the dimensionless form is char-
acterised by the Rayleigh number (Ra), that measures the
magnitude of thermal buoyancy force, and the Prandtl
number (P ), the ratio of kinematic viscosity to thermal
diffusivity. In the context of Astrophysics, values of the
Prandtl number vary from small (for the solar convec-
tive zone, P ∼ 10−7 [2]) to large (for mantle convection,
P ∼ 1023 [3]) values. The Prandtl number for the terres-
trial outer core has intermediate values estimated to be
between 0.1 and 0.5 [4, 5], however, in many terrestrial
convective dynamo simulations a larger value (P ∼ 1) is
employed (see, e.g., [6] and references therein) using the
argument that it expresses the “effective” or ”turbulent”
value of the diffusivity [7].

In the dynamo theory, interest in the use of realistic val-

ues for the Prandtl number was enhanced by the following
findings. Varying the value of the Prandtl number from 0.1
to 10 was found to have a strong influence on the morphol-
ogy and dynamics of convection in the Earth’s outer core
[8]. Strong dependence of the magnetic fields generated
by convective flows on the value of the Prandtl number
was found for 0.2 ≤ P ≤ 5 [9]. In [10], moderately low
Prandtl numbers were beneficial for magnetic field gen-
eration in rotating spherical shells and special attention
was devoted to dynamos for P = 0.1. Analysis of the
kinematic dynamo problem in [11] showed that convective
attractors for P = 0.3 are beneficial for the magnetic field
generation (in comparison to the attractors for P = 1 and
6.8).

Most of the convective flows in nature are turbulent.
Thermal convection in a plane horizontal layer, called
Rayleigh-Bénard convection, has been used for decades
as one of the simplest examples of realistic hydrodynamic
systems driven out of equilibrium where the simple flow
becomes complex (turbulent) in a variety of bifurcation se-
quences, revealing different mechanisms of instability and
demonstrating many common nonlinear dynamics phe-
nomena, e.g., spontaneous symmetry breaking, pattern
formation, intermittency, synchronisation, etc. (for a re-
view, see [12,13]). A common approach to study transition
to turbulence in the framework of the dynamical systems
theory is to study the evolution from simple non-chaotic
(steady, time-periodic and quasiperiodic) attractors of the
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convective system to the chaotic ones. In chaotic attrac-
tors, trajectories are sensitive to initial conditions, i.e.,
initially close trajectories diverge in time, which is quan-
titatively characterised by the Lyapunov spectrum. Tur-
bulent systems usually display hyperchaos, i.e., more than
one positive Lyapunov exponent.

There is a wide range of works on bifurcation analysis
of Rayleigh-Bénard convection as a function of Ra and P ,
most of which are devoted to the formation and destabil-
isation of steady planar convective rolls [14–17] and tran-
sition to chaos [11, 18]. In [19], a bifurcation diagram
is presented where a series of steady states representing
different patterns is numerically obtained as a function
of Ra in a small cylindrical domain. Also in cylindri-
cal domains, hyperchaotic states were found in studies of
spiral defect chaos using simulations of three-dimensional
Rayleigh-Bénard convection, where the spectrum of Lya-
punov exponents was used to quantify extensivity in spa-
tiotemporal chaos [20,21].

Still regarding transition to hyperchaos in Rayleigh-
Bénard convection, in [22], a square periodicity cell with
aspect ratio L = 2

√
2 and stress-free boundaries was stud-

ied for P = 6.8 in two-dimensional convection for Ra
up to 32875 using a low-dimensional model (16 Fourier
modes); the sequence of regimes is as follows: time-
periodic, quasiperiodic with two basic frequencies, phase-
locked (periodic) and then chaotic state (some of the
chaotic states are hyperchaotic with two positive Lya-
punov exponents).

In this letter we study the transition to hyperchaotic
regimes (also referred to as transition to weak turbulence
[23]) in three-dimensional Rayleigh-Bénard convection for
P = 0.3 in a square convective cell for Ra increasing from
1720 (time-periodic state) to 2500 (hyperchaotic state).
We show that a sequence of crises involving quasiperiodic
and chaotic attractors, as well as chaotic saddles, is re-
sponsible for the evolution of the attractors of the system
from periodic convective states to hyperchaos with at least
three positive Lyapunov exponents.

Statement of the problem and solution. – A
Newtonian fluid flow in a horizontal plane layer is con-
sidered, where the fluid is uniformly heated from below
and cooled from above. Fluid flow is buoyancy-driven and
the Boussinesq approximation is assumed. We adopt the
vertical size of the layer as a length scale, the vertical heat
diffusion time as a time scale, and the vertical temperature
gradient as a temperature scale. Then, in a Cartesian ref-
erence frame with the orthonormal basis (e1, e2, e3), where
e3 is opposite to the direction of gravity, the equations
governing the convective system are (see, e.g., [15]):

∂v/∂t = P∇2v + v × (∇× v) + PRaθe3 −∇p, (1)

∂θ/∂t = ∇2θ − (v · ∇)θ + v3, (2)

∇ · v = 0, (3)

where v(x, t) = (v1, v2, v3) is the fluid velocity, p(x, t) the
pressure, and θ(x, t) = T (x, t)− (T1 + (T2 − T1)x3) is the

difference between the temperature T and its linear profile.
Temperatures of the horizontal boundaries at the bottom,
T1, and top, T2, are maintained constant, with T1 > T2.
Here, the spatial coordinates are x = (x1, x2, x3) and t
stands for time. The non-dimensional parameters are the
Prandtl number, P , and the Rayleigh number, Ra.

The horizontal boundaries of the layer are assumed to be
stress-free, ∂v1/∂x3 = ∂v2/∂x3 = v3 = 0, and maintained
at constant temperatures, θ = 0. A square convective cell
is considered, x ∈ [0, L]2 × [0, 1], and all the fields are pe-
riodic in the horizontal directions, x1 and x2, with period
L. The linear theory [14] suggests that at the onset of
convection in an infinite layer (Rac=657.5 for the bound-
ary conditions under consideration) the critical horizontal
wavenumber is π/

√
2, independently of the Prandtl num-

ber; here, L = 4 is taken, hence the most unstable mode
at the onset is aligned with the diagonal of the cell.

Following [11], we studied attractors of the convective
system for P = 0.3 and 1720 ≤ Ra ≤ 2500. The attrac-
tors were obtained integrating the system in time starting
from an attractor for a neighboring value of Ra (in most
cases located at distance 10); the first 1500 eddy turnover
times of the largest eddies were disregarded as transients.
To check if multiple attractors co-exist, for several values
of Ra the problem was solved for four initial conditions
defined by random Fourier coefficients of v and θ with ex-
ponentially decaying spectrum and the following values of
kinetic energy: Ev(0) = 1, 100, 400, 2500.

For a given initial condition, the system under consid-
eration is integrated numerically forward in time using
the standard pseudospectral method [24]: the fields are
represented as Fourier series in all spatial variables (ex-
ponentials in the horizontal directions, sine/cosine in the
vertical direction), derivatives are computed in the Fourier
space, multiplications are performed in the physical space,
and Orszag’s 2/3-rule is applied for dealiasing. The sys-
tem of ordinary differential equations for the Fourier co-
efficients is solved using the third-order exponential time-
differencing method ETDRK3 [25] with constant time step
∆t = 5 · 10−4. The spatial resolution was chosen to be
32× 32× 16 Fourier harmonics (multiplications were per-
formed on a uniform 48× 48× 24 grid). For all solutions,
the time-averaged energy spectra of the velocity decay at
least by 5 orders of magnitude. For each branch of at-
tractors, several runs with doubled spatial and temporal
resolution showed no qualitative difference.

The three largest Lyapunov exponents, λ1 ≥ λ2 ≥ λ3,
were computed using the technique described in [26], with
recourse to the operator of linearisation of the governing
equations (1)–(3) and the Gramm-Shmidt orthonormali-
sation. Translational invariance of the convective system
in the horizontal directions gives rise to two vanishing Lya-
punov exponents, which were disregarded in computations
by removing the corresponding components of the pertur-
bations (note that for non-steady attractors at least one
vanishing Lyapunov exponent remains since eqs. (1)–(3)
are an autonomous system). According to the general the-
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Fig. 1: Time-averaged kinetic energy versus Rayleigh number
of the attractor families. IC denotes an interior crisis, H a Hopf
bifurcation.

ory [27], for a stable limit cycle (time-periodic attractor)
λ1 = 0, λ2, λ3 < 0; for a k-torus (quasi-periodic attrac-
tor with k basic frequencies) the largest k Lyapunov ex-
ponents vanish; chaotic and hyperchaotic attractors are
characterised by at least one and two positive Lyapunov
exponents, respectively.

In our computations we traced the kinetic energy,

Ev(t) =
∫ L

0

∫ L

0

∫ 1

0
v2dx/(2L2), as well as the Fourier har-

monics of the flow velocity, v̂k(t) = (v̂1k, v̂
2
k, v̂

3
k), for some

wave vectors, k = (k1, k2, k3). Poincaré sections were
constructed for the Fourier harmonic of the fluid velocity
for k = (1, 1, 1) on the quadrant (|v̂1k|, |v̂2k|), where inter-
section of the trajectory with the plane |v̂3k| = 0.25 was
considered. Using the solenoidality condition (3) for the
Fourier coefficient v̂1,1,1 and the inequalities |z1| − |z2| ≤
|z1 + z2| ≤ |z1|+ |z2|, ∀z1, z2 ∈ C, one proves that all the
points on the Poincaré section belong to the semi-infinite
strip ||v̂11,1,1| − |v̂21,1,1|| ≤ 0.5, |v̂11,1,1| + |v̂21,1,1| ≥ 0.5. Ab-
solute values eliminate drifting frequencies from consider-
ation. On the Poincaré section, a time-periodic attractor
and a 2-torus appear as a finite set of points and a curve,
respectively.

Results. – In what follows, attractors of the convec-
tive system for 1720 ≤ Ra ≤ 2500 are discussed. This
range of Ra was also considered in [11], where bifurca-
tions of the convective attractors were studied for 657.5 ≤
Ra ≤ 2500, with transition to chaotic attractors following
the sequence: periodic-quasiperiodic-chaotic. However, no
detailed study of the chaotic attractors was performed. In
the present letter, results of a detailed analysis of the tran-
sition to chaos are reported. Branches of attractors found
for different intervals of Ra are shown in fig. 1.

Attractors of the branch A1 are periodic states, exist-
ing for 1720 ≤ Ra ≤ 1780, and are symmetric at any
time with respect to rotation about the vertical axis by
π/2. On increasing Ra, the symmetry is broken and the
branch A2 of time-periodic states (with trivial symmetry
group) drifting along the horizontal directions emanates.
Although the convective regimes constituting A2 are for-
mally quasiperiodic, for simplicity, we classify them as pe-

Fig. 2: Kinetic energy evolution and the Poincaré section for
the quasiperiodic attractor at Ra=2075 from the family A3.
Left panel: kinetic energy Ev versus time; right panel: Poincaré
section defined by |v̂31,1,1| = 0.25 on the (|v̂11,1,1|, |v̂21,1,1|) quad-
rant.

riodic (also referred to as relative periodic orbits [28]) since
they are periodic in a co-moving reference frame. In what
follows, we ignore drift frequencies when classifying an at-
tractor as periodic or quasiperiodic.

A branch of quasiperiodic attractors, A3, exists for
2075 ≤ Ra ≤ 2130, with three basic frequencies (the
Poincaré plane shown on fig. 2 confirms that the regime
has at least three incommensurate frequencies). We have
also checked that for all attractors from this branch all the
three largest Lyapunov exponents vanish.

Coexisting with A2, there is a family of quasiperiodic
and chaotic attractors denoted by B1 which, on increasing
Ra, gains stability at Ra=1880. For 1880 ≤ Ra ≤ 1900 the
attractors in this family are quasiperiodic with two basic
(incommensurate) frequencies (see fig. 3 (a)). On increas-
ing Ra a period doubling bifurcation occurs, cf. fig. 3
(a) and (b), whereby the lowest frequency is halved; this
quasiperiodic attractor exists in 1910 ≤ Ra ≤ 1980. As Ra
is increased further, a sequence of chaotic and quasiperi-
odic regimes is observed: for Ra=1990 the convective at-
tractor is chaotic (fig. 3 (c)); for Ra=2000 it is quasiperi-
odic (fig. 3 (d)); for 2010 ≤ Ra ≤ 2040 regimes are chaotic;
for Ra=2050 they are quasiperiodic (fig. 3 (h)) and finally,
for 2060 ≤ Ra ≤ 2070 they are chaotic (fig. 3 (i) and (j)).
Measurements of the three largest Lyapunov exponents re-
veal that all chaotic attractors in this sequence have one
positive and two small in modulus Lyapunov exponents.
Although the identification of each bifurcation occurring
in this interval is out of the scope of our study, we note
that i) windows of quasiperiodicity can be attributed to
frequency locking [27], ii) some chaotic attractors in the
sequence display intermittent behaviour, i.e., irregular en-
ergy bursts (see fig. 3 (f) for 200 ≤ t ≤ 350 and fig. 3 (j) for
40 ≤ t ≤ 110) randomly occur on the relatively “smooth
background” reminiscent of regimes shown on fig. 3 (g)
and (i).

For 2073 ≤ Ra ≤ 2080, the family B1 gives rise to an
attractor (B2) displaying “in-out” intermittent behaviour
[29], i.e., the trajectory switches irregularly in time be-
tween two main states, one is a time-periodic state corre-
sponding to the destabilized A2, the other is chaotic, cor-
responding to the destabilized B1. Fig. 4 shows the time
series, Poincaré sections and velocity profiles for the at-
tractor at Ra=2075; the trajectory in the phase space vis-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 3: Kinetic energy evolution and the Poincaré section for
the attractors of the family B1 for Ra=1880 (a), Ra=1910 (b),
Ra=1990 (c), Ra=2000 (d), Ra=2010 (e), Ra=2035 (f),
Ra=2040 (g), Ra=2050 (h), Ra=2060 (i), Ra=2070 (j). The
axes are as in fig. 2.

its the periodic state at 0 ≤ t ≤ 200 and 2100 ≤ t ≤ 3200.

(a) (b) (c)

(d) (e)

Fig. 4: Kinetic energy evolution, the Poincaré sections and
the vertival velocity profiles for the intermittent attractor at
Ra=2075. On the top and (a) panels the same as on fig. 2
is shown. Points from (a) for the trajectories intersecting the
Poincaré plane for 400 ≤ t ≤ 1900 (b) and 2500 ≤ t ≤ 3000 (c).
Four open circles in (c) show where the stable periodic orbit
for Ra=2055 from branch A2 intersects the Poincaré plane.
Isolines of v3 on the horizontal mid-plane x3 = 1/2 are shown
for t = 1200 (d) and t = 2750 (e) (solid and dashed lines stand
for positive and negative values, respectively).

Thus, B2 is formed by a crisis-like event involving the pre-
viously destabilized A2 and B1. However, a comparison
between the right panel of fig. 3 (j) and fig. 4 (a) reveals
that B2 is larger than the union of A2 and B1. The miss-
ing component can be found from a set of initial condi-
tions displaying chaotic transients for Ra < 2073. This
set constitutes a chaotic saddle (CS), i.e., a nonattract-
ing chaotic set responsible for chaotic transients [30, 31].
Figs. 5(a) and (b) reveal the kinetic energy time series
of two initial conditions at Ra=2070. Both trajectories
exhibit chaotic behavior for about 100 time units, before
they escape from the chaotic region toward the destabi-
lized A2. Later, the same trajectories will converge to
attractor B1. The Poincaré plot for the union of the tran-
sient parts of both series is shown on fig. 5 (c) and resem-
bles the Poincaré plots of figs. 4 (b) and (c). From all this
information, we conjecture the following scenario. Attrac-
tor A2 is destabilized in a boundary crisis at Ra≈2055 af-
ter a collision with CS, a chaotic saddle lying on the basin
boundary between A2 and B1. The unstable set formed
by the union of CS and the destabilized A2, then, collides
with B1 at an interior crisis at Ra≈2073 (IC1 in fig. 1),
leading to the intermittent attractor B2, where trajecto-
ries alternate between phases where A2, CS and B1 can be
identified. The highest energy bursts in fig. 4 correspond
to CS.

On increasing Ra, the intermittent attractor loses its
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(a) (c)

(b)

Fig. 5: Kinetic energy evolution of transients for Ra=2070 ((a)
and (b)) and Poincaré section for the transients (c). These
transients are in the vicinity of a chaotic saddle in the phase
space. The axes are as in fig. 2.

Fig. 6: Kinetic energy evolution for the attractors of the family
B3 for Ra=2140 (top panel) and Ra=2200 (bottom panel).

stability, and trajectories for 2090 ≤ Ra ≤ 2130 are at-
tracted to A3. However, chaotic transients reminiscent of
the intermittent attractor B2 remain all throughout this
interval as a signature of a chaotic saddle in the back-
ground of A3. For Ra ≥ 2140, the stability of A3 is lost,
and a new chaotic attractor, B3, rises as (apparently) the
sole attractor in the system. This attractor resembles B2

and the chaotic saddle (cf. the kinetic energy evolution for
Ra=2075 from B2 in fig. 4, and for Ra=2140 and Ra=2200
from B3 in fig. 6). In the intermittent regimes of B3, the
time spent near a state with regular behaviour is shorten-
ing for increasing Ra (cf.regimes at Ra=2140, top panel
of fig. 6, and at Ra=2200, bottom panel of fig. 6). Note
that some of the regular phases of the intermittency are in
the region previously occupied by A3. This corroborates
another interior crisis scenario (IC2 in fig 1), whereby at-
tractor A3 collides with the background chaotic saddle to
form an enlarged chaotic attractor B3, where intermittent
switches between the former A3 and the chaotic saddle
take place. Such crisis-induced intermittency involving
a destabilized attractor and a surrounding chaotic sad-
dle was reported for a one-dimensional spatiotemporally
chaotic system in [32].

The three largest Lyapunov exponents for the attractors
from branches B1 and B3 of fig. 1 are shown in fig. 7 as
a function of Ra. Hyperchaos with at least three positive
Lyapunov exponents is observed after the interior crisis of
B3. Note the linear scaling of the exponents with Ra, a
feature that has been observed in Rayleigh-Bénard con-
vection near the onset for the first exponent as a function
of the reduced Rayleigh number by [33]. The gap between

Fig. 7: The three largest Lyapunov exponents (vertical axis)
for the attractors of the families B1 and B3.

B1 and B3 is filled by a chaotic saddle that evolves from
the destabilized B1. Although we have not computed the
Lyapunov exponents of the chaotic saddle due to its re-
pelling nature, we believe it should show a continuation of
the linear scaling observed in fig. 7.

Conclusions. – We have shown that the evolution
from periodic convective states to hyperchaos in Rayleigh-
Bénard convection for P = 0.3 occurs through a sequence
of local and global bifurcations as the Rayleigh number
is increased, including three crises. First, a quasiperiodic
attractor A2 coexisting with another attractor B1 collides
with a chaotic saddle (CS) in the basin boundary and loses
stability due to a boundary crisis. Evidence for this is
based on A2 becoming transient and the disappearance
of its basin of attraction. Then, the newly formed chaotic
saddle (CS + destabilized A2) collides with the chaotic at-
tractor B1 in an interior crisis (IC1) leading to an enlarged
attractor B2. The evidence is the intermittent switching
between B1, CS and A2. Next, attractor B2 is destabilized
and generates a chaotic saddle surrounding a quasiperiodic
attractor A3 (evidenced by B2 becoming transient and the
destruction of its basin of attraction). Finally, A3 collides
with the surrounding chaotic saddle in another interior cri-
sis (IC2), which is evident from the intermittent switching
between A3 and CS in the time series. The enlarged at-
tractor B3 exhibits hyperchaos with at least three positive
Lyapunov exponents.

Although strictly speaking a crisis is a collision of a
chaotic attractor with a saddle invariant set [34], in a more
general definition, a crisis can be described as a collision
between any attractor and a saddle-type invariant set [35].
In the present letter, two of the identified crises involve the
collision of a quasiperiodic attractor and a chaotic saddle.

There is surprising similarity between our results and
the route to chaos found in [22], where two-dimensional
Rayleigh-Bénard convection was studied for P = 6.8.
However, the attractors found ibid. are of a limited in-
terest in hydrodynamics, because two-dimensional convec-
tive flows for the considered value of P are stable only in
a narrow window of parameter values [16, 17]. They are
also not useful in the dynamo theory, since magnetic field
generation by a planar flow is impossible by virtue of the
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Zeldovich antidynamo theorem (see [1] for details). Note
that our results also have some correlation with the bi-
furcation diagram shown in [36] for zero Prandtl number
near the onset of convection, where stationary, oscilating
and chaotic regimes are found, although no hyperchaos
was reported then, probably due to the low values of Ra.
Intermittent and chaotic waves were also found in [37] for
P = 0.2 as well as P = 0, with both free-slip and no-slip
boundary conditions for small aspect ratio geometries.

Experimental verification of some bifurcations reported
here have been found in the past for Rayleigh-Bénard con-
vection, such as abrupt transitions from quasiperiodic to
chaotic attractors [38], a route to chaos via intermittency
[39], and quasiperiodic attractors with three basic frequen-
cies [40].

Regarding future works, note that we have not fully
characterised all bifurcations presented and, in particular,
the destabilisation of B2 (supposedly another boundary
crisis) was not investigated. Additionally, we do not claim
to have found all the attractors present in the range of
Ra studied. Continuing the line of research started in
[11, 41, 42], we plan to add rotation and magnetic field,
whereby one can study mechanisms of the convective elec-
tromagnetic processes in the liquid outer core of the Earth.
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[19] Borońska K. and Tuckerman L., Phys. Rev. E, 81
(2010) 036321.

[20] Egolf D., Melnikov I., Pesch W. and Ecke R., Na-
ture, 404 (2000) 733.

[21] Karimi A. and Paul M., Phys. Rev. E, 85 (2012) 046201.
[22] Paul S., Wahi P. and Verma M. K., Int. J. Nonlinear.

Mech., 46 (2011) 772 .
[23] Manneville P., Rayleigh-Bénard convection: thirty

years of experimental, theoretical, and modeling work in
Dynamics of spatio-temporal cellular structures, edited by
Mutabazi I., Wesfreid J. E. and Guyon E., (Springer)
2006 pp. 41–65.

[24] Canuto C., Hussaini M., Quarteroni A. and Zang
T., Spectral Methods: Fundamentals in Single Domains
(Springer) 2006.

[25] Cox S. M. and Matthews P. C., J. Comput. Phys., 176
(2002) 430.

[26] Hramov A. E., Koronovskii A. A., Maximenko V. A.
and Moskalenko O. I., Phys. Plasmas, 19 (2012)
082302.

[27] Ott E., Chaos in Dynamical Systems (Cambridge Uni-
versity Press) 2002.

[28] Chossat P. and Lauterbach R., Methods in Equivari-
ant Bifurcations and Dynamical Systems (World Scien-
tific) 2000.

[29] Covas E., Tavakol R., Ashwin P., Tworkowski A.
and Brooke J., Chaos, 11 (2001) 404.

[30] Hsu G.-H., Ott E. and Grebogi C., Phys. Lett. A, 127
(1988) 199.

[31] Rempel E. L., Chian A. C.-L., Macau E. E. N. and
Rosa R. R., Physica D, 199 (2004) 407.

[32] Rempel E. L. and Chian A. C.-L., Phys. Rev. Lett., 98
(2007) 014101.

[33] Jayaraman A., Scheel J. D., Greenside H. S. and
Fischer P. F., Phys. Rev. E, 74 (2006) 016209.

[34] Grebogi C., Ott E., Romeiras F. and Yorke J. A.,
Phys. Rev. A, 36 (1987) 5365.

[35] Witt A., Feudel F. and Pikovsky A., Physica D, 109
(1997) 180.

[36] Pal P., Wahi P., Paul S., Verma M. K., Kumar K.
and Mishra P. K., Europhys. Lett., 87 (2009) 54003.

[37] Thual O., J. Fluid Mech., 240 (1992) 229.
[38] Swinney H. and Gollub J., Physics Today, 31 (1978)

41.
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