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Abstract

Convective instabilities of viscous conducting fluids play an important role in many physical phenomena in planets and stars. Astro-
physical magnetic fields are usually explained in a framework of the dynamo theory, describing transformation of the kinetic energy of a
flow into magnetic energy. Therefore, an analysis of purely convective states and their bifurcations, as a control parameter is changed,
provides a detailed framework for the subsequent study of magnetic field generation by these states. In this paper, three-dimensional
Rayleigh-Bénard convection in the absence of magnetic field is investigated numerically for various values of the Rayleigh number
and a fixed Prandtl number (corresponding to its value for convection in the Earth’s outer core). On increasing the Rayleigh number,
we identified periodic, quasiperiodic, chaotic and hyperchaotic attractors of the convective system and their bifurcations, thereby describ-
ing a route to spatiotemporal chaos in the convective system. The occurrence of on—off intermittency in the energy time series is
discussed.
© 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction on some properties of the velocity field, that should be able
to stretch, twist and fold the magnetic field lines in such

Thermal convection is one of the most efficient and  way that magnetic flux is increased (Childress and

widespread mechanisms of mass and energy transport in
fluids, acting in the terrestrial atmosphere as well as in
the interior of planets and stars. Solar convection is respon-
sible for the formation of fluid cells observable as granular
patterns in the photosphere (Chian and Kamide, 2007).
Convective flows with a strong shear in the solar convec-
tion zone are believed to be responsible for intensification
of the magnetic flux (Brandenburg and Subramanian,
2005). Efficiency of this amplification mechanism relies
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Gilbert, 1995). Terrestrial magnetic fields are also gener-
ated by convective flows of a conducting fluid in the liquid
outer core (Riidiger and Hollerbach, 2004).
Rayleigh-Bénard (R-B) convection refers to the motion
of a viscous fluid in a plane horizontal layer heated from
below in a gravitational field with a vertical temperature
gradient. It has been extensively studied due to the feasibil-
ity of both analytical, numerical and experimental treat-
ments (Chandrasekhar, 1961; Bodenschatz et al., 2000).
For over a century, R-B convection has been explored
for pattern formation in systems outside of equilibrium
(Bénard, 1901; Cross and Hohenberg, 1993). It is also the
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simplest framework to explain the formation of convective
patterns in astro- and geophysics (Fowler, 2005).

Control parameters in R—B convection are the Rayleigh
number, R, measuring the magnitude of the thermal
buoyancy force, and the Prandtl number, P, the ratio of
kinematic viscosity to thermal diffusivity. Values of these
parameters identify properties of the convective flow,
therefore regions in the two-dimensional parameter space
are used to describe instabilities, pattern formation, sym-
metry breaking and transition to turbulence in convection.

The dynamical systems theory and the bifurcation the-
ory have been used to explain transition to turbulence in
the R-B convection since Edward Lorenz’s reduced model
(Lorenz, 1963). Its chaotic behavior, characterized by irreg-
ular time dynamics, sensitivity to initial conditions and
presence of a positive Lyapunov exponent, was a first step
towards a dynamical systems description of a turbulent
flow. The Lyapunov exponents measure the average expo-
nential rate of growth/shrinkage of initially close trajecto-
ries in the phase space. Variating a control parameter of
a hydrodynamic system towards turbulent flows, one
expects the system to become progressively more irregular
in time and space, in a state with more than one positive
Lyapunov exponent — hyperchaotic state (Rossler, 1979).
Hyperchaos was found in generalized Lorenz systems
(Zhou et al., 2008; Macek and Strumik, 2014). In a more
realistic setup, Paul et al. (2011) detected hyperchaos in a
reduced model of the R-B convection, for two-
dimensional flows and keeping only 14 complex and 2 real
Fourier modes of the solution. Hyperchaotic states were
also found in studies of spiral defect chaos using simula-
tions of three-dimensional R-B convection in cylindrical
domains (Egolf et al., 2000; Paul et al., 2007; Karimi and
Paul, 2012). The spectrum of Lyapunov exponents was
used ibid. to compute the fractal dimension of the underly-
ing convective state, by this means quantifying the exten-
sive spatiotemporal chaos and studying dependence of
the number of dynamical degrees of freedom on the size
of the system.

In the present paper, results of a study on transition to
hyperchaos in R-B convection in hydrodynamics are
reported. The Prandtl number is fixed at P = 0.3 and the
Rayleigh number is varied as a control parameter. This
value of P is interesting for the study of the geodynamo,
since in the outer core P is estimated to be between 0.1
and 0.5 (Olson, 2007; Fearn and Roberts, 2007). We follow
the works by Podvigina (2006, 2008), where several attrac-
tors and bifurcations of the convective system in the same
range of parameters were identified. The paper is organized
as follows. In Section 2, equations governing the convective
system, boundary conditions and numerical methods are
presented. In Section 3, attractors of the convective system
for increasing values of the Rayleigh number are presented
and an observed route to spatiotemporal chaos is dis-
cussed. Here, we employ the term spatiotemporal chaos
to denote hyperchaos in a spatially extended dynamical
system. The conclusions are given in Section 4.

2. The model

A newtonian incompressible fluid is confined between
two infinite horizontal planes in a square periodic cell
D =[0,L]* x [0, 1], see Fig. 1. The fluid is uniformly heated
from below. Temperatures at the bottom, 7', and the top,
T,, planes are fixed, with 7, > T,. Under the Boussinesq
approximation, considering the vertical size of the fluid
container d as a length scale, the vertical heat diffusion time
1, = d* /K as a time scale, and the vertical temperature gra-
dient 07 as a temperature scale, the dynamics of three-
dimensional R-B convection in a plane layer is governed,
in a dimensionless form, by Chandrasekhar (1961) and
Getling (1998) the Navier-Stokes equation,

%:Pvzv—&—vx(va)—i—PRE)ez—Vp, (1)
the heat transfer equation,

0
90 _ g - (v- V)0 + o, (2)
ot
and the incompressibility condition,
V.v=0, (3)

where v(x, ¢) is fluid velocity, p(x,¢) the modified pressure
and 0(x,t) = T(x,t) — (T + (T, — T1)z) is the difference
of the temperature and its linear profile. The dimensionless
parameters are the Prandtl number P (representing the
material properties of the fluid),
p=",
K
and the Rayleigh number R (representing the magnitude of
the buoyancy force),
3
R ogoTd 7
VK

with g representing the gravitational acceleration, v, k and
o the kinematic viscosity, thermal diffusivity and thermal
expansion coefficients, respectively.

The horizontal boundaries (non-deformable and imper-
meable by the fluid), defined by z = 0 and z = 1, are held at

constant temperatures,
T(X7t)|z:0 = T17 T(X) t)|z:1 = T27 Tl > T27

ie.,

&
<€

y L 0

Fig. 1. Computational domain for the horizontal plane layer.
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0(x, )], = 0(x,7)|._, = 0.
The fluid flow is stress free on the horizontal boundaries,
v _ 0oy _

9z 0z
and periodicity in the horizontal directions with the same
period L is assumed,

v, =0,

v(x,3,2) =V(x +mL,y +nL,z),
0(x,y,2) = O(x + mL,y +nlL, z),

p(x,y,z) =plx+mL,y+nL,z), Vm,n¢€Z.

Egs. (1)-(3) are solved numerically by applying the pseu-
dospectral method (Boyd, 2000), in which all fields are rep-
resented in the form of truncated Fourier series, e.g., the
velocity field,

N2-1 N1 NJ2
v, = Z Z ﬁ/i,ky,kz(t) 2milkex-thyy) /L f 17

J
ky=—N/2+1k,=—N [2+1k;=0
j = x7 y7 Z7

where f* = f7 = cos(nk,z) and f* = sin(nk.z). The vector
notation for the Fourier coefficients and wave vectors,

Vi = (550,50 (1),B2(0)), k= (k. ky k),

is used in what follows. Upon substitution of the series into
(1)—(3), the resulting ODEs for the Fourier coefficients are
solved by the third-order exponential time differencing
method ETDRK3 (Cox and Matthews, 2002) with a con-
stant time step.

3. Results

The convective system is studied for values of the Ray-
leigh number varying from 1720 to 2500, while the other
parameters were fixed: P = 0.3 and L = 4. We computed
the kinetic energy

1 L L 1 1
E,=— / / / —v* dx,
L*Jo Jo Jo 2

and the kinetic energy spectrum,

1 .
ZOEDIEINE
eCy
where the spherical shells C, in the Fourier space are
defined as

C,={k:n—1<|k|<n}, neN.

Spatial resolution of 32 x 32 x 16 Fourier harmonics was
employed (the nonlinear terms were evaluated on a uni-
form 48 x 48 x 25 grid to eliminate the aliasing error);
the kinetic energy spectra for all the attractors decreases
at least by 5 orders of magnitude. We checked that dou-
bling the spatial resolution does not significantly affect
the solution (see the time-averaged kinetic energy spectra
for the velocity field of the attractor at R = 2500 shown
on Fig. 2).
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Fig. 2. Time-averaged kinetic energy spectrum, (E,(n)), (vertical axis) of
the flow for the hyperchaotic attractor R = 2500 computed with spatial
resolution of 32 x 32 x 16 (black dotted line) and 64 x 64 x 32 (red solid
line) Fourier harmonics. Horizontal axis: spherical shell number, n. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. (a) Snapshot of streamlines and the absolute value of the velocity
field and (b) isosurface of the absolute value of the velocity field (defined
by isovalue — 17) for the hyperchaotic attractor at R = 2500.
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Fig. 4. Bifurcation diagram of attractors found for 1720 < R < 2500.
Intervals of existence and values of kinetic energy are given in Table 1.

In the considered range of R, all asymptotically stable
solutions (attractors) are of the form of deformed rolls,
see e.g., the attractor for R = 2500 on Fig. 3.

The convective attractors found are represented on the
schematic bifurcation diagram of Fig. 4. The solid lines
represent stable convective states and the dashed lines,
unstable states. For some intervals in R two attractors of
different type coexist, i.e., the asymptotic behavior of a
solution depends on the initial conditions. The intervals
of R where each attractor appears/disappears, as well as
their time-averaged kinetic energy along the intervals is
found in Table 1.

To classify the regimes, the three largest Lyapunov
exponents A; = 1, = 43 were computed by the method
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Table 1
Branches of attractors of the convective system for 1720 < R < 2500. The
last column presents the time-averaged kinetic energy.

Label Type Interval of existence (Ev)

PA Periodic 1720 < R < 1780 69-73
QPALl Quasiperiodic 1790 < R < 2055 74-91
Al Quasiperiodic/chaotic 1880 < R < 2070 89-110
ITMA Chaotic (intermittent) 2073 < R < 2080 92-94
QPA2 Quasiperiodic 2075 < R < 2130 92-99
HCA Hyperchaotic 2133 < R < 2500 110-150

4

N

0 200 400
Time

0

Fig. 5. Space-time evolution of the vertical averages of v, for the
quasiperiodic attractor QPA1 at R = 1795.

described in Hramov et al. (2012), using linearization of the
governing Egs. (1)—(3). Positive values of the Lyapunov
exponents indicate exponential divergence of nearby initial
conditions. In a p-dimensional phase space system, a

periodic solution has one vanishing Lyapunov exponent
Ay =0and 4, < O0fori=2,...,p. For a quasiperiodic solu-
tion, there are k vanishing Lyapunov exponents corre-
sponding to k-incommensurate frequencies. For a chaotic
attractor, at least one Lyapunov exponent is positive, with
the attractor being called hyperchaotic when it has more
than one positive exponent (Alligood et al., 1997;
Kapitaniak et al., 2000).

For 1720 < R < 1780, the system converges to periodic
attractors (PA) that have one vanishing and two negative
Lyapunov exponents. On increasing R, PA undergoes a
Hopf bifurcation, giving rise to a quasiperiodic attractor,
QPAL1, constituted by a time-periodic regime drifting with
constant speed along a horizontal direction. This can be
seen in Fig. 5, where the vertical (yz) averages of v, are
plotted as a function of time, revealing the traveling waves.
These states are stable for 1790 < R < 2055 and are charac-
terized by 4, =0 and 4; < 0.

Fig. 6 shows the evolution of the kinetic energy (left
panels), the phase space trajectories of the Fourier coeffi-
cient v}, , (upper right panels) and absolute values, which
eliminates drift frequencies, |[3, ,|| versus [[v3, ,]| (bottom
right panels) for both PA and QPAIl. For Fig. 6(a), the
evolution of the kinetic energy and projections of 73,
(Re(v3, ,),Im(v3 ,)) are periodic in time. A closed curve
is observed (right-bottom panel) for the periodic attractor
PA. The energy time series of QPA1 (left panel in Fig. 6
(b)) masks the quasiperiodicity of the attractor but a torus

(a) 74

73.5

73

<0.02} g
0.04 1 E
I -0.06 ; ;

0.03

0,02} "
0.01} ™~

500 502 504 506

508 510 0 001 0.02 0.03

73.5

003

! Y
ok e g

. ! . ! X |
7900 502 504 506

568 510 0 0.01 0.02 0.03

98-

(©)

96

94

92~

T . 0.3

. | . | . |
500 502 504 506

! ‘ il § :
508 510 I .04

Fig. 6. Kinetic energy time series (left panel), projection of real and imaginary parts of the harmonic 5, (upper right) and absolute value of two
components of the same harmonic (bottom right) for (a) R = 1780, (b) R = 1795 and (c) R = 2075.
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is identified when a projection of the harmonic is made in
the laboratory frame (Fig. 6(b), upper right panel). From
the bottom panel of the same figure it can be seen that
QPAL1l is in the same subspace as the PA. Recall from
Fig. 5 that QPAL is a traveling roll. Attractor QPA1 is “de-
stroyed” (actually, it loses stability) in a global bifurcation
called boundary crisis (Grebogi et al., 1987) at R = 2055,
and a transient quasiperiodic behavior is observed for ini-
tial conditions in its region. Fig. 6(c) refers to another
attractor that will be commented later.

For 1880 < R < 2070 the attractor QPA1 coexists with a
family of attractors named Al in Fig. 4. For the branch
Al, a sequence of quasiperiodic and chaotic regimes is
observed, depending on R. For some ranges of R, the first
two exponents are null (quasiperiodic attractors), whereas
in some ranges the first exponent is positive (chaotic attrac-
tors). Windows of quasiperiodic behavior are seen between
regions of chaotic states.

For 2073 < R <€ 2080, a new chaotic attractor, ITMA,
appears. The ITMA displays ‘“‘on-off” intermittent
switches between phases of quasiperiodic (on) and chaotic
(off) behavior, (Fig. 7(a)). A close inspection of the state
space during each phase reveals that this attractor is
formed by a merging of Al and the set resulting from the
“destruction” of QPA1. A quasiperiodic phase of ITMA,
for instance ¢ < 1750, is identified as the destabilized

QPA1 while the chaotic phases, e.g., 5000 < ¢ < 5400, as
the destabilized Al. As an illustration, compare Fig. 7(b),
that shows a portion of the time series for the chaotic phase
of the ITMA at R = 2073, with the Al time series for
R = 2070 shown in Fig. 7(c). Projections of Fourier coeffi-
cients (not shown) were also made to verify the correspon-
dence between the two kinds of phases of ITMA and the
destabilized attractors QPA1 and Al. This scenario sup-
ports an interior crisis (Rempel et al., 2004) as the origin
of ITMA due to the collision of Al and the destabilized
QPAI1. The ITMA undergoes its own boundary crisis at
R =~ 2080, where it is destroyed.

Another quasiperiodic attractor, QPA2, is found for
2075 < R < 2130, where all three computed Lyapunov
exponents vanish. Apparently, it bifurcates from the previ-
ously destabilized QPAI, since both have similar energy
levels and phase space projections, as shown in Fig. 6(b)
and (c). For R = Ryca ~ 2133, QPA2 gives raise to a
hyperchaotic attractor (HCA), with two positive Lyapunov
exponents. Variation of the Lyapunov exponents with R
for attractors QPA1, QPA2 and HCA is shown in Fig. 8.
Note that a third positive Lyapunov exponent appears
for HCA after R =~ 2200. The gap marked by the two ver-
tical dotted lines indicates a region where the HCA is
highly intermittent with switching between two phases with
different Lyapunov exponents.
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Fig. 7. Kinetic energy evolution for ITMA at R = 2075 (a) and a zoom in the chaotic phase for 5000 < ¢ < 5400 (b). In (c) the kinetic energy evolution for
the Al attractor at R = 2070 is presented. The ITMA presents two defined phases related to destabilized attractors QPA1 and Al.
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Fig. 8. The bifurcation diagram of the three largest Lyapunov exponents

for 1760 > R > 2500. The hyperchaotic attractor emerges from an
interior crisis at R = 2133.

It may be odd to see a system discontinuously jumping
from zero to two positive Lyapunov exponents as in
Ryca. However, one has to consider that only the

1445

Lyapunov exponents of the attracting states are being
plotted. Recall that the destabilization of an attractor in
a crisis always transforms a chaotic attractor into a chaotic
transient. To illustrate this, Fig. 9 shows the time series and
phase space trajectories as one decreases R using initial
conditions from the HCA. Fig. 9(a) plots the HCA for
R = 2167. Note the on—off intermittent switching between
phases of small and high energy. For R = 2130 < Ryca
(Fig. 9(b)), there is an initial hyperchaotic transient before
the trajectory settles to QPA2. It is known that nonattract-
ing chaotic sets called chaotic saddles (CS) are responsible
for such chaotic transients (Rempel and Chian, 2007). A
comparison between Fig. 9(a) and (b) indicates that the
intermittent time series of HCA involves switching between
CS and the destabilized QPA2 (red regions in Fig. 9(a)),
which reveals that the transition from QPA2 (red region
in Fig. 9(b)) to HCA occurs via an interior crisis in which
QPA2 collides with the surrounding CS to form HCA.
After the collision, the destabilized QPA2 becomes
embedded in the enlarged chaotic attractor. Fig. 10(a)
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Fig. 9. Kinetic energy time series (left panels) and phase space projections (right panels) of the imaginary part (vertical axes) and real part (horizontal
axes) of Fourier coefficient 5 , for the hyperchaotic attractor at R = 2167 (a), the chaotic transients for R = 2130 (b) and R = 2070 (c). Regions in red are
compared in Fig. 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Phase space projections of the imaginary part (vertical axes) and real part (horizontal axes) of the harmonic 75 | , for the red regions of Fig. 9 for
R =2167 (a), and R = 2130 (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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shows the HCA (black dots) superposed by the destabilized
QPA2 (red dots) for R = 2167. Fig. 10(b) shows the chaotic
transient (black dots) and the stable QPA2 (red dots) for
R = 2130.

The CS exists in the whole R interval between HCA and
ITMA, and even prior to the formation of ITMA. Note in
Fig. 9(c) that it is responsible for chaotic transients for
R =2070, where the trajectory eventually converges to
Al. Thus, the dotted lines CS to the left and to the right
of ITMA in Fig. 4. Although we have not computed the
Lyapunov exponents of the CS due to its repelling nature
which impairs the direct computation of long time aver-
ages, we conjecture that hyperchaos is first developed in
this set prior to Ryca.

4. Conclusions

4.1. Comparison with experimental observations and
numerical results

Several of the bifurcations found in our model have
been observed in experimental works with different setups.
For instance, Gollub and Benson (1980) conducted labora-
tory experiments with water by varying the aspect ratio and
Prandtl number (P = 2.5-5), finding routes to convective
chaos through quasiperiodicity and period-doubling bifur-
cations of periodic states. Intermittency was observed in an
experiment with P = 130 in Bergé et al. (1980).

Although we are unaware of other three-dimensional
direct numerical simulations of R-B convection where a
crisis leads to an intermittent route to hyperchaos, we note
that there is remarkable similarity between our results and
the ones previously reported by Paul et al. (2011) for a
reduced two-dimensional model. For large Prandtl number
(P = 6.8), they were able to detect a sequence of bifurca-
tions as a function of R that leads to steady rolls, traveling
waves, order-chaos-order transitions, multistability, quasiperi-
odic phase-locking route to chaos, as well as an attractor-
merging crisis and hyperchaos.

4.2. General conclusions

We have presented results of a study of transition to
spatiotemporal chaos in R-B convection, where a route
to hyperchaos through intermittency is reported. Two
coexisting steady solutions undergo independent bifurca-
tions (including Hopf, phase locking and crises) before they
are merged into a single intermittent attractor with a posi-
tive Lyapunov exponent, indicating chaos. As the Rayleigh
number is increased, a second, then a third Lyapunov
exponents become positive.

Note the similarity between this route to hyperchaos
and the one reported by Clerc and Verschueren (2013),
where a quasiperiodic route to hyperchaos is found in the
Lifshitz normal form, a nonvariational generalization of
the Swift-Hohenberg equation, which describes stationing
patterns in Rayleigh-Bénard convection. In our case, there

is the presence of an interior crisis after the appearance of
the second incommensurate frequency. As a direct conse-
quence of this crisis, on—off intermittency is observed in
the time series of the kinetic energy. This dynamic phe-
nomenon takes place whenever trajectories can temporally
escape from a region of the phase space responsible for the
coherent “on” phases, and wander in its vicinity for some
time (“off” phase), before they are reinjected in the “on”
region. This phenomenon has been detected in numerical
simulations of long waves with applications to tsunamis
(Chian et al., 2010; Toledo et al., 2013), keplerian shear
flows with applications to accretion disks (Miranda et al.,
2015) and nonlinear dynamos with applications to the solar
cycle (Rempel et al., 2009; Spiegel, 2009).

As mentioned before, the mechanisms of formation,
deformation and destruction of convective cells are also
important for magnetic field amplification, since in highly
conducting magnetized fluids, convective layers deform
the lines of force and drag them to the boundaries between
different convective cells, where the field grows (Weiss,
1966; Chian et al., 2014). Thus, as a follow up of the pre-
sent work, we intend to study bifurcations in convection
in the presence of magnetic fields, as well as magnetic field
and rotation.
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