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Abstract

Magnetic field generation in three-dimensional Rayleigh-Bénard convection of

an electrically conducting fluid is studied numerically by fixing the Prandtl num-

ber at P = 0.3 and varying the Rayleigh number (Ra) as a control parameter.

A recently reported route to hyperchaos involving quasiperiodic regimes, crises

and chaotic intermittent attractors is followed, and the critical magnetic Prandtl

number (P c
m) for dynamo action is determined as a function of Ra. A mech-

anism for the onset of intermittency in the magnetic energy is described, the

most beneficial convective regimes for dynamo action in this transition to weak

turbulence are identified, and the impact of intermittency on the dependence of

P c
m on Ra is discussed.

Keywords: Magnetohydrodynamics, Rayleigh-Bénard convection, convective

dynamo, intermittency.

1. Introduction

Thermal convection plays an important role in magnetic field generation in

planets and stars. For instance, the Earth’s magnetic field is sustained by a dy-

namo process driven by convective flows in the liquid iron outer core, whereby
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thermal energy is transformed into kinetic energy and then into magnetic field

energy. The fluid motions are driven by buoyancy forces and are strongly af-

fected by the Lorentz force, due to the strength of the Earth’s magnetic field in

the core, as well as the Coriolis force, due to the Earth’s rotation [1]. Historical

data on geomagnetic field evolution based on the paleomagnetic record that can

form in rocks reveal nonperiodic intermittent time series, both for the field in-

tensity and for the frequency of polarity reversals [2]. By intermittent, we mean

that the field undergoes recurrent and aperiodic switching between two qualita-

tively different states. Thus, the geomagnetic field randomly alternates between

stronger (“bursty”) and weaker (“laminar”) phases. The relation between the

field intensity and the frequency of reversals is still not clear. For instance,

Prévot et al. [3] conjectured that the Mesozoic dipole low corresponded roughly

to a progressive decrease in the average frequency of reversals, which contrasts

with more recent data that indicate that the time-averaged field has been higher

during periods without reversals in the past two million years, whereas more re-

versals are expected during periods of weak field intensity [4]. In fact, there

may be no simple correlation between reversal rate and intensity [5], but over-

all the geodynamo seems to exhibit a strongly chaotic/intermittent rather than

periodic behavior. Intermittency is also observed in the solar magnetic activity

as recorded by the grand minima of the sunspots cycle [6].

Several numerical experiments have tried to capture the chaotic intermittent

features of the geomagnetic and solar dynamos. The main difficulty in such stud-

ies is that a dynamo mechanism cannot sustain an axisymmetric magnetic field,

due to Cowling’s anti-dynamo theorem [7], therefore, fully three-dimensional

models have to be employed for a self-consistent simulation. Both global (spher-

ical) [8, 9, 10] or local (planar) [11, 12] three-dimensional convective models have

been used. However, parameter values corresponding to the planetary and stel-

lar interiors require a huge amount of computations which cannot be performed

even on modern high performance computers in a reasonable time.

A set of dimensionless parameters has been defined to describe convective

dynamos. Some of them are the Rayleigh number (Ra), that measures the mag-
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nitude of the thermal buoyancy force, the Prandtl number (P ), which is the ratio

of kinematic viscosity to thermal diffusivity, and the magnetic Prandtl number

(Pm), defined as the ratio between kinematic viscosity and magnetic diffusiv-

ity. One of the main problems in dynamo theory is to determine the relation

between the values of those parameters and the onset of dynamo action. For

a review of scaling properties of convective–driven dynamo models in rotating

spherical shells, see [13]. Here, we are interested in magnetic field generation

in Rayleigh-Bénard convection (RBC) for moderately low Prandtl number (the

Prandtl number in the Earth’s outer core has been estimated to be between

0.1 and 0.5 [14, 15]). In this context, strong dependence of the magnetic fields

generated by convective flows on the value of the Prandtl number was found

for 0.2 ≤ P ≤ 5 [16]. Analysis of the kinematic dynamo problem by Podvigina

[17] showed that convective attractors for P = 0.3 favour the magnetic field

generation in comparison to the attractors found for larger values of P (P = 1

and P = 6.8). In recent multiscale analysis of the RBC dynamo problem in

the presence of rotation [18], low Prandtl number convection was also found

to be beneficial for magnetic field generation. In the present work, we follow

our recently published analysis of transition to chaos and hyperchaos in RBC

as a function of the Rayleigh number for P = 0.3 [19]. Chaotic systems are

characterized by aperiodic motions that are sensitive to initial conditions, i.e.,

close initial conditions tend to locally diverge exponentially with time, with the

mean divergence rate measured by a positive maximum Lyapunov exponent.

In hyperchaos a system presents more than one positive Lyapunov exponent,

implying that divergence occurs in more than one direction among a set of or-

thogonal directions in the phase space. As the number of positive exponents

increases, the resulting dynamics becomes more irregular in space and time,

thus, hyperchaotic systems have been termed weakly turbulent [20]. We assume

the fluid to be electrically conducting and add an initial seed magnetic field

to investigate the onset of dynamo. The intermittency in the velocity field de-

scribed in ref. [19] as being due to global bifurcations constitutes the starting

point for our search for an explanation for the intermittent dynamo. We stress
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that our hydrodynamic regimes are in a transition state between weak chaos and

turbulence, therefore, the system displays a complex switching between highly

different phases that is typically very difficult to be studied, since the conver-

gence of average quantities is much slower than in fully developed turbulence,

and the meaning of those averages may be rather deceptive if they do not take

into account information about the different phases of the flow.

Usually, large Rayleigh numbers are beneficial for magnetic field generation

in spherical shells simulations [21], i.e., the critical Pm for dynamo action de-

creases with increasing Ra. For moderate values of Ra, in Calkins et al. [18] a

similar dependence in plane layer dynamos was found, while in refs. [17, 22] it

is reported that for Ra beyond a certain threshold the behaviour of the criti-

cal Pm ceases to be monotonic. In this work we describe a scenario where the

non-monotonic behaviour of the critical Pm is explained based on an analysis

of the intermittency in the convective attractors. Thus, our goals are threefold:

i) to explain a mechanism for intermittency in magnetic field fluctuations in

RBC; ii) to describe how this type of intermittency is responsible for the non-

monotonic behaviour of the critical Pm as a function of Ra and iii) to detect

what are the best hydrodynamic regimes for magnetic field amplification, that

is, the regimes where dynamo action takes place for smaller Pm, among the

hydrodynamic attractors in the RBC system in transition to turbulence.

2. Statement of the problem and solution

We consider a newtonian incompressible fluid flow in a horizontal plane

layer; the fluid is electrically conducting and uniformly heated from below and

cooled from above. Fluid flow is buoyancy-driven and the Boussinesq approx-

imations (see, e.g., [23]) are assumed. In a Cartesian reference frame with the

orthonormal basis (e1, e2, e3), where e3 is opposite to the direction of gravity,
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the equations governing the magnetohydrodynamic (MHD) system are [24]:

∂v

∂t
= P∇2v + v × (∇× v)− b× (∇× b)

+PRaθe3 −∇p, (1)

∂b

∂t
=

P

Pm
∇2b +∇× (v × b), (2)

∂θ

∂t
= ∇2θ − (v · ∇)θ + v3, (3)

∇ · v = 0, (4)

∇ · b = 0, (5)

where v(x, t) = (v1, v2, v3) is the fluid velocity, b(x, t) = (b1, b2, b3) the magnetic

field, p(x, t) the pressure, θ(x, t) is the difference between the flow temperature

and the linear temperature profile; the spatial coordinates are x = (x1, x2, x3)

and t stands for time. The non-dimensional parameters are the Prandtl number,

P = ν/κ, the magnetic Prandtl number, Pm = ν/η, and the Rayleigh number,

Ra = αgδTd3/(νκ), where ν is the kinematic viscosity, κ the thermal diffusivity,

η the magnetic diffusivity, α the thermal expansion coefficient, g the gravity

acceleration, δT the temperature difference between the layer boundaries, and

d the vertical size of the layer. The units of length and time are d and the

vertical heat diffusion time, d2/κ, respectively; v, b and θ are measured in

units of κ/d,
√
µ0ρκ/d and δT , respectively. Here µ0 stands for the vacuum

magnetic permeability and ρ the mass density.

The horizontal boundaries of the plane layer, x3 = 0 and x3 = 1, are assumed

to be stress-free, ∂v1/∂x3 = ∂v2/∂x3 = v3 = 0, electrically perfectly conducting,

∂b1/∂x3 = ∂b2/∂x3 = b3 = 0, and maintained at constant temperatures, θ = 0.

A square convective cell is considered, x ∈ [0, L]2 × [0, 1], all the fields are

periodic in the horizontal directions, x1 and x2, with period L.

We study magnetic field generation by the hyperchaotic convective attractors

found in [19] for L = 4, P = 0.3 and 2160 ≤ Ra ≤ 5000 (the critical Rayleigh

number for the onset of convection is Rac=657.5 [23]). For a given value of

Ra, the initial condition for the hydrodynamic part of the system, v(x, 0) and
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θ(x, 0), is taken from the corresponding convective attractor; the initial mag-

netic field is b(x, 0) = (cos(πx2/2), 0, 0) scaled such that the magnetic energy

Eb(0) = 10−7. For each convective attractor the governing equations (1)–(5) are

integrated forward in time for a certain value of Pm in order to estimate the

critical magnetic Prandtl number, P c
m. Thus, if Pm > P c

m the magnetic field is

maintained in the system (dynamo), for Pm < P c
m, the magnetic field decays

(no dynamo). We consider values of Pm from 1 to 10 with step 1; the value is

regarded to be subcritical if Eb(t) < 10−50 for a time interval greater than 500,

otherwise it is supercritical and the generated magnetic field is analysed.

For a given initial condition, equations (1)–(5) are integrated numerically

using the standard pseudospectral method [25]: the fields are represented as

Fourier series in all spatial variables (exponentials in the horizontal directions,

sine/cosine in the vertical direction), derivatives are computed in the Fourier

space, multiplications are performed in the physical space, and the Orszag 2/3-

rule is applied for dealiasing. The system of ordinary differential equations

for the Fourier coefficients is solved using the third-order exponential time-

differencing method ETDRK3 [26] with constant step 5 · 10−4. At each time

step the fields v and b are projected onto space of solenoidal functions by solving

the Poisson equation in the Fourier space. Spatial resolution is 86 × 86 × 43

Fourier harmonics (multiplications were performed on a uniform 128 × 128 ×

64 grid). For all solutions, time-averaged energy spectra of the magnetic and

velocity fields decay as a function of the wavenumber at least by 3 and 7 orders

of magnitude, respectively. Several simulations with the doubled resolution

showed no significant change in the results. In computations we traced the

kinetic, Ev(t), and magnetic, Eb(t), energies, which are the L2 norm of the

squared field normalized by the volume of the convective cell. We also computed

the critical magnetic Reynolds number, Recm = P c
mL
√
< Ev >/P, where angle

brackets stand for time-averaging.
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Figure 1: (Color online) Evolution of the kinetic energy in the absence of magnetic field for

the attractors of the convective system at Ra=2070 (a), 2130, 2160 (b), 2300 (c) 3000, 4000

and 5000 (d).
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Table 1: Types of the convective attractors considered in the paper, ratio of the Rayileigh num-

ber to its critical value at the onset of convection; the critical values of the magnetic Prandtl

number, P c
m, and the corresponding critical magnetic Reynolds number, Recm, computed for

the middle value of P c
m in the corresponding interval.

Ra Ra/Rac Type P c
m Recm

2070 3.1 chaotic 9 < P c
m < 10 1320

2130 3.2 quasiperiodic 2 < P c
m < 3 332

2160 3.3 hyperchaotic 6 < P c
m < 7 922

2300 3.5 hyperchaotic 7 < P c
m < 8 1129

3000 4.6 hyperchaotic 8 < P c
m < 9 1584

4000 6.1 hyperchaotic 6 < P c
m < 7 1453

5000 7.6 hyperchaotic 5 < P c
m < 6 1399

6000 9.1 hyperchaotic 4 < P c
m < 5 1269

3. Results

The present work studies magnetic field generation by the branch of hyper-

chaotic attractors of the convective system for Ra ≥ 2140 [19]. This branch

is formed in an interior crisis, whereby a quasiperiodic attractor collides with

a background nonattracting chaotic set (a chaotic saddle) to form an enlarged

chaotic attractor, where trajectories intermittently switch between the former

quasiperiodic attractor and the surrounding chaotic saddle. In what follows

we briefly describe the convective regimes in the absence of magnetic field in

this interval of Ra, also mentioning the pre-crisis attractors at Ra=2070 and

Ra=2130 (see [19] for more details); the considered values of Ra and the tem-

poral behaviour of the corresponding hydrodynamic attractors are summarized

in table 1.

3.1. Convective states

In the absence of magnetic field, the convective regime for Ra=2070 is chaotic

(see fig. 1(a)). This convective state loses its stability for Ra > 2070, originating
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the chaotic saddle mentioned above. For Ra=2130, the sole attractor in the

convective system is quasiperiodic with three incommensurate time frequencies.

The evolution of its kinetic energy is shown in fig. 1(b)(red line) and in what

follows it is referred to as the regular (convective) state. For Ra≥ 2140, its

stability is lost, and a new hyperchaotic attractor rises as the sole attractor of

the convective system. Its intermittent nature near its birth is revealed by the

kinetic-energy time series (see fig. 1(b)(black line) for the attractor at Ra=2160).

The trajectory in the phase space visits the destabilized regular state at, e.g.,

200 ≤ t ≤ 300 and 1000 ≤ t ≤ 1100, as well as bursty chaotic phases related to

the destabilized chaotic attractor (compare the energy levels of the bursty phases

of figs. 1(b)(black line) and 1(a)). The average time spent near the regular state

is shortened for increasing Ra (cf. Ra=2160 in fig. 1(b) and Ra=2300 in fig. 1(c);

see also fig. 6 in [19]). For Ra ≥ 3000 the laminar phases in the intermittency are

no longer recognizable at the time scale shown (see the kinetic energy evolution

for attractors at Ra=3000, 4000 and 5000 in fig 1(d)). The absence of regular

phases is to be expected, since those phases are shortened as one moves away

from the interior crisis point at Ra ≈ 2140 [27].

3.2. Magnetic field generation

The critical magnetic Prandtl number, P c
m, for the chaotic convective at-

tractor at Ra=2070 is 9 < P c
m < 10 (see fig. 2(a)), while for the regular state

at Ra=2130, it is 2 < P c
m < 3 (see fig. 3(a)). This significant difference in P c

m

is crucial for the onset of magnetic field generation by the convective attractors

for larger values of Ra, where both regular and bursty phases are destabilized,

but visited intermittently.

At Ra=2070, for the supercritical value Pm = 10, after an initial exponential

growth the magnetic field generated by the convective attractor reaches a chaotic

state with a relatively small fluctuation (see fig. 2(a), upper red line). In this

transition to the saturated MHD state, the kinetic energy undergoes a significant

decrease (black line in fig. 2(a)). In the saturated state, a dominant spatial

feature of magnetic fields is its concentration in half-ropes located near the
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Figure 2: (Color online) (a): Evolution of the kinetic (black line, left axis) and logarithm of

the magnetic (red line, right axis, non-decaying in time) energies for the convective attractor

at Ra=2070 and Pm = 10. Magnetic energy decay for the same Ra and Pm = 9 is represented

by the lower red line. (b): Snapshot at t = 400 of isosurfaces of magnetic energy density, at a

level of a third of the maximum, for the MHD state at Ra=2070 and Pm = 10 shown in (a);

one periodicity cell is displayed.
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Ra=2130
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Figure 3: (Color online) (a): Evolution of the kinetic, Ev(t), (black line, left axis) and loga-

rithm of magnetic, Eb(t), (red line, right axis) energies for the convective attractor at Ra=2130

and Pm = 3. Thick blue lines in the horizontal axis represent time intervals, where the trajec-

tory in the phase space is in transition before recovering the convective attractor. Magnetic

energy evolution for the same Ra and Pm = 2 is represented by the red dashed line. (b):

Evolution of the spectral average, N(t), (black line) and its forward moving average over time

interval of length 2 (red line) for the regime at Ra=2130 and Pm = 3 shown in (a). (c): Cross

correlation, ρ(τ), of the kinetic energy shown in (a) and the spectral average shown in (b); τ

stands for lag measured in units of time.
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horizontal boundaries (see a snapshot of isosurfaces of magnetic energy density,

(b · b)/2, in fig. 2(b)). This feature is common for all magnetohydrodynamic

regimes found in the paper; such configuration of magnetic field was observed

in many convective dynamo simulations with perfectly electrically conducting

boundaries (see, e.g., [11, 28]).

The magnetic field generated by the regular convective attractor at Ra=2130

and Pm = 3 is represented in fig. 3(a), and shows a very different behaviour.

After the initial exponential growth (0 ≤ t ≤ 50), the magnetic field saturates

at 0.3 ≤ Eb(t) ≤ 1.6 for 50 ≤ t ≤ 160. Affected by the stronger magnetic field,

the perturbed convective attractor loses its previously laminar behaviour and

undergoes a chaotic burst. During the burst, it ceases to generate magnetic field

and for 160 ≤ t ≤ 290 the magnetic energy decreases by 42 orders of magnitude.

At t ≈ 280 the magnetic energy is low enough so that the unperturbed regular

convective attractor is recovered and the magnetic field gets reamplified by dy-

namo action. This scenario repeats intermittently in time. The time to recover

the convective attractor from the magnetic perturbation varies significantly: in

fig. 3(a) it is 250 time units (from t = 50 to t = 300) and 310 (from t = 600 to

t = 910) (these time intervals are illustrated by thick blue lines in the horizontal

axis). An interesting feature of this magnetohydrodynamic regime is that the

magnetic field is generated by a less energetic and more regular (in time) phase.

This intermittent switching between the amagnetic (hydrodynamic) and the

magnetic states can be named as a “self-killing-and-self-recreating” dynamo, in

contrast to the “self-killing” dynamos [29], where the generated magnetic field

modifies the flow in such a way that it is attracted to a non-generating stable

hydrodynamic state. Similar, although periodic in time, switching between a

generating steady hydrodynamic state and an unstable steady MHD state was

found in [11] (see fig. 22 ibid.), where magnetic field generation in the rotating

RBC was studied at various rotation rates.

The intermittent convective attractor for Ra=2160 (see fig. 1(b)) does not

generate magnetic field for Pm ≤ 6. For Pm = 7, the generated magnetic field

inherits the intermittent behaviour from the flow – when the regime is near the
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Ra=2160, Pm=7
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Figure 4: (Color online) Evolution of the kinetic (black line, left axis) and logarithm of

magnetic (red line, right axis) energies for the convective attractor at Ra=2160. Full time

interval is shown in (a) and two time windows are represented in (b) and (c).
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Figure 5: (Color online) Evolution of the magnetic energy generated by the convective attrac-

tor at Ra=2300 and for Pm = 8 (red), Pm = 9 (blue) and Pm = 10 (black).

regular state, the magnetic field is amplified (see fig. 4 (b) in 1105 ≤ t ≤ 1130

and (c) in 1530 ≤ t ≤ 1600); when the state is near the bursty phases, the

magnetic field is decaying (see fig. 4 (b) in 1130 ≤ t ≤ 1170). In contrast to

the case at Ra=2130, here the origin of the transition from the regular to the

bursty state is not the influence of the generated magnetic field, but the intrinsic

intermittency due to the instability of both states in the purely hydrodynamic

regime.

Figure 5 shows the time series of the magnetic energy at Ra=2300 for dif-

ferent values of Pm. For the slightly supercritical value Pm = 8 (red line), it

displays intermittency, with an interplay of the regular states amplifying the

magnetic field (e.g. for 320 ≤ t ≤ 370) and bursty states suppressing its gener-

ation (e.g. for 1000 ≤ t ≤ 1030). The amplitude of magnetic energy variation

is 16 orders of magnitude. The generated magnetic field is weak, as well as

its influence on the flow, so the dynamo is subordinated to the switching be-

tween the regular and irregular phases of the convective regime. On increasing

Pm to 9 (blue line), and then 10 (black line), the fluctuations of the magnetic

energy become smaller. Since larger values of Pm with fixed P correspond to

weaker magnetic diffusion, the stronger magnetic fields bring the resulting MHD

regimes farther from the hydrodynamic one.

The same estimate of P c
m and the same behaviour of the generated magnetic

field near onset extends to the convective attractors at Ra=2400 and 2500.
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Figure 6: Dependence of the critical magnetic Prandtl number estimate on Ra for the hyper-

chaotic regimes.

For the convective attractor at Ra=3000 the critical magnetic Prandtl num-

ber achieves its maximal value along the considered hyperchaotic convective

regimes, 8 < P c
m < 9. On further increase of Ra, for the sequence of convective

attractors at Ra = 3000, 4000, 5000 and 6000, where the regular phases are no

longer seen, the critical magnetic Prandtl number decreases with Ra (see table 1

and fig. 6). Simulations with the doubled resolution confirm this tendency for

much higher values of Ra. This is in accordance with findings referred in Busse

[21] for large values of Ra.

In order to understand why the quiescent phases of the kinetic energy time

series correspond to better dynamos, we characterized the hydrodynamic states

by a measure of the number of active spatial Fourier modes. The spectral

average has been frequently employed in this context [30], being defined as

N(t) =

√√√√ ∞∑
n=1

∑
k∈Cn

|k|2|v̂k(t)|2/
∞∑

n=1

∑
k∈Cn

|v̂k(t)|2

where v̂k denotes the kth Fourier coefficient of the velocity field, and Cn =

{k : n − 1 < |k| ≤ n} stands for the nth (n ∈ N) spherical shell in the space

of Fourier wave vectors k. Note that the spectral average is the square root of

the averaged |k|2, where the average is weighted by the shell-integrated energy.

Therefore, it measures the energy spread in the k spectrum, and should increase

with time in systems with energy cascade until dissipative effects restrain its

growth. It can also be seen as the square-root of the ratio of the enstrophy to

the energy and, consequently, as the inverse of a length scale related to viscous
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dissipation. We employ the spectral average N(t) as a measure of the effective

number of degrees of freedom in the convective system.

Fig. 7 plots the time series of N(t) for some of the hydrodynamic regimes of

fig. 1. Note that the chaotic attractor at Ra=2070 has lower average N(t) than

the quasiperiodic attractor at Ra=2130; consequently, the regular phases in

the intermittent series at Ra=2160 display higher N(t) than the bursty phases.

The higher values of N(t) found in the quiescent phases correlates well with the

periods of magnetic field growth (for the same regime at Ra=2130 and Pm = 3

cf. evolution of the kinetic and magnetic energies in fig. 3(a) with the spectral

average, N(t), in (b); in order to demonstrate the negative correlation of the

kinetic energy and the spectral average the cross correlation function of these

quantities, ρ(τ), is shown in (c)). For higher values of Ra (two lower panels of

fig. 7), the system dynamics is strongly irregular and the average N(t) becomes

larger, which coincides with the monotonic decay of the critical Pm for dynamo

action in these cases.

4. Conclusions

We have shown how intermittent convective attractors with two or more

qualitatively different (quiescent and bursty) phases can lead to intermittent

dynamo action. The critical Pm for dynamo action is lower for the quasiperi-

odic/quiescent attractors compared to the hyperchaotic/bursty attractors. As

Ra is increased, the quiescent phases in the intermittent time series are shortened

and, thus, the overall critical Pm also becomes larger due to the predominance

of bursts in the time series. Further increase in Ra leads the convective sys-

tem to a state where quiescent phases are no longer observable and, then, the

critical Pm starts to decrease with increasing Ra, as expected in strongly hy-

perchaotic/turbulent systems. Therefore, in transition to turbulence, quasiperi-

odic states are preferred for dynamo action in the intermittent regimes, but in

stronger chaotic regimes without this type of chaotic intermittency, the critical

Pm is expected to become lower and lower as Ra is increased. This low-Pm
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Figure 7: Time series of the spectral average N(t) for the convective attractors in the absence

of magnetic field for Ra=2070 (a), 2130 (b), 2160 (c), 3000 (d), 4000 (e) and 5000 (f).
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MHD regime is of particular interest, since many geophysical and astrophysical

problems are described by low Pm. For example, in the Sun, Pm varies between

10−7 and 10−4 between the top and the bottom of the convection zone [31],

whereas in the geodynamo it is approximately 5× 10−6 [32].

The intermittent switching between qualitatively different phases in the time

series of kinetic energy shown in figs. 1 and 3(a) resembles the bi-stability re-

ported by Zimmerman et al. [33] in experiments with a rotating spherical Cou-

ette flow and later associated with the intermittent behavior of the magnetic

field in an MHD experiment with an imposed magnetic field [34]. For instance,

fig. 10 of ref. [34] shows time series of torque and azimuthal magnetic field

where the system undergoes intermittent transitions between two phases with

very different mean values. The intermittency in our magnetic energy time series

also shows similarity with the on-off intermittent ABC-flow dynamo reported

by Rempel et al. [30], where the magnetic energy time series intercalate bursty

phases with quiescent phases of almost null magnetic energy. This type of in-

termittency is expected to happen near critical values of the control parameters

where a global bifurcation in the underlying attractor takes place [35, 36], and

has recently been found in numerical simulations of rotating spherical Couette

flows with realistic boundary conditions [37].

The verification that the quasiperiodic quiescent phases of the velocity field

constitute a better dynamical state for a convective dynamo than the bursty

phases for low Ra may seem at odds with the intuitive idea that a chaotic flow

should favor the stretching, twisting and folding (STF) of magnetic field lines,

which is a well known mechanism for magnetic field amplification [38]. However,

one should note that the STF dynamo may operate even in stationary flows

with chaotic streamlines. Inhibition of the large-scale magnetic field by large

fluctuations of the velocity field is shown analytically in [39] for some simple

flows using the mean-field dynamo theory. In our case, we have shown that

the quiescent/regular phases in the intermittent regime excite a higher number

of spatial Fourier modes than the bursty phases, which implies the increase in

magnetic flux in the regular phases. For higher values of Ra, when the energy
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cascade and spatiotemporal complexity increase, the critical Pm decreases. It

would be interesting to check if the same happens in spherical geometries, in

a set up more closely related to the difficult task of magnetic field generation

in laboratory experiments. As a final remark, it is worth mentioning that the

behavior of the dynamo can be quite different in the presence of rotation and

that should be the topic of future exploration.
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