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PERFORMANCE OF AN ADAPTIVE CONTROLLER FOR THE
NEUROMUSCULAR BLOCKADE BASED ON INVERSION OF

A WIENER MODEL
M. M. Silva, L. Paz, T. Wigren, and T. Mendonça

ABSTRACT

An adaptive controller based on a minimally parameterized parsimonious Wiener model for the effect of the
muscle relaxant rocuronium in the neuromuscular blockade is presented. The controller structure combines inversion
of the recursively identified static nonlinearity of the Wiener model with a positive compartmental control law for the
linearized system. The overall strategy exploits the fact that the model has only two parameters, which are estimated by
an extended Kalman filter. Due to the fact that the positive control law for total mass conservation of compartmental
systems is only proven to be convergent for time-invariant systems, the identification of the parameter in the linear block
of the minimally parameterized parsimonious Wiener model is stopped when the controller is turned on. The controller
was implemented in the platform Galeno and tested in simulation and in thirteen real cases of patients under general
anesthesia. The good reference tracking results and robustness to noise show the reliability of the proposed strategy.

Key Words: Anesthesia, compartmental models, drug delivery systems, minimally parameterized models, neuromus-
cular blockade, Wiener systems.

I. INTRODUCTION

During general anesthesia, depression of neuromus-
cular function is often required to intubate the patient
and to enable easy access to the patient’s internal organs.
The conventional procedure to provide muscle relaxation
is the manual administration of bolus doses of muscle
relaxants.

With the exception of the initial bolus, the size of
which is calibrated according to the patient’s weight, the
sizes of subsequent doses are usually based on the anes-
thesiologist’s experience. This procedure gives consider-
able fluctuations in the levels of relaxation [1]. Moreover,
since most of the muscle relaxants have high therapeutic
indices in hospital settings, and due to the lack of a priori

Manuscript received September 2, 2013; revised February 20, 2014; accepted
April 28, 2014.

M. M. Silva, L. Paz and T. Mendonça are with the Departamento de
Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo
Alegre, 4169-007 Porto, Portugal.

M. M. Silva, and T. Mendonça are also with CIDMA, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal.

M. M. Silva (corresponding author, e-mail: margarida.silva@fc.up.pt) and T.
Wigren are with the Division of Systems and Control, Department of Information
Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden

The research leading to these results received funding from the European
Research Council via the Advanced Grant 247035. This work was also supported
by Portuguese funds through the CIDMA - Center for Research and Development
in Mathematics and Applications, and the Portuguese Foundation for Science and
Technology (’FCT - Fundação para a Ciência e a Tecnologia’), within project
PEst-OE/MAT/UI4106/2014.

knowledge of the drug–patient interaction, they are often
used in excess of their minimal effective requirements [2].
This overdosing eliminates fine control of the neuromus-
cular blockade (NMB) and may increase the incidence of
side-effects. In this context, automatic closed-loop con-
trol of muscle relaxant administration appears to be a
beneficial option. The advantages are twofold. Besides
avoiding overdosing, the achievement of a better reg-
ulation of the NMB also enables a more meaningful
evaluation of patient’s depth of anesthesia [3]. However,
in spite of the relatively high number of available auto-
matic control strategies for the administration of muscle
relaxants [4–6], they are still not popular in day-to-day
clinical practice.

The muscle relaxant that is nowadays most exten-
sively used in clinical practice is rocuronium. The main
reason for this is the release of Sugammadex, the first
selective rocuronium binding agent which enables a fast
and total recovery of the neuromuscular function [7].
Despite the numerous advantages [8], the use of Sug-
ammadex in the daily routine is still limited due to its
high cost. Consequently, if fine control of the NMB is
maintained by automatic controllers, rapid recovery of
the neuromuscular function at the end of the surgery is
more easily attained and Sugammadex can be saved for
emergency situations or when standard reversal is con-
traindicated. Additionally, eye surgeries, or any others
where deep internal organs have to be accessed, require
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a highly accurate control of the NMB around a setpoint.
This accurate regulation is time-consuming and difficult
to achieve by manual bolus administration protocols, or
by manual titration of the individualized amount of mus-
cle relaxants to be administered in a continuous intra-
venous infusion. These facts justify the development of
closed-loop control strategies for the administration of
rocuronium to patients under anesthesia.

Several quantitative methods based on the assess-
ment of an evoked response to a pattern of stimulation of
a motor nerve are commercially available to monitor the
NMB [9]. The choice of the stimulation pattern is mostly
correlated with the type of surgery and/or with the level
of accuracy that is needed. A train-of-four (TOF) electri-
cal stimulation of a peripheral muscle (e.g. the adductor
pollicis in the hand of the patient) is a method commonly
adopted in studies with closed-loop NMB control [10–12]
due to its ease of use.

According to [13, pp. 544], applying a TOF stimula-
tion at 2 Hz provides more sensitivity than a single twitch
and approximately the same sensitivity as tetanic stimu-
lation at 50 Hz. Moreover, the relatively low frequency of
this stimulation pattern allows the response to be evalu-
ated manually or visually, which is of crucial importance
in the clinical setting where the anesthesiologist has a
supervisory role.

The main contributions of this paper follow from
the fact that, to the authors’ knowledge, no closed-loop
control strategy using the first twitch of a TOF stim-
ulation as the output signal to quantify the effect of
rocuronium in patients under general anesthesia has con-
sistently shown good performance in clinical conditions.
The structure of the new controller comprises online
identification of two parameters in a Wiener model,
online inversion of the nonlinearity at each time step
using the online identified nonlinear parameter, and lin-
ear control, this structure being the first contribution of
the paper. The linear control relies on a compartmental
control law that aims at keeping the total mass of the
system (i.e. the total mass of rocuronium in the patient)
constant. Crucial for the good performance of the whole
strategy is the fact that the compartmental control law
depends explicitly only on the linear parameter of the
Wiener model. A further advantage is that the compart-
mental control algorithm naturally copes with the pres-
ence of positive constraints, and is proven to be robust
to parameter uncertainties [14]. The second contribution
of the paper concerns the implementation of the con-
troller in the platform Galeno [15], and its performance
evaluation on patients under general anesthesia.

This paper is organized as follows. Section II
describes the two-parameters minimally parameterized
parsimonious (MPP) model used for the system mod-

eling and the recursive identification strategy exploiting
the extended Kalman filter (EKF). Section III presents
the main features of the closed-loop control strategy
while section IV shows the results. Section V draws the
conclusions.

II. THE MODEL AND THE
IDENTIFICATION ALGORITHM

2.1 The MPP Wiener model for the NMB

This section presents the MPP Wiener model
describing the effect of the muscle relaxant rocuronim
in the human body. This model was initially developed
for atracurium [16] and further validated for rocuronium
[17]. The same minimal modeling principle was also suc-
cessfully applied to explain the effect of hypnotics and
analgesics in the depth of anesthesia [18,19] and used for
the development of model-based controllers, see e.g. [20].

A block diagram of the MPP Wiener model for the
effect of muscle relaxants in the NMB is shown in Fig. 1.
The model input is the rocuronium rate u (t) (!g/kg/min)
that is administered to the patient, and the model output
is the NMB level y (t) (%), normalized between 0 (corre-
sponding to full paralysis) and 100 (corresponding to full
muscular activity) due to the fact that, in this paper, the
NMB level is considered to be the first TOF response cal-
ibrated by a reference twitch. The transfer function of the
linear dynamic part of the Wiener model is given by

Gp(") =
k1k2k3"3

(s + k1")(s + k2")(s + k3")
, (1)

which may be realized in state-space form as
{

ẋ(t) = A(") x(t) + B(") u (t)
y l(t) = C x(t)

, (2a)

A(") =
⎡
⎢
⎢⎣

−k3" 0 0
k2" −k2" 0
0 k1" −k1"

⎤
⎥
⎥⎦
, (2b)

B(") =
[

k3" 0 0
]T , (2c)

C =
[

0 0 1
]
. (2d)

Fig. 1. Block diagram of the MPP Wiener model for the effect
of muscle relaxants in the NMB.
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The constants k1 = 1, k2 = 4, and k3 = 10 are fixed
[16,18], and the identified parameter " > 0 reflects the
inter-patients’ variability.

The state-space model (2a) with the system matrices
defined as (2b)-(2d) was shown to be a compartmental
model [21] in [22].

The nonlinear part of the MPP Wiener model
relates the output y l(t) of the linear block with the NMB
level y (t) through the Hill function [23] as

r ∶
(
$ , y l(t)

)
∈ ]0,+∞[× [0,+∞[

−→ y (t) = r($ , y l(t)) ∈ ]0, 100],

where

r($ , y l(t)) =
100 C$

50

C$
50 + (y l(t))$

. (3)

The parameter $ > 0 describes the sigmoidicity of
the Hill function and it is the one to be identified in the
nonlinear block of the Wiener model. The parameter C50
is fixed and equal to 1 [17].

In order to implement the model and the controller
in the platform Galeno [15] for simulation and clinical tri-
als, the continuous-time model (2), (3) has to be sampled
using a zero-order hold method [24]. The discrete-time
model becomes

{
x(kh + h ) = Ad (") x(kh ) + Bd (") u (kh )

y l(kh ) = C x(kh )
, (4a)

Ad (") = eA(")h , (4b)

Bd (") = ∫
h

0
eA(")s d s B("), (4c)

where u (kh ) is the input (piecewise constant rocuronium
rate); x(kh ) is the discrete-time state-vector; y l(kh ) is the
discrete-time output of the linear block; and Ad (") and
Bd (") are the sampled system matrices.

Due to the fact that in the surgery room data from
the NMB is monitored and acquired every 20 seconds to
ensure that all the nerve fibers are recruited every time an
electrical stimulation is performed, the zero-order hold
method [24] is applied using h = 1∕3 min−1.

Since the sampling does not affect the nonlinear
part, (3) can be used as it is and the model output
becomes

y (kh ) = r($ , y l(kh ) =
100 C$

50

C$
50 + (y l(kh ))$

. (5)

2.2 The extended Kalman filter

Considering the model (1),(3), the parameter vector
to be identified in the EKF structure is selected as

% = [" $]T . (6)

Since the linear block (1) was chosen to contribute
with a unity gain for the whole system, the gain of the
whole system must be estimated by the parameter $ in
(3). This is so because, in a Wiener model structure, only
the product of the static gains of the two cascaded blocks
is important from an input-output point of view [25].
At the same time, $ adapts the shape or nonlinear static
differential gain of (3).

To describe the EKF, the underlying general
discrete-time nonlinear model is assumed to be

x̂(kh + h ) = f (kh , x̂(kh ), u (kh ))+
+ g(kh , x̂(kh )) v(kh )

ŷ (kh ) = h (kh , x̂(kh )) + e(kh ),
(7)

where v(kh ) and e(kh ) are mutually independent
Gaussian white noise sequences with zero means
and covariances R1(kh ) and R2(kh ), respectively. The
EKF algorithm can then be summarized as follows
(see e.g. [26]):

H(kh ) = 'h (kh , x)
'x

||||x=x̂(kh |kh−h )

K(kh ) = P(kh |kh − h )HT (kh )×

×
[
H(kh )P(kh |kh − h )HT (kh ) + R2(kh )

]−1

x̂(kh |kh ) = x̂(kh |kh − h )+
+ K(kh )

[
y (kh ) − h (kh , x̂(kh |kh − h ))

]

P(kh |kh ) = (kh |kh − h ) − K(kh )H(kh )P(kh |kh − h )
x̂(kh + h |kh ) = f (kh , x̂(kh |kh ), u (kh ))

F(kh ) = 'f (kh , x)
'x

||||x=x̂(kh |kh )

G(kh ) = g(kh , x) |||x=x̂(kh |kh )

P(kh + h |kh ) = F(kh )P(kh |kh )FT (kh )+
+ G(kh )R1(kh )GT (kh ) (8)

The dependency of the state vector x on " is not
explicitly represented here for the sake of notational
simplicity.

To enable the estimation of the model parameters
with the EKF, a coupled identification model that merges
the sampled model (4) with a random walk model [27] for
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the parameter estimates of (6) is defined. The resulting
augmented state vector x becomes

x(kh ) =
[
x1(kh ) x2(kh ) x3(kh ) "(kh ) $(kh )

]T .
(9)

Using (9), the extended state-space model becomes

x̂(kh + h ) =
[

Ad ("̂(kh )) 03×2
02×3 I

] ⎡
⎢
⎢⎣

x̂(kh )
"̂(kh )
$̂(kh )

⎤
⎥
⎥⎦
+

+
[

Bd ("̂(kh ))
02×1

]
u (kh ) +

⎡
⎢
⎢⎣

vx(kh )
v"(kh )
v$ (kh )

⎤
⎥
⎥⎦

≡
⎡
⎢
⎢
⎢⎣

f1

(
kh , x̂(kh ), u (kh )

)

⋮

f5

(
kh , x̂(kh ), u (kh )

)
⎤
⎥
⎥
⎥⎦
+ v(kh )

≡ f
(

kh , x̂(kh ), u (kh )
)
+ v(kh ),

(10)

ŷ (kh ) =
100 C $̂(kh )

50

C $̂(kh )
50 +

(
C x̂(kh )

)$̂(kh ) + e(kh )

≡ h
(

kh , x̂(kh )
)
+ e(kh ),

(11)

C(⋅) =
[
C(⋅) 0 0

]
. (12)

In the EKF algorithm structure (8) both f and h have to
be linearized. The linearization of f

(
kh , x̂(kh ), u (kh )

)
in

(10) was performed analytically. The formula for F(kh )
is not shown here due to its complexity. In order to
reduce the computational complexity of the calculations,
the linearization of h

(
kh , x̂(kh )

)
in (11) was performed

numerically as

H(kh ) =
h
(

kh , x̂(kh ) + Δx̂(kh )
)
− h

(
kh , x̂(kh )

)

Δx̂(kh )
,

where Δx̂(kh ) is the step for the differentiation and is
chosen to be small.

Although not the same estimation algorithm as in
[25], the use of a Wiener model implies that convergence
requires that the input signal is sufficiently rich in fre-
quencies and amplitude [25]. A theoretical analysis of the
EKF in the setting used here would be a substantial effort
and is a suitable topic for future research.

III. THE NONLINEAR ADAPTIVE
CONTROLLER

3.1 Induction and initialization: practical aspects

In order to enable the patient’s intubation, the
induction of the NMB in patients under anesthesia must
be quick. For this purpose, and due to clinical con-
straints, a manual bolus with a typical value of 600 !g/kg
of rocuronium is usually given to the patient at the begin-
ning of the surgery. This value may change depending on
the requirements of the surgery and the patient’s general
clinical state.

Due to the fact that, in this paper, the NMB is
quantified by the first response from a TOF stimula-
tion normalized by a reference twitch, before the bolus
administration the NMB is constant and equal to 100%,
independently of the patient or patient model in question.
Hence the time of the bolus administration is defined in
this paper as t = 0 because it is only after this instant
that informative data about the patient specific response
to the muscle relaxant is collected.

In typical cases, an initial bolus of 600!g/kg of
rocuronium causes a decrease in the NMB from 100% to
a value close to 0% in less than 4 minutes and is expected
to provide between 15 and 85 minutes of muscle relax-
ation under opioid/nitrous oxide/oxygen anesthesia [28].
Due to this high variability in the duration of the clinical
effect, an OnLine tuned Algorithm for Recovery Detec-
tion (OLARD) [29] is used to detect the beginning of the
recovery after the initial bolus, this time being defined as
t0. At t = t0 the controller is turned on.

Since the positive control law for total mass con-
servation of compartmental systems is only proven to
be convergent for time-invariant systems, the identifica-
tion of the linear parameter of the MPP Wiener model is
stopped when the controller is turned on (i.e. for t ≥ t0).
Hence, for t ≥ t0, the time-varying behavior of the sys-
tem is solely captured by the estimation of the nonlinear
parameter $. This improves identifiability further, reduc-
ing the number of parameters estimated online to one.

3.2 Structure

The structure of the adaptive controller proposed in
this paper is shown in Fig. 2 and comprises three main
tasks that are performed in order at each time step.

First, using the measured input u , and output y
from the patient (i.e. the plant), the EKF block in Fig. 2
identifies the model parameters in (6) online.

Second, the target reference value y ∗ for the NMB
is inverted through the static nonlinearity (5) using the
current estimate $̂ of the nonlinear parameter. This step
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Fig. 2. Adaptive controller based on the minimally
parameterized Wiener model for the NMB.

provides the compartmental control law with an estimate
of the intermediate signal ŷ l in the Wiener model to be
used for the calculation of the target total mass M∗ of
the system (see (17) and recall that, from (2a) and (2d),
y l(t) = x3(t)).

Third, a compartmental linear control law is applied
to the estimated plant. For that, an estimate of the states
of the compartmental model (2a) are obtained via simu-
lation of the linear block of the Wiener model, using the
estimate of the linear parameter ".

3.3 Inversion of the nonlinearity in the Wiener model

The idea of inverting the nonlinearity in the Wiener
model derives from the structure proposed in [30]. In this
paper, however, only the reference value y ∗ is inverted
through r−1 (3) using the current estimate of $ provided
by the EKF identification block. The advantages of per-
forming this inversion, especially in cases where the slope
of the nonlinearity varies considerably depending on the
operating point, are clearly exemplified in [31]. Instead
of obtaining an estimate of the intermediate signal of
the Wiener model by inverting the measured signal y ,
the estimate of " is used to generate an estimate of the
intermediate signal y l via (1), as shown in Fig. 2.

It should be stressed that r (3) is a bijective function,
and that y ∗ in Fig. 2 lays inside [0, 100]as a conse-
quence of monitoring restrictions of the NMB in the
clinical practice. Moreover, as a result of a projection
algorithm in the EKF structure, $̂ is also lower-bounded.
Due to this, and considering the domains affecting
the Hill function (3), no problems arise in this inversion.

3.4 Linear controller design

The compartmental law for the stabilization of the
total mass of a continuous-time system was proposed in
[32]. When applied to the system (2), it becomes

u (t) = max(0, ũ (t)), (13a)

ũ (t) =
−
([

1 1 1
]

Ac(")x(t) + )
(
M(x(t)) − M⋆))

[
1 1 1

]
Bc(")

,

(13b)

where ) is a design parameter. This control law ensures
the convergence of the total mass M(x(t)) of the system
to a given set point M⋆. The total mass M⋆ of the system
is given by

M(x(t)) =
3∑

i=1

xi(t), (14)

where xi is the ith element of the state vector x [22].
The objective of the control law (13) is to steer

the system to an equilibrium point that satisfies the two
conditions:

M(x(t)) = M⋆, (15)

x1(t) = x2(t) = x3(t). (16)

Therefore, at the equilibrium point, the system
satisfies (15) and (16). From (3), M⋆ can be written as

M⋆ = 3 x3(t) = 3 r−1 ($ , y ∗) = 3
(

100
y ∗ − 1

)1∕$
C50.

(17)

When the plant to be controlled is not known, esti-
mates of the model parameters have to be used in the con-
trol law. This is the case of muscle relaxant administration
to the human body. Given this, (17) becomes

M̂⋆ = 3 x̂3(t) = 3 r−1 ($̂ , y ∗) = 3
(

100
y ∗ − 1

)1∕$̂
C50.

(18)

The third component of the state-space vector x3(t)
equals the intermediate signal y l(t) of the Wiener model
(see (2)).

The transformation of the control law (13) into
discrete-time was proposed in [33], and its complete
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mathematical realization may be found in [12]. The
discrete-time positive compartmental control law is
hence given by

u (kh ) = max(0, ũ (kh )), (19a)

ũ (kh ) =
[

1 1 1
] (

)I − Ad (")
)

x(kh ) + (1 − ))M⋆

[
1 1 1

]
Bd (")

.

(19b)

3.5 Implementation of the controller in the
platform Galeno

In order to assess its performance, the proposed
adaptive controller was implemented in the platform

Fig. 3. Overview of the surgery room where the platform
Galeno is being used.

Fig. 4. Diagram of the NMB control functionality in the
platform Galeno.

Fig. 5. Closed-loop control results in simulation.

Galeno [15]. Fig. 3 shows an overview of the surgery
room where the platform Galeno is being used.

The platform architecture is structured in two
application-components, the Galeno-Data Acquisition
Drivers (GDAD) and the Galeno-Monitoring and Con-
trol of Anesthesia (GMCA). The GDAD were developed
using the programming language C# and are used only
in real-time mode, with the main purpose of implement-
ing an abstraction of the communication between the
GMCA and the different syringe pumps and monitoring
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devices. The GMCA application was developed using
Matlab (Version 7.9.0.529, R2009b, win32) and it may
be used in real-time mode or in off-line mode. The main
motivation for using Matlab to implement GMCA is
that it allows fast software prototyping and it facili-
tates the access to mathematical functions and methods
that are necessary to implement the identification and
control algorithms.

The NMB control functionality is part of the
GMCA and is schematically represented in Fig. 4. Con-
sidering the recommendations of the anesthesiology team
involved in the ’project Galeno’, the following sequence
of procedures is performed by order at the beginning of
each general anesthesia episode:

1. Calibration of the NMB sensor.
2. Administration of the first bolus of rocuronium.
3. Detection of the time when the recovery after the

first bolus starts, using the OLARD [29].
4. Start of the control algorithm (Automatic Opera-

tion Mode in Fig. 4). The NMB reference (Con-
trol Value in Fig. 4) is selected manually by the
anesthesiologist.

IV. RESULTS

4.1 Simulation

Fig. 5 shows the results of the adaptive controller
when applied in simulation.

As shown in the bottom plot of Fig. 5a, the ini-
tial rocuronium bolus dose of 600 !g/kg led to a drop
of the NMB level from 100% to 0% in a short period of
time. After this initial bolus, no drug was administered
until the recovery from this initial bolus was detected,

being this time instant defined as t0. From t0 to tch the
reference was set to 5%, and at time tch changed to
10%. As shown in the upper plot of Fig. 5a, the con-
trolled NMB y follows the reference y ∗ with no static
error. The behavior of the administered drug dose u ,
shown in the bottom plot of Fig. 5a is as desired: an
impulse around time t0 and an almost constant dose
afterwards, until tf when the infusion is stopped and
the system recovers naturally. The change that occurs in
the dose profile at tch is due to the change in the refer-
ence value. A good reference following is also observed
with the total system mass M(x), shown in the bottom
plot of Fig. 5b. After t0, the total system mass M(x),
in the solid line at the bottom plot of Fig. 5b is steered
to the reference mass M∗, in dashed line in the bottom
plot of Fig. 5b. The adaptivity of the control scheme is
due to the adaptation of the model parameters, shown
in the upper and middle plots of Fig. 5b. In the upper
plot, the estimates of parameter " are represented. The
convergence is fast at the very beginning and some
changes exist until t0. As expected, the value of " does not
change significantly after t0, and during the time when
the controller is working. The adaptation that is needed
to track the intra-patient’s variability after t0 is hence
given only by the nonlinear parameter $, represented in
the middle plot of Fig. 5b. After the induction period, the
parameter $ presents values around 2 which is equivalent
to a moderate steepness of the Hill function (3).

4.2 Real cases

The proposed adaptive NMB controller was tested
in the surgery room in thirteen patients under general
anesthesia, exhibiting a good clinical performance. The
demographics of the patients are shown in Table I. The
anesthetic protocols included combinations of propofol

Table I. Demographics of the patients. The ASA refers to the physical status classification
system in [35].

Case Duration (min) ASA Gender Age (yrs) Weight (kg) Height (cm)

1 232 4 M 63 87 165
2 120 2 F 63 76 160
3 86 2 F 55 70 165
4 400 2 M 51 64 165
5 281 2 F 73 65 160
6 249 2 M 69 60 165
7 211 3 F 66 63 155
8 133 2 F 28 76 169
9 192 2 F 86 53 155
10 206 3 F 77 65 157
11 120 3 M 68 76 173
12 166 3 M 60 61 164
13 155 3 F 78 75 155
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as hypnotic; remifentanil, sufentanil or fentanil as anal-
gesic; and an inhalation anesthetic.

According to [34], the overall performance of
a closed-loop control system may be characterized
on the basis of the performance error (PE) calculated
as the weighted difference between the measured NMB
y t and the reference y ∗

t as PEt = 100
(
y t − y ∗

t

)
∕y ∗

t .
The median performance error MDPE=Median{PEt}
is a measure of bias and reflects whether the measured
values are systematically either above or bellow the ref-
erence value. The median absolute performance error
MAPE=Median{|PE|t} measures the inaccuracy of the
control method. The Wobble=Median{|PEt − MDPE|}
measures the oscillatory behavior of the controller.

The Varvel performance measurements for each
of the thirteen real cases considering t = {t0, … , tf }
are presented in Table II. The MDPE values show that
the controlled NMB signal is, on average, 5.68% below
the reference value, while the MAPE values show that the
controller was, on average, 22.4% inaccurate. The tran-
sients are the main reasons for the MAPE and wob-
ble values. One example for this is case number 13 as
shown in Fig. 7. A detailed description of the closed-loop
control results for case numbers 4 and 13 is given in
sections 4.2.1–4.2.2.

It should be noted that the rocuronium doses
that were administered in these cases (see u values in
Table II) comply with the administration guidelines for
continuous infusion during maintenance [28]. Under
total intravenous anesthesia the recommended values are
4 − 16 !g/kg/min, with a reduction of 40% in cases
where inhalation anesthetics, in particular isoflurance
and enflurance, are used.

The last four columns in Table II show the spread
of the parameter estimates for t ≥ t0.

4.2.1 Example #1

Contrarily to the simulation case shown in
section 4.1, the anesthesiologist in this case chose to
administer an initial bolus of 300 !g/kg of rocuronium,
as shown in the bottom plot of Fig. 6a. Due to this low
bolus dose, the measured NMB, the solid line in the
upper plot of Fig. 6a, did not reach 0%, and the recov-
ery was detected earlier than in the simulation case, this
time instant being marked with t0 in the plots. In order
to exemplify the performance of the adaptive controller,
and without repercussions on the patient under anesthe-
sia, the reference value was changed three times, at the
times marked with tch . Initially, and as recommended for
general anesthesia episodes, the reference was kept low,
at a value of 2.5%, and made to increase afterwards. As
shown in the upper plot of Fig. 6a, after the beginning
of the recovery, i.e. for t > t0, the NMB y was always
steered to the reference y ∗, with no significant over or
under shoots. The measured signal is more noisy than in
the simulation case due to the sensor in use. The admin-
istered rocuronium was as shown in the bottom plot of
Fig. 6a. The bottom plot of Fig. 6b shows the total mass
M(x) of the system following the time-varying reference
M∗ for t > t0. The change in the reference mass is due
to the changes in the identified parameter $, shown in
the middle plot of Fig. 6b. Similarly to the simulation
case, the estimates of the parameter " converge rapidly
after the initial bolus and remain constant until the third
change in the reference value, at time tch3. At that time

Table II. Performance of the controller when applied to the patients in Table I, for t > t0. The values
in the columns marked with (∗) and (∗∗) have dimensions 10−2 and 10−5, respectively. The +% denotes
the standard deviation of the parameter %.

Case MDPE (%) MAPE (%) Wobble (%) u (!/kg/min) "̂
(∗)

+(∗∗)"̂ $̂ +$̂
1 -10.0 12.4 6.29 4.36 4.76 1.39 2.03 0.200
2 -8.57 28.7 29.6 4.21 5.31 4.87 2.60 0.279
3 -24.8 24.8 11.2 6.45 3.98 1.32 1.67 0.183
4 -6.28 9.47 7.40 4.92 4.91 17.2 1.55 0.146
5 -3.64 46.6 46.4 1.88 4.71 14.6 3.83 0.908
6 -15.2 16.2 9.44 4.39 3.36 1.66 1.74 0.236
7 -9.36 18.8 14.6 3.98 3.70 8.28 1.96 0.237
8 -10.4 22.7 25.6 6.29 4.97 6.30 1.95 0.327
9 15.0 35.0 27.5 2.24 4.03 5.87 4.71 0.297
10 -1.49 15.0 14.8 3.87 4.08 6.34 1.96 0.185
11 4.45 12.4 14.2 6.13 4.47 1.00 1.90 0.088
12 -6.70 26.0 25.5 6.81 3.41 7.49 1.49 0.281
13 3.19 23.3 21.2 3.04 3.45 4.56 2.77 0.265
Mean -5.68 22.4 19.5 4.50 4.24 6.22 2.32 0.279
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Fig. 6. Real closed-loop control results (Case number 4 in
Table II).

instant, the parameter " changes slightly, with no neg-
ative effect on the controller performance in terms of
reference tracking.

4.2.2 Example #2

Fig. 7 shows the results obtained when using the
proposed controller on patient number 13 in Table I and
II. This is a typical case where the high MAPE is due

Fig. 7. Real closed-loop control results (Case number 13 in
Table II).

to the difference between the measured y and the refer-
ence y ∗ right after the beginning of the infusion at t = t0,
as plotted in Fig. 7a. Clinically these closed-loop results
are good, outperforming any manual infusion scheme.
The administered rocuronium in shown in the bottom
plot of Fig. 7a. The parameter estimates together with
the system and reference mass are plotted in the upper
and middle, and bottom plots of Fig. 7b, respectively. In
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Fig. 7b it is clear that, for t < t0, the model parameter
estimates vary considerably, changing from their initial
values at 0.005 and 1, for " and $ to values close to 0.035
and 3, respectively. A consequence of this is a change in
the total mass of the system, plotted in solid line in the
bottom plot of Fig. 7b. For t > t0, due to the parameters
adaptation and the beginning of the closed-loop infusion,
the total mass of the system M(x) follows the target mass
M∗, as desired.

V. CONCLUSIONS

This paper presented an adaptive controller for the
NMB based on inversion of a Wiener model. The con-
troller exploits a Wiener model with only two parameters,
which are recursively estimated by an extended Kalman
filter. The controller combines inversion of the recursively
identified static nonlinearity of the Wiener model with a
positive compartmental control law for the linearized sys-
tem. With only the linear parameter explicitly involved,
the complexity of the positive control law for total mass
conservation of compartmental systems is significantly
reduced, which is beneficial for the whole strategy.

This approach enhances the strategy in [12] since
the identification of the nonlinear parameter is not
pointwise, but recursive, which results in a more robust
identification. The controller was implemented in the
platform Galeno and tested in simulation and in real
cases. As a consequence of the recursive identification
of the model parameters, the variability of the patient
parameters does not interfere with the performance of
the controller. All tests showed a good reference track-
ing and robustness to noise. The good performance of
the controller was also acknowledged by the medical staff
that was present in the surgery room.

Interesting topics for future research include a con-
vergence analysis of the recursive estimates and a stability
analysis of the adaptive controller.
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