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SUMMARY

Humans are intrinsically social animals, forming
enduring affiliative bonds [1]. However, a striking
minoritywith psychopathic traits, who presentwith vi-
olent and antisocial behaviors, tend to value other
people only insofar as they contribute to their own
advancement [2, 3]. Extant research has addressed
theneurocognitiveprocessesassociatedwithaggres-
sion in such individuals, but we know remarkably little
about processes underlying their atypical social
affiliation. This is surprising, given the importance of
affiliation and bonding in promoting social order and
reducing aggression [4, 5]. Human laughter engages
brain areas that facilitate social reciprocity and
emotional resonance, consistent with its established
role in promoting affiliation and social cohesion [6–8].
We show that, compared with typically developing
boys, those at risk for antisocial behavior in general
(irrespective of their risk of psychopathy) display
reduced neural response to laughter in the supple-
mentary motor area, a premotor region thought to
facilitate motor readiness to join in during social
behavior [9–11]. Those at highest risk for developing
psychopathy additionally show reduced neural re-
sponses to laughter in the anterior insula. This region
is implicated in auditory-motor processing and in
linking action tendencies with emotional experience
and subjective feelings [10, 12, 13]. Furthermore, this
same group reports reduced desire to join in with
the laughter of others—a behavioral profile in part
accounted for by the attenuated anterior insula
response. These findings suggest that atypical pro-
cessing of laughter could represent a novel mecha-
nism that impoverishes social relationships and in-
creases risk for psychopathy and antisocial behavior.
Current Biology 27, 3049–3055, Octo
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RESULTS AND DISCUSSION

Laughter is a universal expression of emotion [14, 15] used to

maintain social bonds [6, 9]. It is a highly contagious behavior:

it can be primed simply by listening to others’ laughter [16].

Such emotional contagion has been posited as a mechanism

for facilitating the coupling of emotions and behavior within

groups, increasing cooperation, cohesiveness, and social

connectedness [6, 9, 10]. The social nature of laughter is evident

in that an individual is up to 30 times more likely to laugh when

with others than when alone [17]. Laughter also plays a role in

the vicarious experience of positive emotions, and it triggers

the endogenous opioid system, argued to be key for prosocial

communication and social bonding in primates and other mam-

mals [9, 18, 19]. Neuroimaging studies demonstrate that listening

to laughter automatically recruits motor and premotor regions

involved in the production of emotional expressions [6], including

the precentral gyrus, supplementary motor area, inferior frontal

gyrus, and anterior insula [7, 8, 10, 20]. This preparatory motor

response is thought to facilitate joining in with others’ positive

vocalizations during social behavior, representing a neural

mechanism for experiencing these emotions vicariously and

promoting social connectedness [9, 10]. These findings from

typical individuals have established laughter as an ideal probe

for examining atypical social affiliation and connectedness.

Individuals with psychopathy show a reduced capacity to

develop social relationships founded on an enjoyment of

prosocial interaction or concern for others’ well-being [3]. More

broadly, individuals with persistent antisocial behavior show

reduced prosocial functioning and act in way that violates the

rights of other people [21]. Investigating potential mechanisms

underpinning impoverished social connectedness in individuals

at risk of psychopathy and persistent antisocial behavior has

the potential to inform the design of therapeutic approaches to

foster prosocial behavior in these individuals who incur substan-

tial societal costs [22]. Remarkably, there has been no system-

atic neurocognitive investigation of potential mechanisms of

impaired social connectedness in this group of people. Instead,

research has focused on how individuals with psychopathic
ber 9, 2017 ª 2017 The Author(s). Published by Elsevier Ltd. 3049
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traits and persistent antisocial behavior process other people’s

distress [23]. For example, extant research shows that adults

with psychopathy and children at increased risk for psychopathy

(those with disruptive behaviors and ‘‘callous-unemotional

traits’’ [2]) show reduced neural and physiological responses to

others’ fear and pain [23–26]. However, unlike individuals with

autism, they do not have difficulties taking the perspective of

other people [27, 28]. Knowing what other people think but not

resonating with their feelings facilitates the ability to manipulate

and deceive others, in line with one’s own self-interest [29]. While

prosocial emotions likely evolved to promote mutualistic social

investment and collaboration within groups [30], their absence

may represent an alternative adaptive strategy involving promo-

tion of oneself at others’ expense [31–33]. Although previous

research has addressed the underpinnings of increased behav-

ioral aggression in those at risk for psychopathy and persistent

antisocial behavior [34], it fails to fully account for the impover-

ished social affiliation also evident in this group of people [35].

We hypothesized that boys with disruptive behaviors would be

less responsive to others’ laughter at the neural and behavioral

levels, reflecting a potential mechanism underpinning impover-

ished social connectedness. Specifically, we hypothesized that

compared to typically developing controls, boys with disruptive

behaviors would show an attenuated subjective desire to join in

with the laughter of others and reduced neural activation across

premotor and motor areas involved in processing laughter and

positive vocalizations: the precentral gyrus, supplementary mo-

tor area (SMA), inferior frontal gyrus (IFG), and anterior insula

(AI) [7, 10, 11, 20]. These regions are implicated in auditory-motor

integration and motor readiness to join in [7, 10, 11, 20]. We hy-

pothesized that attenuated responsiveness to laughter across

these regions would be particularly characteristic of boys with

high levels of callous-unemotional traits and disruptive behaviors

who show the most impoverished patterns of social affiliation.

Finally, we hypothesized that neural responses to laughter across

our regions of interestwould in part explain differences in the sub-

jective desire to join in with laughter. This could particularly be the

case in the AI, given that, in addition to showing auditory-motor

properties, the insular cortex is thought to play a role in linking

action information with emotional or motivational experience

[12, 13, 36] and in representing interoceptive information,

providing the basis for subjective emotional awareness [13, 37].

Here we investigated behavioral and neural responses to

laughter in 11- to 16-year-old boys with (1) disruptive behaviors

and high callous-unemotional traits (N = 32); (2) disruptive behav-

iors and low callous-unemotional traits (N = 30); and (3) matched

typically developing controls (N = 31). Groups were matched for

IQ, age, handedness, ethnicity, and socioeconomic status (de-

mographic information reported in STARMethods).We recorded

fMRI responses while participants listened to genuine laughter,

interleaved with posed laughter and distractor crying sounds.

Participants were instructed simply to attend to the stimuli to

ensure that potential responses seen in premotor and motor

systems could not be accounted for by task-related motor or

decisional processes [7, 10, 20]. To assess whether group

differences reflected reactivity to genuine laughter as a basic

emotional cue, rather than higher-level processing of the social

meaning of laughter, we also included posed laughter (which is

more volitional, rather than spontaneous/involuntary [7]). After
3050 Current Biology 27, 3049–3055, October 9, 2017
scanning, participants completed a behavioral task in which

they evaluated each sound on two dimensions (presented in

separate blocks) using a seven-point scale: (1) ‘‘How much

does hearing the sound make you feel like joining in and/or

feeling the emotion?’’ (a behavioral measure of subjective

laughter contagion) and (2) ‘‘How much does the sound reflect

a genuinely felt emotion?’’ (a behavioral measure of the ability

to infer laughter authenticity). Measuring the discrimination

between the two types of laughter at behavioral and neural

levels allowed us to index the ability to infer the authenticity of

the emotional state of the speaker (‘‘emotional authenticity’’)

(see STAR Methods).

Whole-brain analyses of responses to genuine laughter across

all participants revealed activity across auditory, motor, and pre-

motor, as well as limbic, medial pre-frontal and anterior temporal

areas (Figure 1A; Table S1), consistent with previous studies

[7, 10, 20].Whenwecompared responses for typically developing

boys versus boys with disruptive behavior and high callous-un-

emotional traits, ROI analyses using small-volume family-wise er-

ror correction (SVC FWE) [38] revealed the predicted pattern of

reduced response in boys with high callous-unemotional traits

in the left AI (MNI coordinates for peak voxel: x = �34, y = 3,

z = �15; t(1,61) = 4.14, z = 3.87; p = 0.035, SVC FWE; cluster

size = 46 voxels) (Figure 1B). In the SMA, differences were de-

tected for typically developing boys versus disruptive boys with

high callous-unemotional traits (MNI coordinates for peak voxel:

x = �14, y = �9, z = 58; t(1,61) = 4.14, z = 3.87; p = 0.043, SVC

FWE; cluster size = 64 voxels; Figure 1B) and for typically devel-

oping boys versus disruptive boys with low callous-unemotional

traits (cluster 1, MNI coordinates for peak voxel: x = 15, y = 6,

z = 52; t(1,59) = 4.42, z = 4.09; p = 0.02, SVC FWE; cluster size =

132 voxels; cluster 2, MNI coordinates for peak voxel: x = �14,

y = �1, z = 52; t(1,59) = 4.24, z = 3.95; p = 0.03, SVC FWE; cluster

size = 101 voxels). For disruptive boys with low callous-unemo-

tional traits, no group differences compared with typically devel-

oping boys were found in the remaining ROIs: the precentral

gyrus, AI, and IFG. Follow-up analyses also indicated that the

two groups of disruptive boys, those with high versus low

callous-unemotional traits, did not significantly differ from each

other in those ROIs that differentiated either group from the typi-

cally developing boys (all p > 0.16), and no additional groupdiffer-

ences emerged in whole-brain comparisons.

Behaviorally, boys with high callous-unemotional traits re-

ported less desire to join in with genuine laughter compared to

typically developing boys (Table 1; Figure 2A), whereas those

with low callous-unemotional traits did not differ from typically

developing boys or boys with high callous-unemotional traits

(Table 1). Given the behavioral differences between typically

developing boys and boys with high callous-unemotional traits,

we also examined the relationship between their behavioral

and brain data. We found a correlation between ratings of desire

to join in with laughter and AI responses to laughter across the

two groups (r = 0.34, p < 0.01; Figure 2B); in addition, impor-

tantly, AI responses to laughter mediated the effect of group

on ratings of desire to join in with laughter. The total effect of

group on ratings of desire to join in was �0.89 (95% confidence

interval [CI]: �1.48, �0.30), and the indirect (mediated) effect

through AI responses was �0.24 (95% CI: �0.57, �0.05), indi-

cating that approximately 27% of the effect of group on desire
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Figure 1. Neural Responses to Laughter across All Participants and Differences between Groups

(A) Responses to genuine laughter versus rest across all participants, N = 93, p < 0.001 peak level uncorrected, family-wise error (FWE) corrected (p < 0.05) at

cluster level. See also Table S1.

(B) Responses to genuine laughter (versus rest) in typically developing (TD) boys versus boys with disruptive behavior and high callous-unemotional traits

(DB/HCU) (thresholded at p < 0.05 small-volume corrected FWE). See also Table S3. Error bars represent the standard error of the mean.
to join in wasmediated by AI responses [39] (full mediationmodel

in Figure S1). No suchmediation effect was detected in the SMA.

Main analyses did not include covariates such as ADHD symp-

toms, on the basis that it is problematic to covary for variables

intrinsically related to group assignment [40]. However, when

analyses were re-run including ADHD symptoms as covariates,

all group comparisons remained significant.

Finally, to examine whether reductions in brain responses

related to affiliative rather than higher-level socio-cognitive pro-

cesses, we contrasted cortical and behavioral discrimination be-

tween genuine and posed laughter. Across all participants,

whole-brain analyses indicated that genuine laughter elicited

stronger responses than posed laughter in the right temporal

pole, right IFG, and left superior temporal gyrus (Table S2). These

areas are consistent with previous studies on emotional authen-

ticity processing in the auditory domain [7, 41]. They might be

key for processing the prominent acoustic hallmarks that signal

genuine laughter (e.g., higher pitch [6, 7, 42]) and for the higher-or-

der socio-emotional and evaluative processes [43] needed

to infer whether laughter is posed or genuine. Of the ROIs,

increased responses to genuine laughter were only found in the

IFG. No supra-threshold clusters were found for the contrast

posed laughter > genuine laughter. At the set statistical thresh-

olds, neural and behavioral discrimination between genuine and

posed laughter was similar between typically developing boys

versus boys with high callous-unemotional traits and between

typically developing boys versus boys with low callous-unemo-

tional traits (for behavioral discrimination, see Table 1; for neural

discrimination, see Tables S3 and S4, which for completeness

report results at p < 0.001 uncorrected, cluster sizeR 10 voxels).
Thus, the capacity to detect emotional authenticity at the neural

and behavioral levels did not differ across the three groups.

As an additional control measure, we examinedwhether differ-

ences in basic auditory responses to laughter could account for

the observed group differences in response to genuine laughter.

There were no group differences in responses to laughter within

primary auditory regions or within 10-mm spheres around audi-

tory peaks revealed by the main effect of laughter across all par-

ticipants (left: MNI coordinates: x =�46, y =�18, z = 1; right: MNI

coordinates: x = 51, y = �10, z = �2), both for typically devel-

oping boys versus boys with high callous-unemotional traits

and for typically developing boys versus boys with low callous-

unemotional traits, suggesting no differences in how the groups

responded to laughter at a basic auditory processing level.

These findings provide the first empirical evidence that boys

with disruptive behavior show atypical neural responses to

laughter, a primitive and potent social cue that plays a major

role in facilitating social affiliation and promoting andmaintaining

social bonds. Boys with disruptive behavior and high callous-

unemotional traits showed reduced responses in the AI, a region

associated with automatic facilitation of motor responses to

emotional vocalizations [10, 20], as well as with the experience

of emotions and with linking action information with emotional

and motivational processes [12, 13, 36]. Reduced AI responses

to genuine laughter partially explained the lower subjective

desire to join in with others’ laughter in boys with high callous-

unemotional traits compared with typically developing boys.

This suggests a link between AI response and the perceived

contagiousness of laughter, which reflects its socio-emotional

and motivational salience. More broadly, both groups of boys
Current Biology 27, 3049–3055, October 9, 2017 3051



Table 1. Participant Characteristics and Questionnaire Data

TD Controls DB/HCU DB/LCU

TD versus

DB/HCU

TD versus

DB/LCU

DB/HCU versus

DB/LCU

(N = 31) (N = 32) (N = 30) p Valuea p Valuea p Valuea

Characteristics and Questionnaires

Age 13.92 (1.80) 14.66 (1.37) 14.42 (1.61) p = 0.213b p > 0.3 p > 0.3

Socio-economic statusc 2.83 (1.12) 3.08 (0.82) 2.70 (1.17) p > 0.3b p > 0.3 p > 0.3b

F-IQd 101.23 (12.37) 96.90 (11.36) 101.55 (14.18) p > 0.3 p > 0.3 p > 0.3b

Verbal T scored 50.42 (8.54) 46.29 (9.31) 52.97 (11.19) p = 0.221 p > 0.3b p = 0.044

Performance T scored 50.61 (10.63) 49.71 (7.74) 48.24 (7.76) p > 0.3 p > 0.3 p > 0.3

Ethnicity 18 white,

4 black, 9 mixed

17 white,

6 black, 9 mixed

20 white,

3 black, 7 mixed

p > 0.3 p > 0.3 p > 0.3

Handedness 26 right, 5 left 28 right, 4 left 29 right, 1 left p > 0.3 p > 0.3 p > 0.3

Inventory of callous-unemotional traitse 24.81 (6.81) 51.19 (6.76) 32.75 (7.43) p < 0.001 p < 0.001 p < 0.001

Conduct disorder symptomse 0.68 (0.79) 11.44 (4.98) 5.43 (2.22) p < 0.001b p < 0.001b p < 0.001b

ADHD symptomsf,g 12.60 (7.68) 25.60 (11.75) 22.94 (11.38) p < 0.001b p < 0.001b p > 0.3

Generalized anxiety disorder symptomsf,g 3.66 (1.96) 9.25 (4.17) 8.43 (4.89) p < 0.001b p < 0.001b p > 0.3

Major depressive symptomsf,h 3.19 (1.83) 6.89 (4.37) 5.79 (3.54) p < 0.001b p < 0.003b p > 0.3

Alcohol use and disordersi 0.51 (1.47) 2.42 (3.92) 2.98 (5.46) p = 0.041b p = 0.068b p > 0.3

Drug use and disordersi,j 0.13 (0.72) 2.13 (4.43) 3.34 (4.92) p = 0.051b p < 0.005b p > 0.3

Self-rated pubertal developmenti,k 8.90 (2.86) 10.31 (2.87) 8.80 (3.87) p = 0.171 p > 0.3b p = 0.261

Behavioral Responses to Laughter

Desire to join in with genuine laughterl 4.15 (1.20) 3.26 (1.14) 3.54 (1.20) p = 0.011 p = 0.161 p > 0.3

Authenticity detectionl 1.13 (0.83) 0.96 (0.76) 0.87 (0.79) p > 0.3 p > 0.3 p > 0.3

Abbreviations: F-IQ, full IQ score calculated on two-subset Wechsler Abbreviated Scale of Intelligence; ADHD, attention-deficit/hyperactivity disorder;

DB/HCU, boys with disruptive behavior and high callous-unemotional traits; DB/LCU, boys with disruptive behavior and low callous-unemotional

traits.
aAll p values are Bonferroni corrected and obtained from t tests, except for ethnicity and handedness (Bonferroni-corrected Fisher’s exact tests used).
bWelch’s t test used due to inhomogeneity of variance between groups.
cMissing data from three DB/LCU participants.
dMissing data from two participants (one DB/LCU and one DB/HCU).
eMeasures taken at screening phase, comprising parent and teacher report.
fMeasures taken at scanning session: parent report.
gMissing data from one DB/HCU participant.
hMissing data from two DB/LCU participants.
iChild self-report at scanning session.
jMissing data from one DB/LCU participant.
kMissing data from one TD and one DB/LCU participant.
lAssessed using a behavioral task at scanning session.
with disruptive behavior (irrespective of level of callous-unemo-

tional traits) showed reduced responses in the SMA—also part

of the network thought to facilitate the automatic priming of

laughter when one hears other people laughing [6, 7, 11].

Our findings suggest that group differences in responses to

genuine laughter were not attributable to difficulties in process-

ing laughter at a basic auditory level or in discriminating different

types of laughter (i.e., the capacity to infer social meaning). The

latter finding is consistent with evidence of intact theory of mind

ability in boys with disruptive behaviors [27], although it remains

unclear which precise mechanism the boys with disruptive be-

haviors relied upon to infer authenticity: more basic detection

of the acoustic markers that signal authenticity, higher-order

socio-emotional and evaluative processes, or both combined.

Additionally, the posed stimuli used here were generated by reg-

ular (untrained) speakers in a relatively artificial setting. These

stimuli are typically perceived as natural and positive, but more
3052 Current Biology 27, 3049–3055, October 9, 2017
research will be needed to determine whether similar findings

would be obtained if we had used contextually appropriate

posed laughter deployed by trained actors, for example.

Notably, in the present study, direct comparisons between

disruptive boys with high and low callous-unemotional traits re-

vealed no significant differences in neural response across ROIs

that differentiated either group from typically developing boys.

Although significantly reduced AI responses were only seen for

the comparison between typically developing boys and boys

with high callous-unemotional traits (and, as such, we ran medi-

ation analysis on this group comparison only), we cannot firmly

establish the selectivity of this finding to the high callous-unemo-

tional group. It is, of course, possible that different develop-

mental histories underlie atypical laughter processing in boys

with high versus low callous-unemotional traits, something that

warrants further investigation. Development of social connect-

edness is a bidirectional process, and the degree to which neural
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Figure 2. Group Differences on Perceived Contagiousness of Laughter and Relationship with Neural Responses in the Anterior Insula

(A) Behavioral data on reported desire to join in with genuine laughter for TD versus DB/HCU boys (significant group difference: t(61) = 3.02, p < 0.01). Error bars

represent the standard error of the mean.

(B) Anterior insula response for genuine laughter versus rest (beta values extracted from a 10-mm sphere around the peak of the cluster) plotted against reported

desire to join in with genuine laughter across TD and DB/HCU boys.
responses to laughter and subjective desire to join in with

laughter are a consequence of atypical social connectedness

versus experience-independent factors is unclear. This may

also vary between children with high versus low callous-unemo-

tional traits. Indeed, potential causes of reduced social connect-

edness that could give rise to atypical laughter processing might

include the canalized development of an alternative social strat-

egy centered on self-interested rather than collaborative behav-

iors, or various early life experiences or caregiver behaviors.

Limitations of the current study include the use of a research

diagnosis of conduct disorder as a basis for identifying boys

with disruptive behavior, as well as a focus onmales. Replication

of these findings in a clinically diagnosed sample is important, as

well as investigation of potential gender differences. Additionally,

our task did not allow us to investigate whether reductions in

behavioral contagion and anterior insula response in boys at

risk for psychopathy and persistent antisocial behavior were pre-

sent for other positive emotional expressions. Future studies

should address whether these findings are specific to laughter

or extend to other types of positive vocalizations, for example

sounds of achievement or pleasure [7, 20], or to non-vocal social

gestures. Furthermore, future studies could include objective

indices of contagion responses (e.g., facial electromyography),

in addition to the self-report measure of motivation to join

in with laughter that we used here. This could help elucidate

whether the observed profile of behavioral responses

reflects abnormalities in automatic motor contagion responses

to laughter, in more subjective (conscious) components of

emotional contagion, or both. The combined pattern of brain

and behavioral results we obtained suggests that both might

be involved. The areas where atypical responses were found,

SMA and AI, are both part of the auditory-motor network that

has been argued to support the automatic impulse to respond

to the emotional expressions of others [7, 11, 20]. However, we

could link perceived emotional contagion with activity in the AI

only, not with SMA activity. Given that AI has been additionally

implicated in emotional experience and subjective feelings
[13, 37], this could mean that our behavioral measure is

capturing conscious aspects of contagion better than more

automatic motor resonance. Objective indices of motor reso-

nance would potentially provide the additional sensitivity needed

to detect whether the reduced SMA activity in boys with disrup-

tive behaviors reflects atypical automatic motor contagion.

Future studies could also include physiological responses such

as heart rate and respiration to index arousal in response to

laughter stimuli.

Despite these limitations, the current findings considerably

extend our understanding of the neurocognitive processing of

laughter in boys at risk for psychopathy. To date, explanations

for the development of psychopathy have focused on the role

of negative emotions, in particular deficits in processing other

people’s distress [23]. Here we demonstrate that atypical pro-

cessing of laughter, a potent positive social signal that plays a

key role in social grooming and bonding [6, 9, 44], characterizes

boys at risk for psychopathy and persistent antisocial behavior.

This could represent a novel mechanism that may impoverish

social relationships and potentiate a psychopathic trajectory,

consistent with evolutionary accounts that suggest that psy-

chopathy is an alternative strategy to mutualistic social invest-

ment driven by shared emotional experience and collaboration

[32–34]. Alternatively, differences in neural responses to laughter

could reflect a consequence of poor social connectedness over

the course of development driven by aberrant caregiver signals.

This may represent another possible risk pathway to persistent

antisocial behavior. This study highlights the need for systematic

longitudinal research to investigate the causal relationship be-

tween atypical responses to affiliative social cues and psychop-

athy. Such research would make it possible to explore the direc-

tionality of effects in different groups of children with disruptive

behaviors and the degree to which these processes are under

reciprocal influence. This, in turn, would motivate further inquiry

into prevention and intervention components that may success-

fully promote the formation of affiliative bonds and reduce the

risk of antisocial behavior.
Current Biology 27, 3049–3055, October 9, 2017 3053
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Data for each participant for group (typically developing,

disruptive/high callous-unemotional traits, disruptive/low

callous-unemotional traits), parameter estimates for

bilateral anterior insula (AI) and supplementary motor area

(SMA) regions of interest (ROIs) for the contrast genuine

laughter versus baseline, and behavioral ratings of

authenticity and contagion.

This paper Data S1

Software and Algorithms

Statistical Parametric Mapping (SPM, version 8) [38] http://www.fil.ion.ucl.ac.uk/spm/

software/spm8/

WFU PickAtlas Toolbox with Automated Anatomical

Labeling Atlas

[45, 46] http://fmri.wfubmc.edu/software/

PickAtlas; http://www.fil.ion.ucl.

ac.uk/spm/ext/

Human Motor Area Template [47] http://lrnlab.org/

SPM anatomy toolbox [48] http://www.fil.ion.ucl.ac.uk/spm/ext/

MarsBaR M. Brett et al., 2002,

Conference on Functional

Mapping of the Human

Brain, abstract

http://marsbar.sourceforge.net/

Process [49] http://www.processmacro.org

Cogent 2000 Cogent 2000 team,

Functional Imaging

Lab/ Institute of Cognitive

Neuroscience, UCL, UK

http://www.vislab.ucl.ac.uk/

cogent_2000.php

Psychtoolbox [50] http://psychtoolbox.org/
CONTACT FOR RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Essi Viding (e.viding@

ucl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Boys aged 11-16 years were recruited from the community via newspaper advertisements, and local mainstream and specialist pro-

vision schools. Screening questionnaires were administered to parents of 360 boys and teachers of 215 boys whose families ex-

pressed an interest in taking part and provided informed consent. The screening measures yielded a research diagnosis of current

conduct problems (our index of disruptive behavior); dimensional assessment of callous-unemotional traits; an overall psychopathol-

ogy screen; demographic data for group-matching purposes (i.e., socioeconomic status, parent-defined ethnicity, and handedness);

and information regarding previous neurologic or psychiatric diagnoses.

Current conduct disorder symptoms were assessed using the Child and Adolescent Symptom Inventory– 4R (CASI-4R) –Conduct

Disorder (CASI-CD) subscale [51]. Callous-unemotional traits were assessed using the Inventory of Callous-Unemotional Traits (ICU)

[52]. Both were scored by taking the highest ratings from either the parent or the teacher questionnaire for any given item [53]. For the

CASI-CD scale, inclusion in the disruptive behavior group required that the score met either parent or teacher severity cut-off (parent

report: cut-off = 4+ [ages 10–12] and 3+ [ages 12–16]; teacher report: cut-off = 3+ [ages 10–12], 4+ [ages 12–14], and 6+ [ages

15–16]). These scores are associated with a clinical diagnosis of conduct disorder [54]. Typically developing participants were

required to score in the normal range for this measure, and below the atypical cut-off for total difficulties on the Strengths and Dif-

ficulties Questionnaire [55].

Automatic exclusion criteria for both disruptive and typically developing groups included a previous diagnosis of any neurological

or psychotic disorder, or current psychiatric medication. To recruit a representative group of children with conduct problems,
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common comorbidities (ADHD, generalized anxiety disorder [GAD], depression, and substance/ alcohol abuse) were not used as

exclusion criteria, but current parent-reported symptom counts were obtained during scanning sessions, so that their possible

contribution to the findings could be systematically assessed.

On the basis of the screening information, one hundred participants took part in the fMRI scanning session. Participants were pro-

vided with a complete description of the study. Informed consent was obtained from parents and written assent from participants. All

aspects of the studywere approved by the University College London Research Ethics Committee (Project ID number: 0622/001) and

work was conducted in accordance with the Declaration of Helsinki.

Two participants (onewith disruptive behavior and one typically developing) withdrew from the session due to poor tolerance of the

scanner environment. Data collection was terminated for a further two participants (both with disruptive behavior) due to fatigue. Of

the sample who completed scanning (64 with disruptive behavior, 32 typically developing), data from three participants (two disrup-

tive and one typical) was excluded due to poor compliance and lack of reliable auditory responses for task versus baseline. The re-

maining boys in the disruptive behavior groupwere designated into high and low callous-unemotional groups based on amedian split

of their scores on the ICU. All typically developing participants scored below the disruptive group median (42.24) on the ICU. Demo-

graphic and questionnaire data for participants are summarized in Table 1.

METHOD DETAILS

Psychometric and Questionnaire Measures
During the experimental session, participants completed the two-subtest version of the Wechsler Abbreviated Scale of Intelligence

[56], and parents completed the full CASI-4R [51], the Alcohol Use Disorder Identification Test [57] and the Drug Use Disorder Iden-

tification Test [58]. Group differences were observed (Table 1) and were controlled for in subsidiary analyses.

Experimental Stimuli
The laughter stimuli consisted of 30 genuine and 30 posed laughs. We used vocalizations produced by several male and female

speakers previously validated and used in behavioral and neuroimaging experiments [7, 59]. They were generated by six speakers

(three female) in a sound-proof anechoic chamber at University College London. Genuine laughter was elicited using an amusement

induction situation in a social interactive setting: speakers were shown video clips, which they had identified beforehand as amusing

and that would easily cause them to laugh aloud; the experimenters, who had known all the speakers for a long time, interacted with

them throughout the recording session to promote the naturalness and the social nature of the laughs (as they occur between friends

in everyday interactions). Procedural details are provided elsewhere [7, 59]. For posed laughter, the speakers were asked to simulate

laughter in the absence of any external stimulation, and they were encouraged to make it sound natural and positive. Genuine and

posed laughs were matched for duration (genuine laughs, M = 2,461 ms; posed laughs, M = 2,296), and pilot data (N = 12) confirmed

that genuine laughs are perceived as highly authentic (M = 5.94, on an authenticity scale from 1 to 7; posed laughs, M = 3.27). Thirty

crying soundswere also included in the experiment as an emotional distractor condition, so that participants were less likely to detect

that the manipulation concerned laughter specifically. Crying sounds consisted of a mix of genuine and posed stimuli and were pro-

duced by the same speakers as the laughs.

fMRI Acquisition and Procedure
A Siemens Avanto 1.5-T MRI scanner (Siemens Medical, Erlangen, Germany) using a 32-channel birdcage head coil was used to

acquire a 5.5 min three-dimensional T1-weighted structural scan, and multislice T2*-weighted echo planar volumes with blood-

oxygen level-dependent contrast. The echo planar imaging sequence was designed to optimize signal detection and reduce dropout

in the orbitofrontal cortex and amygdala [60]. Acquisition parameters were as follows: 42 2-mm slices acquired in an ascending tra-

jectory with a 1-mmgap (voxel size = 33 3 x 2mm); TE = 50ms; slice repetition time = 87ms, TR = 3654ms; slice tilt = 25�+/�5� (T.C);
flip angle = 90�; field of view = 192 mm; phase oversampling = 12%.

Participants were told that they would hear different kinds of sounds, and that they should listen carefully to them. They were

reminded that they should keep their head and face as still as possible throughout the experiment, and their eyes should be

open. They were reminded that they did not need to press any response buttons or make decisions about the sounds (passive

listening paradigm). Throughout the experiment, participants were monitored via an in bore camera to ensure that they were alert

and staying still.

The sounds were presented in one run of 230 echo-planar whole-brain volumes lasting 14 min. The first 5 volumes of the run were

discarded to allow longitudinal magnetization to reach equilibrium. Auditory onsets occurred after a 1.5 s (±0.5 s jitter) fixation period

and, on each trial, participants listened to 3 randomly selected sounds of the same type. There were 75 trials in total: 30 of genuine

laughter, 30 of posed laughter, 10 of crying sounds, plus 5 rest/silence trials. The sounds were presented in a pseudo-randomized

order for each participant, and we ensured that no more than 3 trials of the same type were consecutively presented. Each of

the 60 laughter sounds was presented three times during the experiment, and each of the 30 crying sounds was presented

once. Sounds were played using Psychtoolbox [50] via a Sony STR-DH510 digital AV control center (Sony, Basingstoke, UK) and

MRI-compatible insert earphones (Sensimetrics Corporation, Malden, MA, USA). Noise attenuation was achieved through careful

fitting and insertion of correctly sized silicone headphone tips, and custom made foam ear cushions adjusted to accommodate

the participant’s head.
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Post-Scanning Behavioral Task
After the scanning, participants made behavioral ratings for each of the sound stimuli presented during the fMRI task. For one task,

participants were asked to rate ‘‘contagion’’: whether listening to the sound made them feel like joining in and/or feeling the emotion.

For the second, they were asked to rate ‘‘authenticity’’: whether they thought that the sounds were real or posed/faked. For the

authenticity task, participants were informed that half of the sounds were in fact real and half were posed/faked. Participants

made ratings for each stimulus using a seven-point scale. Sounds were played using Cogent 2000 (Cogent 2000, Functional Imaging

Lab/ Institute of Cognitive Neuroscience, UCL, UK) via a Dell Latitude 3330 laptop (Dell, Dublin, Ireland) using AERO 7 Active Noise

Cancelling Headphones (7dayshop, Guernsey).

For both tasks, stimuli were presented in a randomorder across six blocks, each consisting of fifteen stimuli. At the end of each set,

participants could take a break before proceeding to the next. Each sound stimulus was presented for its duration, after which a

question mark appeared on the screen, and participants could make their response. The response scale was visible throughout

the stimulus presentation and response period (3000 ms). After participants made their response, the selected option was indicated

on the screen for 750ms. Subsequently, a fixation cross was presented for 500 ms before the presentation of the next stimulus. Task

order (i.e., contagion versus authenticity) was pseudo-randomized across participants, and matched across groups. Authenticity

was calculated as an index of discrimination by measuring the effect size (Cohen’s d) of the authenticity rating difference for genuine

laughter and posed laughter stimuli within each participant. Contagion reflected the mean absolute rating for each participant.

Internal consistency for the genuine laughter contagion measure was a = 0.93. For the authenticity measure, internal consistency

was a = 0.87 for genuine laughter and a = 0.84 for posed laughter. Behaviorally, all groups rated genuine laughs as significantly

more authentic than posed ones (ps < 0.001) and, crucially, there were no group differences in the magnitude of such discrimination

(Table 1).

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI Analysis
Scanning data were analyzed using Statistical Parametric Mapping software (SPM version 8; Wellcome Trust Centre for Neuroimag-

ing, UK). Functional images were realigned to the first image, co-registered to the structural image, and spatially normalized to MNI

space using parameters acquired from segmentation [61]. They were then resampled to 23 2 x 2 mm voxels and smoothed with an

8 mm Gaussian kernel. In order to check our data for motion artifacts, we used a custom script detecting between-volume move-

ments greater than 0.5mm or 1 degree of rotation. Where movements were detected, the scan in which the movement occurred

and the seven scans surrounding it were manually inspected for visible motion artifacts. In addition, first level masks were visually

inspected for motion-related distortions. Volumes showing visible motion-related distortions were removed and interpolated using

adjacent scans to prevent distortions of the between-subjects mask. Interpolated scans were then regressed out in the first-level

design matrix. Visible motion-related distortions were found for 16 participants (typically developing, n = 4; disruptive/high

callous-unemotional, n = 9; disruptive/low callous-unemotional, n = 3), and always constituted less than 10% of each participant’s

data.

Event-related responses were modeled using the canonical hemodynamic response function, with event onsets modeled from the

acoustic onset of the first stimulus in each trial to the offset of the third stimulus. Each condition wasmodeled as a separate regressor

in a generalized linear model at the first level (single-subject), and six movement parameters (3 translations, 3 rotations) were also

included as regressors of no interest. An additional regressor was included for participants with interpolated scans. The rest/silence

trials and the fixation periods were used as implicit baseline. For each participant, T-contrast images were created for the following

comparisons: (1) genuine laughter > baseline, (2) genuine laughter > posed laughter, and (3) posed laughter > genuine laughter. These

images were then entered into second-level models: 1-sample t tests were used to examine effects across all participants; and

2-sample t tests were used to compare typically developing with disruptive/high callous-unemotional boys, and typically developing

with disruptive/low callous-unemotional boys.Whole-brainmain effects across all participants are reported for the contrasts Genuine

Laughter > Rest (Table S1) and Genuine Laughter > Posed Laughter (Table S2). Whole-brain condition x group interactions for the

contrast Genuine Laughter > Rest andGenuine Laughter > Posed Laughter are presented comparing typically developing controls to

disruptive boys with high callous-unemotional traits (Table S3) and comparing typically developing controls to disruptive boys with

low callous-unemotional traits (Table S4).

Regions of Interest (ROIs)
For comparisons between groups, we conducted ROI analyses within regions for which we had a priori hypotheses, based on pre-

vious fMRI experiments of nonverbal emotional vocalizations [7, 10, 20]. For the precentral gyrus and inferior frontal gyrus, we used

the standard (bilateral) anatomical masks from the Automated Anatomical Labeling (AAL) atlas in theWFUPickAtlas Toolbox for SPM

[45, 46]. The same atlas was used for the insula, but we modified the original anatomical mask to include all voxels y > 0, on the basis

of evidence that responses to nonverbal vocalizations peak in the anterior portion of this region [7, 10, 20]. The supplementary motor

area (SMA) ROI included pre-SMA and SMA-proper, and it was defined using the Human Motor Area Template, which was created

by combining results of a meta-analysis of 126 functional studies with anatomical guidelines [47]. For the control analysis within

primary auditory regions, we used the SPM Anatomy Toolbox to delineate regions TE1.0, TE1.1 and TE1.2 of bilateral auditory

cortex [48].
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Brain-Behavior Associations
For the analysis of brain-behavior associations, we used the MarsBaR Toolbox (M. Brett et al., 2002, Conference on Functional

Mapping of the Human Brain, abstract) to extract data within small spheres (10mm radius) centered on the peaks of the effect of

group. The mediation analyses were computed using Process [49]; we estimated total, direct, and indirect effects of group on

perceived laughter contagiousness (including neural responses asmediators), and inference was based on bootstrap bias corrected

95% confidence intervals (95% CIs were estimated using a bias corrected bootstrap method, 20,000 samples). The full mediation

model is shown in Figure S1.

DATA AND SOFTWARE AVAILABILITY

Data for each participant for group (typically developing, disruptive/high callous-unemotional traits, disruptive/low callous-unemo-

tional traits), parameter estimates for bilateral anterior insula (AI) and supplementary motor area (SMA) regions of interest (ROIs)

for the contrast genuine laughter versus baseline, and behavioral ratings of authenticity and contagion are provided as an excel

file (Data S1). Due to ethical restrictions, we are unable to provide demographic or questionnaire data for individual participants

from which they could potentially be identified or identify themselves.
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