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Abstract

For optimal control problems involving ordinary differential equations and functional inequality state
constraints, the maximum principle may degenerate, producing no useful information about minimizers.
This is known as the degeneracy phenomenon. Several non-degenerate forms of the maximum principle,
valid under different constraint qualifications, have been proposed in the literature.

In this paper we propose a new constraint qualification under which a nondegenerate maximum principle
is validated. In contrast with existing results, our constraint qualification is of an integral type. An advantage
of the proposed constraint qualification is that it is verified on a larger class of problems with nonsmooth
data and convex velocity sets.
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1. INTRODUCTION

Since the birth of optimal control theory, commonly assumed to be in the late 50’s of last century ([1]),
the maximum principle has been a powerful and widely used analytic tool. As it is well known, maximum
principles provide a set of necessary optimality conditions useful to identify, among admissible solutions,
candidates to minimizers. The original statement of the maximum principle presented by Pontryagin et
al. has been generalized, strengthened and extended in many different ways. A major driving force behind
these and other developments in optimal control theory has been the increasing number of applications.

Since state constraints are repeatedly encountered in applications, it is no surprise that the state con-
strained maximum principles have been the focus of intense research. Particularly relevant for our context
is the work of Dubovitskii and Milyutin [2], which introduced measures in the maximum principle for such
problems, and its extension to nonsmooth problems by Vinter and Pappas [3]. The state constrained maxi-
mum principle may exhibit a troublesome shortcoming. Indeed, and as it is amply illustrated by an example
by Dubovitskii (see description in [4] and references therein), the maximum principle may degenerate if one
end of the optimal trajectory belongs to the boundary of the state constraints. This phenomenon is known
in the literature as the degeneracy phenomenon of the maximum principle for state constrained problems.
It may arise in applications, most notably when Model Predictive Control frameworks are used (see e.g. [5]
for a description of this technique) since the optimal control problems have to be solved for several initial
states along the trajectory.
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Clearly the occurrence of the degeneracy phenomenon has as a consequence that the necessary optimality
conditions no longer give useful information to select minimizers. To remedy such a situation several authors
have come up with conditions designed to identify classes of problems for which the maximum principle is
nondegenerate (see, for example, [6], [7], [8], [9], [10], [11], [12], [13], etc). Other situations that may be
related to the degeneracy phenomenon as normality and regularity of the optimal control and multipliers
have also been amply studied; in this respect see [14], [15], [16], [17], [18], [19], [20], [21], [22], [23] among
others.

In the literature, the conditions imposed to avoid the degeneracy phenomenon, called constraint quali-
fications, are inward pointing type conditions of mainly two types (see [13] for a discussion). One type of
these conditions assumes knowledge of the optimal control. Although this type of conditions holds under
less regularity assumptions, it has the disadvantage of being difficult to verify since the optimal control is
not known a priori.

In this paper we focus on necessary conditions of optimality for state constrained problems. We propose
a new and weaker type of inward pointing conditions to avoid the occurrence of the degeneracy phenomenon
of the state constrained maximum principle. Differing from the literature, our constraint qualification is of
integral-type (a preliminary version of these results was announced in [24, 25]).

Our constraint qualification is a condition that implies, but is not implied by the constraint qualification
in [9]. The accompanying nondegenerate maximum principle applies to problems with possibly nonsmooth
data. The price we pay is that convexity of the so-called “velocity set” is assumed. Therefore, the results
proposed here, can be applied to a larger class of problems with nonsmooth data and convex velocity sets.

This paper is organized as follows. We start by giving the main concepts and notation that are used
throughout the paper in the next section. In Section 2 we describe, in the context of our results, opti-
mal control problems with state constraints, the maximum principle, the degeneracy phenomenon and the
literature on constraints qualifications designed to avoid the degeneracy phenomenon. Our integral type
constraint qualification as well as the statement of the associated nondegenerate maximum principle is in-
troduced and discussed in Section 3 where we state a smooth version of our main result. Section 4 focuses
on the nonsmooth more general case. The proof of our main result is in Section 5.

2. NECESSARY CONDITIONS OF OPTIMALITY AND THE DEGENERACY PHENOMENON

Consider an optimal control problem with fixed initial state and with pathwise constraints:

(P )

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Minimize g(x(1))
subject to ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [0, 1]

x(0) = x0

x(1) ∈ C
u(t) ∈ Ω(t) a.e. t ∈ [0, 1]
h (t, x(t)) ≤ 0 for all t ∈ [0, 1].

The data for this problem comprises functions g : IRn #→ IR, f : IR × IRn × IRm #→ IRn, h : IR × IRn #→ IR,
and a multifunction Ω : [0, 1] ⇒ IRm. The set of control functions for (P ) is U := {u : [0, 1] #→ IRm :
u is a measurable function, u(t) ∈ Ω(t) a.e. t ∈ [0, 1]}. The state trajectory is an absolutely continuous
function which satisfies the differential equation for some control function u. The domain of the above
optimization problem is the set of admissible processes, namely pairs (x, u) comprising a control function
u and a corresponding state trajectory x which satisfy the constraints of (P ). We say that an admissible
process (x̄, ū) is a local minimizer if there exists δ > 0 such that g(x̄(1)) ≤ g(x(1)) for all admissible processes
(x, u) satisfying ∥x− x̄∥L∞ ≤ δ.

The MP for problems with state constraints, featuring measures as the multipliers associated with the
such constraints, were first introduced by Dubovitskii and Milyutin in [2]. Several generalizations were
developed, see for example [26, 27, 28].

Assume that, for some δ′ > 0, the following hypotheses are satisfied.
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H1 The function (t, u) #→ f(t, x, u) is L× Bm measurable for each x.

H2 There exists a L× Bm measurable function k(t, u) such that t #→ k(t, ū(t)) is integrable and

∥f(t, x, u)− f(t, x′, u)∥ ≤ k(t, u)∥x− x′∥

for x, x′ ∈ x̄(t) + δ′B, u ∈ Ω(t) a.e. t ∈ [0, 1]. There exist scalars Kf > 0 and ϵ′ > 0 such that

∥f(t, x, u)− f(t, x′, u)∥ ≤ Kf∥x− x′∥,

for x, x′ ∈ x̄(0) + δ′B, u ∈ Ω(t) a.e. t ∈ [0, ϵ′].

H3 The function g is Lipschitz continuous on x̄(1) + δ′B.

H4 The graph of Ω is L× Bm measurable.

H5 The set C is closed.

H6 The function h is upper semicontinuous in t and there exists a scalar Kh > 0 such that

|h(t, x)− h(t, x′)| ≤ Kh∥x− x′∥,

for all t ∈ [0, 1].

H7 There exist positive constants ϵ and ϵ1 such that f(t, x,Ω(t)) is convex for all t ∈ [0, ϵ) and for all
x ∈ x0 + ϵ1B.

Here B denotes the closed unit ball and L × Bm denotes the product σ-algebra generated by Lebesgue
sets of [0, 1] and Borel subsets of IRm.

To simplify the exposition we start to present in this section and in section 3 the smooth case. Thus we
add the following additional interim hypotheses:

AH2 The function x #→ f(t, x, u) is continuously differentiable for each (t, u).

AH3 The function g is continuous differentiable on x̄(1) + δ′B.

AH5 The set C is convex.

AH6 The function x #→ h(t, x) is differentiable for fixed t and h and hx are continuous.

These hypotheses will be removed later in the main result, in section 4.

The maximum principle (MP) for state constraints typically asserts existence of an absolutely continuous
function p, a nonnegative regular Borel measure µ ∈ C∗([0, 1], IR), and a scalar λ ≥ 0 satisfying

µ{[0, 1]}+ ||p||L∞ + λ > 0, (1)

−ṗ(t) =

(

p(t) +

∫

[0,t)
hx(s, x̄(s))µ(ds)

)

· fx (x̄(t), ū(t)) a.e. t ∈ [0, 1], (2)

−

(

p(1) +

∫

[0,1]
hx(s, x̄(s))µ(ds)

)

∈ NC(x̄(1)) + λgx(x̄(1)), (3)

supp {µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0} , (4)

and for almost every t ∈ [0, 1], ū(t) maximizes over Ω(t)

u #→

(

p(t) +

∫

[0,t)
hx(s, x̄(s))µ(ds)

)

· f (x̄(t), u) , (5)
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where supp {µ} denotes the support of measure µ, C∗ the dual space to the space of continuous functions
and NC(x) denotes the normal cone to C at x. (For convex sets the normal cone is simply NC(x) := {y ∈
IRn : yT (x′ − x) ≤ 0, x′ ∈ C}. For nonconvex sets it will be defined later in Section 4.)

This MP might not supply any useful information to select minimizers for certain optimal control prob-
lems where the trajectory starts on the boundary of the admissible state region, i.e. , when h(0, x0) = 0.
This phenomenon arises if the multipliers take a certain form. If h(0, x0) = 0, the choice of degenerate
multipliers 1

λ = 0, µ ≡ βδ{t=0}, and p ≡ −βhx(0, x0), for some β > 0 (6)

satisfy the necessary conditions but gives no information whatsoever about the optimal solution (note that
the expression p(t) +

∫

[0,t) hx(s, x̄(s))µ(ds) vanishes and the conditions (1)–(5) are always satisfied). In this

case, the necessary conditions of optimality (NCO) are said to degenerate.
In order to avoid the degeneracy phenomenon, the NCO can be strengthened with additional conditions,

typically a stronger form of the nontriviality condition (1). An example of such condition is

µ{(0, 1]}+ ∥q∥L∞ + λ > 0.

However, for such stronger form of the NCO to remain valid it is important to guarantee that we are not
addressing problems for which the degenerate multipliers are the only possible choice. Such pathological
problems were identified (see Dubovitskii example in [8]). Then, we need a constraint qualification asserting
that the problem allows a set of multipliers in addition to the degenerate ones.

Different approaches to degenerate problems are reported in the literature. They mainly differ on the type
of constraint qualification (CQ), as well as the remaining set of hypotheses under which the nondegenerate
NCO are valid.

In the literature, the CQ to avoid degeneracy in optimal control problems are, typically, of two types:

CQ1: ∃δ, ϵ > 0 and a control function û:

hx(s, x0) · [f(t, x0, û(t))− f(t, x0, ū(t)] < −δ a.e. s, t ∈ [0, ϵ).

Loosely speaking, this requires that there exist a control function pulling the state away from the boundary
of the state constraint set faster than the optimal control on a neighborhood of the initial time.

CQ2: ∃δ, ϵ > 0 and a control function û:

hx(s, x0) · f(t, x0, û(t)) < −δ a.e. s, t ∈ [0, ϵ).

While CQ2 requires the existence of a control function pulling the state away from the state constraint
boundary on a neighborhood of the initial time, CQ1 requires the existence of a control function pulling
the state away from the state constraint boundary faster than the optimal control.

Extending CQ1 and CQ2 so that they hold on neighborhoods of each instant where the minimizing
trajectory touches the boundary, leads to versions of MP in normal form, i.e. when the multiplier λ equals
to 1. Clearly, a normal form of MP implies a nondegenerate form of MP. However most of these results
require extra regularity on data, see for example ([7], [10], [29], [30] and [31]).

The results using constraint qualification of the type CQ1 are not so easy to verify but are typically
applicable to problems with less regularity on the data. In [13], we review several of such results and provide
conditions under which CQ1 can be reduced to CQ2. Some recent results on this subject which are not
discussed in [13] are in [20, 32, 29].

The nondegenerate NCO we propose here are valid under a different set of constraint qualification; it is
of integral-type and it holds for a larger class of problems.

1Here δ{t=0} denotes Dirac unit measure concentrated at 0.
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3. AN INTEGRAL-TYPE CONSTRAINT QUALIFICATION

In this section we provide our main result: it is a strengthened form of the MP valid under a new type
of constraint qualification that we call integral-type CQ.

As it will be clear shortly our result is a modification of that in [9] that can be applied to a wider class
of nonsmooth problems. To simplify the exposition from now on we will refer to the CQ in [9] as CQFFV99

and we denote by CQI the integral-type CQ we propose here.

Consider the following constraint qualifications:

CQI : if h(0, x0) = 0, then there exist positive constants Ku, ϵ, ϵ1, δ and a control function û ∈ U such that
for all t ∈ [0, ϵ)

∫ t

0
hx(s, x(s)) · [f(τ, x0, û(τ)) − f(τ, x0, ū(τ))]dτ ≤ −δt,

for all s ∈ [0, ϵ), x ∈ x0 + ϵ1B and ∥f(t, x0, ū(t))∥ ≤ Ku and ∥f(t, x0, û(t))∥ ≤ Ku a.e. t ∈ [0, ϵ).

CQFFV99 : if h(0, x0) = 0, then there exist positive constants Ku, ϵ, ϵ1, δ and a control function û ∈ U
such that for a.e. t ∈ [0, ϵ)

hx(s, x(s)) · [f(t, x0, û(t))− f(t, x0, ū(t))] < −δ,

for all s ∈ [0, ϵ), x ∈ x0 + ϵ1B, and ∥f(t, x0, ū(t))∥ ≤ Ku, ∥f(t, x0, û(t))∥ ≤ Ku, a.e. t ∈ [0, ϵ).

Here and throughout, we denote by ∥ · ∥ the Euclidean norm.
Next we compare CQI with CQFFV99. It is an easy task to see that CQFFV99 implies CQI. However

CQI does not imply CQFFV99. The following example describes a problem for which CQI is verified, but
CQFFV99 is not.

Example 3.1. Consider the problem

(PE)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Minimize −x(1)
subject to ẋ(t) = u(t) a.e. t ∈ [0, 1]

x(0) = 0
x(1) ∈ IR
u(t) ∈ Ω(t) a.e. t ∈ [0, 1]
x(t) ≤ 0 for all t ∈ [0, 1],

where Ω(t) = {u ∈ IR : l(t) ≤ u ≤ 0} and l is the function (see Fig. 1):

l(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−1, t = 0

2−
4

2n
t, t ∈

[

1

2
2−n,

3

4
2−n

)

, n ∈ N

4

2n
t− 4, t ∈

[

3

4
2−n, 2−n

)

, n ∈ N

The optimal solution to this problem is obtained by choosing ū(t) = 0 and x̄(t) = 0 (u is always non-
positive). In order to test the two constraint qualifications, observe that

hx(s, x(s)) · [f(t, x0, û(t)) − f(t, x0, ū(t))] = û(t).

Thus, when applied to our problem, CQFFV99 reduces to:

∃δ, ϵ > 0 and a control function û(t) ∈ Ω(t) such that for a.e. t ∈ [0, ϵ):

û(t) < −δ a.e. t ∈ [0, ϵ) (7)
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Figure 1: Function t !→ l(t) defining for each t the lower limit of the set Ω(t).

For any ϵ > 0, l(t) = 0 and Ω(t) = {0} for a countable number of points t ∈ [0, ϵ). So CQFFV99 cannot
be satisfied.

We now turn to CQI. This condition can also be reduced to:

∃δ, ϵ > 0 and a control function û(t) ∈ Ω(t) such that for a.e. t ∈ [0, ϵ)

∫ t

0
û(τ)dτ ≤ −δt ∀t ∈ [0, ϵ), (8)

We shall show that considering û(t) = l(t) then CQI is satisfied.
For any t ∈ (0, 1] we can find an (unique) k = 2n, n ∈ N such that

1

2k
≤ t ≤

1

k
.

Now
∫ t

0
l(s)ds =

∫ 1

2k

0
l(s)ds+

∫ t

1

2k

l(s)ds.

It can be seen that the first term is equal to − 1
4kand the second term is negative. So, since

∫ t

0
l(s)ds ≤ −

1

4k
≤ −

1

4
t,

CQI is satisfied.

Our constraint qualification CQI is thus a weaker CQ than CQFFV99. Consequently, it applies to a
larger class of problems. However, strengthening of necessary conditions under CQI comes with a price: we
need to assume that the velocity set is convex.

We now state a smooth version of our main result. Its nonsmooth counterpart, a more general result, is
stated in the the next section.
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Theorem 3.2. Let (x̄, ū) be a local minimizer. Assume that hypotheses H1−H6, the interim hypotheses
AH2,AH3,AH5,AH6 and CQI are satisfied. Then, the conditions (2)–(5) of the maximum principle
hold, with the non-triviality condition replaced with

µ{(0, 1]}+ ∥q∥L∞ + λ > 0. (9)

The above theorem is a corollary of our more general result stated below.

4. THE NONSMOOTH RESULT

Here, we make reference to W 1,1, the space of absolutely continuous functions, C1,1, the space of con-
tinuously differentiable functions with locally Lipschitz continuous derivatives and co (S) the convex hull of
a set S.

Next we state some important concepts of nonsmooth analysis.
The limiting normal cone of a closed set C ⊂ IRn at x̄ ∈ C, denoted by NC(x̄), is the set

NC(x̄) := {η ∈ IRn : ∃ sequences {Mi} ∈ IR+, xi → x̄, ηi → η such that
xi ∈ C and ηi · (y − xi) ≤ Mi∥y − xi∥2 for all y ∈ C, i = 1, 2, ...}.

The limiting subdifferential of a lower semicontinuous function f : IRn → IR ∪ {∞} at a point x̄ ∈ IRn

such that f(x̄) < +∞, denoted by ∂f(x̄), is defined to be

∂f(x̄) = {η ∈ IRn : (η,−1) ∈ Nepif (x̄, f(x̄))};

where epif = {(x,α) ∈ IRn+1 : α ≥ f(x)} denotes the epigraph of a function f .
Here ∂>

x h(t, x), denotes the hybrid partial subdifferential of h in the x-variable defined as

∂>
x h(t, x) = co {ξ : there exist (ti, xi) #→ (t, x) s.t. h(ti, xi) > 0,

h(ti, xi) #→ h(t, x), and hx(ti, xi) #→ ξ}.

See [27] for a review of Nonsmooth Analysis and related concepts using a similar notation.

We now go back to the problem of interest. Let us consider the following constraint qualification:

CQ′
I
: if h(0, x0) = 0, then there exist positive constants Ku, ϵ, ϵ1, δ and a control function û(t) ∈ Ω(t) such
that for all t ∈ [0, ϵ)

∥f(t, x0, ū(t))∥ ≤ Ku, ∥f(t, x0, û(t))∥ ≤ Ku,

and
∫ t

0
ζ · [f(τ, x0, û(τ)) − f(τ, x0, ū(τ))]dτ ≤ −δt,

for all ζ ∈ ∂>
x h(s, x), s ∈ [0, ϵ), x ∈ x0 + ϵ1B.

Observe that CQ′
I

is a nonsmooth version of CQI.
Working upon a nonsmooth version of the MP presented in [27, Thm. 9.3.1] we get our main result that

we now state.

Theorem 4.1. Let (x̄, ū) be a local minimizer for (P ). Assume that, for some δ′ > 0, CQ′
I

and the
hypotheses H1 − H6 are satisfied. Then there exist p ∈ W 1,1([0, 1] : IRn), a measurable function γ, a
non-negative measure µ representing an element in C∗([0, 1] : IR) and λ ≥ 0 such that

µ{(0, 1]}+ ∥q∥L∞ + λ > 0 (10)

−ṗ(t) ∈ co ∂x(q(t) · f(t, x̄(t), ū(t))) a.e. t ∈ [0, 1], (11)
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−q(1) ∈ NC(x̄(1)) + λ∂g(x̄(1)), (12)

γ(t) ∈ ∂>
x h(t, x̄(t)) µ a.e. , (13)

supp{µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0}, (14)

and, for almost every t ∈ [0, 1], ū(t) maximizes over Ω(t)

u #→ q(t) · f(t, x̄(t), u(t)), (15)

where

q(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p(t) +

∫

[0,t)
γ(s)µ(ds) t ∈ [0, 1)

p(t) +

∫

[0,1]
γ(s)µ(ds) t = 1.

5. PROOF OF THE MAIN RESULT

The proof follows some of the steps of the approach in ([9]), i.e., we consider a sequence of approximating
problems differing from (P ) in the dynamics near the left endpoint. However, while in [9] we consider
variations of the controls, here we consider variations of the velocities.

We assume that h(0, x0) = 0, since otherwise the conditions of Theorem 4.1 cannot be satisfied with the
trivial multipliers.

Consider, for α ∈ (0, 1], absolutely continuous functions x and y satisfying the system of equations

(S)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ(t) = f(t, x(t), ū(t)) + y(t) ·∆f(t, x(t)) a.e. t ∈ [0,α]
x(0) = x0,
ẏ(t) = 0 t ∈ [0,α]
y(0) ∈ [0, 1]

where ∆f(t, x) := f(t, x, û(t))− f(t, x, ū(t)).
Here û is the control function featuring in the constraint qualification CQ′

I
.

Since ẏ = 0 and y is absolutely continuous, then y is constant. In what follows, we denote the value of
that function by y instead of y(t).

This system plays an important role in what follows. Before proceeding with main steps of the proof we
state some auxiliary lemmas. The proof of the lemmas can be found in the appendix.

Lemma 5.1. Let x and y be the solution of the system (S) and x̄ the minimizer of the (P ). There exist
positive constants A and B such that, for α small enough, for all t ∈ [0,α]

∥x(t)− x0∥ ≤ At, and ∥x(t)− x̄(t)∥ ≤ Byt.

Lemma 5.2. By reducing the size of α, if necessary, we have that for any trajectory x solving system (S)

h(t, x(t)) ≤ 0 for all t ∈ [0,α].

Now, take a decreasing sequence {αi} on (0,α), converging to zero. Associate with each αi the following
problem (Pi), where the state constraint is imposed only on the subinterval [αi, 1]:

(Pi)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Minimize g(x(1))
subject to ẋ(t) = f(t, x(t), ū(t)) + y(t) ·∆f(t, x(t))

a.e. t ∈ [0,αi)
ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [αi, 1]
ẏ(t) = 0 t ∈ [0,αi)
x(0) = x0

x(1) ∈ C
y(0) ∈ [0, 1]
u(t) ∈ Ω(t) a.e. t ∈ [αi, 1]
h̃ (t, x(t)) ≤ 0 ∀t ∈ [0, 1].
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where

h̃(t, x) :=

{

r t ∈ [0,αi)
h(t, x) t ∈ [αi, 1],

and r is some fixed strict lower bound on the values of h.
We state the following Lemma.

Lemma 5.3. The trajectory (x ≡ x̄, y ≡ 0) is optimal for all problems (Pi).

The Maximum Principle ([27, Thm. 9.3.1]) for the problem (Pi) asserts the existence of an arc (pi, ci) :
[0, 1] #→ IRn × IR, a measurable function γi, a nonnegative Radon measure µi ∈ C∗([αi, 1], IR), and a scalar
λi ≥ 0 such that

µi{[αi, 1]}+ ∥(pi, ci)∥L∞ + λi > 0, (16)

−ṗi(t) ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

pi(t) · co ∂xf(t, x̄(t), ū(t)), a.e. t ∈ [0,αi),
(

pi(t) +

∫

[αi,t)
γi(s)µi(ds)

)

· co ∂xf(t, x̄(t), ū(t)), a.e. t ∈ [αi, 1],

−ċi(t) =

{

pi(t) ·∆f(t, x̄(t)), a.e. t ∈ [0,αi),

0, a.e. t ∈ [αi, 1],
(17)

for almost every t ∈ [αi, 1], ū(t) maximizes over Ω(t)

u #→

(

pi(t) +

∫

[αi,t)
γi(s)µi(ds)

)

· f (t, x̄(t), u) , (18)

supp{µi} ⊂ {t ∈ [αi, 1] : h (t, x̄(t)) = 0} ,

γi(t) ∈ ∂>
x h(t, x̄(t)) µ a.e. ,

for some ξi ∈ ∂xg(x̄(1)),

−

(

pi(1) +

∫

[αi,1]
γi(s)µi(ds)

)

∈ NC(x̄(1)) + λiξi,

−ci(1) = 0, ci(0) ≤ 0.

It remains to pass to the limit as i → ∞ and thereby, obtain a set of nondegenerate multipliers for the
original problem.

Without changing the notation, we extend µi as a regular Borel measure on [0, 1]

µi(B) = µi(B ∩ [αi, 1]) for all Borel set B ⊂ [0, 1]. (19)

Extend also γi, originally defined on [αi, 1], arbitrarily to the interval [0, 1] as a Borel measurable function.
With these extensions and noting that µ([0,αi)) = 0 we can write

−ṗi(t) ∈

(

pi(t) +

∫

[0,t)
γi(s)µi(ds)

)

· co ∂xf(t, x̄(t), ū(t)) a.e. t ∈ [0, 1].

It is easy to see that ci can be omitted from (16), since pi ≡ 0 implies ci ≡ 0. By scaling the multipliers we
ensure that

∥µi{[αi, 1]}∥+ ∥pi∥L∞ + λi = 1. (20)
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By (19) and (20) we deduce that µi → µ weakly∗ for some µ in the space of nonnegative valued function
in C∗([0, 1],R). The multifunction ∂>

x h is uniformly bounded, compact, convex, and has a closed graph. So,
γi(t) are uniformly bounded. It follows from Proposition 9.2.1 in [27] that, along a subsequence, γidµi → γdµ
weakly ∗. By (20), {pi} is uniformly bounded. ∂xf(t, x̄(t), u(t)) is integrally bounded. It follows from the
above that {ṗi} are uniformly integrally bounded. By compactness results (see for example Theorem 2.5.3
of [27]), we deduce that along a subsequence pi → p uniformly. It is a simple matter to see that λi → λ and
by H3, ξi → ξ along a subsequence.

It follows that the conditions (2), (13), (4) for problem (P ) are satisfied and since NC(x̄(1)) is closed,
(3) also holds. Moreover from (20) we deduce

µ{[0, 1]}+ ∥p∥L∞ + λ = 1. (21)

Consider the set Si = [αi, 1]\Ti where Ti is a null Lebesgue measure set in [αi, 1] containing all times
where the maximization of (18) is not achieved at ū. We can then write

(

pi(t) +

∫

[αi,t)
γi(s)µi(ds)

)

· f (t, x̄(t), u) ≤

(

pi(t) +

∫

[αi,t)
γi(s)µi(ds)

)

· f (t, x̄(t), ū(t)) ,

for all t ∈ Si and for all u ∈ Ω(t).
Now consider the full measure set S = (0, 1]\

⋃

i Ti. Fix some t in S. Then for all i > N , where N is
such that αN ≤ t, we have

(

pi(t) +

∫

[0,t)
γi(s)µi(ds)

)

· f (t, x̄(t), u) ≤

(

pi(t) +

∫

[0,t)
γi(s)µi(ds)

)

· f (t, x̄(t), ū(t)) .

for all u ∈ Ω(t). Applying limits to both sides of this inequality we obtain (15).
We have established that the set of multipliers (p, µ,λ), obtained as limit of (pi, µi,λi) satisfy the con-

ditions (2)-(5) for the original problem (P ) together with (21).
It remains to verify

µ{(0, 1]}+ ||q||L∞ + λ > 0.

To do this, the following lemma will be useful.

Lemma 5.4. The adjoint vector pi in the necessary conditions of optimality for problem (Pi) satisfies
∫ αi

0
pi(t) ·∆f(t, x̄(t))dt ≤ 0.

In view of the constraint qualification, there exists positive constants ϵ and δ such that for all t ∈ [0, ϵ)

∫ t

0
ζ · [f(τ, x0, û(τ)) − f(τ, x0, ū(τ))]dτ ≤ −δt

for all ζ ∈ ∂>
x h(s, x), s ∈ [0, ϵ), x ∈ x0 + ϵ1B.

Suppose to the contrary that
µ{(0, 1]}+ ||q||L∞ + λ = 0.

Due to (21), we must have

λ = 0, µ = βδ{0}, p(t) = −βζ for some β > 0 and ζ ∈ ∂>
x h(0, x0).

The constraint qualification (CQ′
I
) implies

∫ t

0
−p(σ) ·∆f(σ, x0)dσ =

∫ t

0
βζ ·∆f(σ, x0)dσ ≤ −δβt.
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On the other hand, using also Lemma 5.1, we have
∫ αi

0
pi(t) ·∆f(t, x̄(t))dt =

∫ αi

0
(p(t) ·∆f(t, x0) + (pi(t)− p(t)) ·∆f(t, x0) + pi(t) · [∆f(t, x̄(t))−∆f(t, x0)]) dt

≥ δβαi −

∫ αi

0
(2Ku∥pi(t)− p(t)∥ + 2KfAt∥pi(t)∥) dt.

By the uniform convergence of pi, we can make ∥pi − p∥ < ϵ̄ for any ϵ̄ > 0 of our choice provided we choose
a sufficient large i. Moreover ∥pi∥ ≤ 1.

It follows that
∫ αi

0
pi(t) ·∆f(t, x̄(t))dt ≥ δβαi − (2Kuϵ̄αi +KfAα

2
i ) > δβ/2αi > 0,

if ϵ̄ <
δβ

8Ku
and αi <

δβ

4KfA
.

So, we would have

∫ αi

0
pi(t) ·∆f(t, x̄(t))dt > 0 contradicting Lemma 5.4. We deduce (9).

References

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes,
Wiley Interscience, New York, 1962.

[2] A. Y. Dubovitskii, A. Milyutin, Extremum problems under constraints, Dokl. Akad. Nauk SSSR 149 (1963) 759–762.
[3] R. B. Vinter, G. Pappas, A maximum principle for nonsmooth optimal-control problems with state constraints, J. Math.

Anal. Appl. 89 (1) (1982) 212–232. doi:10.1016/0022-247X(82)90099-3.
URL http://dx.doi.org/10.1016/0022-247X(82)90099-3

[4] A. V. Arutyunov, S. M. Aseev, State constraints in optimal control. The degeneracy phenomenon, Systems Control Lett.
26 (4) (1995) 267–273. doi:10.1016/0167-6911(95)00021-Z.
URL http://dx.doi.org/10.1016/0167-6911(95)00021-Z

[5] F. A. C. C. Fontes, A general framework to design stabilizing nonlinear model predictive controllers, Systems Control
Lett. 42 (2) (2001) 127–143. doi:10.1016/S0167-6911(00)00084-0.
URL http://dx.doi.org/10.1016/S0167-6911(00)00084-0

[6] A. V. Arutyunov, N. Tynyanskii, The maximum principle in a problem with phase constraints, Soviet J. Comput. Systems
Sci. 23 (1985) 28–35.

[7] M. M. A. Ferreira, R. B. Vinter, When is the maximum principle for state constrained problems nondegenerate?, J. Math.
Anal. Appl. 187 (2) (1994) 438–467. doi:10.1006/jmaa.1994.1366.
URL http://dx.doi.org/10.1006/jmaa.1994.1366

[8] A. V. Arutyunov, S. M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control
problems with state constraints, SIAM Journal of Control and Optimization 35 (1997) 930–952.

[9] M. M. A. Ferreira, F. A. C. C. Fontes, R. B. Vinter, Nondegenerate necessary conditions for nonconvex optimal control
problems with state constraints, J. Math. Anal. Appl. 233 (1) (1999) 116–129. doi:10.1006/jmaa.1999.6270.
URL http://dx.doi.org/10.1006/jmaa.1999.6270

[10] F. Rampazzo, R. B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with appli-
cations to optimal control, IMA J. Math. Control Inform. 16 (4) (1999) 335–351.

[11] F. Rampazzo, R. Vinter, Degenerate optimal control problems with state constraints, SIAM J. Control Optim. 39 (4)
(2000) 989–1007 (electronic). doi:10.1137/S0363012998340223.
URL http://dx.doi.org/10.1137/S0363012998340223

[12] F. A. C. C. Fontes, Nondegenerate necessary conditions of optimality for control problems with state constraints, in:
Nonlinear Control Systems (A. B. Kurzhanski and A. L. Fradkov, eds.), 2002, pp. 45–50.

[13] S. O. Lopes, M. de Pinho, F. A. C. C. Fontes, On constraint qualifications for nondegenerate necessary conditions of
optimality applied to optimal control problems, Discrete and Continuous Dynamical Systems Series A (DCDS-A) 29 (2)
(2011) 559–575.
URL http://dx.doi.org/10.3934/dcds.2011.29.559

[14] J. F. Rosenblueth, Conditions for generic normality in optimal control, Systems and Control Letters 9 (5) (1987) 433 –
438. doi:10.1016/0167-6911(87)90073-9.
URL http://www.sciencedirect.com/science/article/pii/0167691187900739

[15] M. M. A. Ferreira, On the regularity of optimal controls for a class of problems with state constraints, International
Journal of Systems Science 37 (8) (2006) 495–502.

[16] H. Frankowska, Regularity of minimizers and of adjoint states for optimal control problems under state constraints, J.
Convex Analysis 13 (2006) 299–328.

11



[17] H. Frankowska, Normality of the maximum principle for absolutely continuous solutions to bolza problems under state
constraints, Control and Cybernetics 38 (2009) 1327–1340.

[18] H. Frankowska, E. M. Marchini, Lipschitzianity of optimal trajectories for the bolza optimal control problem, Calculus of
Variations and Partial Differential Equations 27 (4) (2006) 467–492.

[19] G. N. Galbraith, R. B. Vinter, Lipschitz continuity of optimal controls for state constrained problems, SIAM Journal of
Control and Optimization 42 (5) (2003) 1727–1774.

[20] H. Frankowska, M. Mazzola, Optimal synthesis and normality of the maximum principle for optimal control problems
with pure state constraints, in: Proceedings of the 9th IEEE International Conference on Control and Automation (ICCA
2011), Santiago, Chile, 2011, pp. 945–950.

[21] R. B. Vinter, H. Zheng, Necessary conditions for optimal control problems with state constraints, Transactions of the
American Mathematical Society 350 (3) (1998) 1181–1204.

[22] P. Bettiol, H. Frankowska, Lipschitz regularity of solution map of control systems with multiple state constraints, Discrete
Contin. Dynam. Systems - A 32 (2012) 1–26.

[23] C. Gavriel, S. L. Lopes, R. B. Vinter, Regularity of minimizers for higher order variational problems in one independent
variable, Annual Reviews in Control 35 (2011) 172–177.

[24] S. O. Lopes, F. A. C. C. Fontes, Nondegenerate necessary conditions for optimal control problems with state constraints:
Integral-type constraint qualification, in: ECC’07 conference, Kos, Greece, 2007.

[25] S. O. Lopes, Nondegenerate forms of the maximum principle for optimal control problems with state constraints, Phd
thesis, University of Minho, Guimaraes, Portugal, http://repositorium.sdum.uminho.pt/ (2009).
URL http://hdl.handle.net/1822/8983

[26] F. H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced
Texts, John Wiley & Sons Inc., New York, 1983, a Wiley-Interscience Publication.

[27] R. Vinter, Optimal control, Birkhauser, Boston, 2000.
[28] M. d. R. de Pinho, M. M. A. Ferreira, F. A. C. C. Fontes, Unmaximized inclusion necessary conditions for nonconvex

constrained optimal control problems, ESAIM:Control, Optimisation and Calculus of Variations 11 (4) (2005) 614–632.
[29] F. A. C. C. Fontes, S. O. Lopes, Normal forms of necessary conditions for dynamic optimization problems with pathwise

inequality constraints, Journal of Mathematical Analysis and Applications 399 (1) 27–37.
[30] A. Cernea, H. Frankowska, A connection between the maximum principle and dynamic programming for constrained

control problems, SIAM J. Control Optim. 44 (2) (2005) 673–703 (electronic). doi:10.1137/S0363012903430585.
URL http://dx.doi.org/10.1137/S0363012903430585

[31] P. Bettiol, H. Frankowska, Normality of the maximum principle for nonconvex constrained Bolza problems, J. Differential
Equations 243 (2) (2007) 256–269. doi:10.1016/j.jde.2007.05.005.
URL http://dx.doi.org/10.1016/j.jde.2007.05.005

[32] A. V. Arutyunov, D. Karamsin, F. L. Pereira, The maximum principle for optimal control problems with state constraints
by r.v. gramkrelidze: Revisited, Journal of Optimization Theory and Applications 149 (2011) 474–493.

[33] J. Warga, Optimal control of differential and functional equations, Academic Press, New York, 1972.

Appendix A. Proof of Lemmas

Proof. (of Lemma 5.1)
Take any α ∈ [0, ϵ), where ϵ is defined in CQ′

I
. Integrating x we have that

∥x(t)− x0∥ ≤

∫ t

0
∥f(τ, x(τ), ū(τ)) + y ·∆f(τ, x(τ))∥ dτ

≤

∫ t

0
3Kf∥x(τ) − x0∥ dτ + 3Kut.

Applying Gronwall-Bellman inequality (see e.g. [33]) yields

∥x(t)− x0∥ ≤ 3Kut+ e3Kf t

∫ t

0
9KfKuτ dτ

= 3Kut+
9

2
KfKue

3Kf tt2.

Since 0 ≤ t ≤ α ≤ 1, we deduce that:

∥x(t) − x0∥ ≤ 3Kut+
9

2
KfKue

3Kf t = At,

where A := 3Ku + 9
2KfKue3Kf . The first assertion of the lemma is proved.
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Similarly

∥x(t)− x̄(t)∥ ≤

∫ t

0
∥f(τ, x(τ), ū(τ)) + y ·∆f(τ, x(τ)) − f(τ, x̄(τ), ū(τ))∥ dτ

≤

∫ t

0
[Kf∥x(τ) − x̄(τ)∥ + 2yKf∥x(τ) − x0∥] dτ + 2yKut

≤

∫ t

0
Kf∥x(τ) − x̄(τ)∥ dτ + yKfAt

2 + 2yKut.

Applying Gronwell’s Lemma

∥x(t)− x̄(t)∥ ≤ yKfAt
2 + 2yKut+ eKf t

∫ t

0
Kfy[KfAs

2 + 2Kus] ds

= yKfAt
2 + 2yKut+ yKfe

Kf t

(

KfAt3

3
+Kut

2

)

.

As 0 ≤ t ≤ 1

∥x(t) − x̄(t)∥ ≤ Byt,

where B := KfA+ 2Ku +KfeKf
(

Kf
A
3 +Ku

)

, proving the second assertion.

Proof. (of Lemma 5.2)
Choose an α satisfying

α < min

{

2δ

KhKf (2A+B)
,
ϵ1
A
, ϵ

}

. (A.1)

Take any x solving (S) and suppose that for some fixed t ∈ [0,α]

h(t, x(t)) > 0. (A.2)

Define, for β ∈ [0, 1],
r(β) := h(t, x̄(t) + β(x(t) − x̄(t))).

In view of the properties of h as a function of x, r is continuous. We also have

r(0) = h(t, x̄(t)) ≤ 0,

r(1) = h(t, x(t)) > 0.

It follows that the set
D := {β ∈ [0, 1] : r(β) = 0}

is non-empty, closed and bounded. We can therefore define

βm := max
β∈D

β.

Since r(1) > 0, we have βm < 1. Take any β ∈ (βm, 1]. Applying the Lebourg Mean-Value Theorem
([26]), we obtain

h(t, x(t)) − r(β) = ζt · [x(t) − x̄(t)− β(x(t) − x̄(t))]

= (1− β)ζt · [x(t) − x̄(t)] (A.3)

for some ζt ∈ co ∂xh(t, x̂), and x̂ in the segment (x(t), x̄(t) + β[x(t) − x̄(t)]).
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Since r(β) > 0 for all β ∈ (βm, 1], we have that h(t, x̂) > 0. Thus, in this case, co ∂xh(t, x̂) ⊂ ∂>
x h(t, x̂),

by the respective definitions. It follows that ζt ∈ ∂>
x h(t, x̂).

Expanding the expression (A.3) yields

h(t, x(t))− r(β) = (1− β) ζt ·

∫ t

0
[f(τ, x(τ), ū(τ)) + y∆f(τ, x(τ)) − f(τ, x̄(τ), ū(τ))] dτ

≤ (1− β)

(

ζt ·

∫ t

0
y(∆f(τ, x0) +∆f(τ, x(τ)) −∆f(τ, x0) dτ

+∥ζt∥Kf

∫ t

0
∥x(τ)− x̄(τ)∥ dτ

)

≤ (1− β)

(
∫ t

0
ζt · y∆f(τ, x0)dτ + 2KfKhy

∫ t

0
∥x(τ) − x0∥dτ

+KhKf

∫ t

0
∥x(τ) − x̄(τ)∥dτ

)

≤ (1− β) yt(−δ +KhKf (A+B/2)t)

≤ 0,

for all β ∈ (βm, 1].
Here we have used the fact that the norm of every element of the subdifferential is bounded by the

Lipschitz rank of the function.
In the last two inequalities we have used CQ′

I
and (A.1).

Since r is continuous and r(βm) = 0, it follows that

h(t, x(t)) ≤ 0.

This contradicts (A.2). The proof is complete.

Proof. (of Lemma 5.3)
By contradiction assume that there exist (ŷ, x̂) ≠ (0, x̄) that solve (Pi). Hence g(x̂(1)) < g(x̄(1)) and

˙̂x(t) = f(t, x̂(t), ū(t)) + ŷ ·∆f(t, x̂(t)) a.e. t ∈ [0,αi).
By convexity hypotheses (H7)

ŷf(t, x̂, û) + (1− ŷ)f(t, x̂, ū) ∈ f(t, x(t),Ω(t)).

Then ∃û(·) : [0, 1] → IRm:
˙̂x(t) = f(t, x̂, û(t)) a.e. t ∈ [0, 1].

We conclude that x̂ is an admissible trajectory for (P ) with g(x̂(1)) < g(x̄(1)).
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