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Abstract—The paper addresses the problem of vehicle rollover
avoidance using reference governors applied to modify the
driver steering input in vehicles with an active steering system.
Several reference governor designs are presented and tested with
a detailed nonlinear simulation model. The vehicle dynamics
are highly nonlinear for large steering angles, including the
conditions where the vehicle approaches a rollover onset, which
necessitates reference governor design changes. Simulation results
show that reference governor designs are effective in avoiding
rollover. The results also demonstrate that the controllers are
not overly conservative, adjusting the driver steering input only
for very high steering angles.

Index Terms—Rollover Protection, Rollover Avoidance, Active
Steering, Reference Governor, Command Governor, Nonlinear
Control, Constraint Enforcement.
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CG Command Governor
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ECG Extended Command Governor
ESP Electronic Stability Program
LRG Linear Reference Governor
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MPC Model Predictive Controller
MPL Multi-Point Linearization
NHTSA National Highway Traffic Safety Administration
NRG Nonlinear Reference Governor
QP Quadratic Programming
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I. INTRODUCTION

ROLLOVER is an event where a vehicle’s roll angle
increases abnormally. In most cases, this results from

a loss of control of the vehicle by its driver.
This work focuses on the design of a supervisory controller

that intervenes to avoid such extreme cases of loss of control.
Conversely, in operating conditions considered normal, the
controller should not intervene, letting the driver commands
pass through unaltered.

A. Problem Statement
This paper treats the following problem for a vehicle

equipped with an active front steering system. Given vehicle
dynamics, a control model, and a set of predefined rollover
avoidance constraints, find a control law for the steering angle
such that the defined constraints are always enforced and the
applied steering is as close as possible to that requested by
the vehicle’s driver.
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B. Motivation

Between 1991 and 2001 there was an increase in the number
of vehicle rollover fatalities when compared to fatalities from
general motor vehicle crashes [1]. This has triggered the
development of safety test standards and vehicle dynamics
control algorithms to decrease vehicle rollover propensity.
Rollover remains one of the major vehicle design and control
considerations, in particular, for larger vehicles such as SUVs.

C. Background and Notation

A variety of technologies, including differential braking,
active steering, active differentials, active suspension and many
others, are already in use or have been proposed to assist the
driver in maintaining control of a vehicle. Since the intro-
duction of the Electronic Stability Program (ESP) [2], much
research has been undertaken on the use of active steering,
see e.g., [3], to further enhance vehicle driving dynamics.
According to [4] and [5], there is a need to develop driver
assistance technologies that are transparent to the driver during
normal driving conditions, but would act when needed to
recover handling of the vehicle during extreme maneuvers.
The active steering system has been introduced in production
by ZF and BMW in 2003 [6].

For the rollover protection problem, Solmaz et al. [5], [7],
[8] developed robust controllers which reduce the Load Trans-
fer Ratio’s magnitude excursions. The presented controllers
are effective at keeping the Load Transfer Ratio (LTR) within
the desired constraints. Their potential drawbacks are that
the controller is always active, interfering with the nominal
steering input, or is governed by an ad hoc activation method.
Furthermore, the controllers were tested with a linear model,
whose dynamics may differ significantly from more realistic
nonlinear models, in particular for larger steering angles, at
which rollover is probable.

Constrained control methods have evolved significantly in
recent years to a stage where they can be applied to vehicle
control to enforce pointwise-in-time constraints on vehicle
variables, thereby assisting the driver in maintaining control
of the vehicle. Reference [9] is an indication of this trend.

We employ mostly standard notations throughout. We use
[a, b] to denote an interval (subset of real numbers between a
and b) for either a < b or a > b.

For the simulations, we utilized MATLAB R© running on
a 64-bit laptop with a i7-4600U Intel R© CoreTMCPU with
a 2.70 GHz clock and 8 GB of RAM. Our MATLAB R©

implementation was not optimized.
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D. Original Contributions

This paper illustrates the development and the application of
reference and extended command governors to LTR constraint
enforcement and vehicle rollover avoidance. The reference
governor (see [10] and references therein) is a predictive
control scheme that supervises and modifies commands to
well-designed closed-loop systems to protect against constraint
violation. In the paper, we consider the application of both
linear and nonlinear reference governor design techniques to
vehicle rollover protection. While in the sequel we develop the
reference governors modifying the driver steering input, we
note that they can be applied to modify the nominal steering
angle generated by another nominal steering controller.

Our linear reference governor design exploits a family of
linearizations of the nonlinear vehicle model for different
steering angles. The linearized models are used to predict the
vehicle response and to determine admissible steering angles
that do not lead to constraint violation. In an earlier conference
paper [11], reference and extended command governor designs
for steering angle modification were proposed and validated on
a linear vehicle model. This paper is distinguished by extend-
ing the design methodology to include compensation for non-
linear behavior, and validating the design on a comprehensive
nonlinear vehicle model that includes nonlinear tire, steering,
braking and suspension effects. The strong nonlinearity of
the vehicle dynamics for high steering angles, the conditions
where the vehicle is at risk of rolling over, caused the simpler
controller presented in [11] to produce steering commands
that were too conservative. The Linear Reference Governor
(LRG) and Extended Command Governor (ECG) presented
in Section III-G compensate for the strong nonlinearities with
low interference over the driver input, while maintaining a low
computational burden and a high effectiveness in avoiding car
wheel lift.

For comparison, a Nonlinear Reference Governor (NRG)
is also developed, which uses a nonlinear vehicle model
for prediction of constraint violation and for the onboard
optimization. This online reference governor approach is more
computationally demanding but is able to take into account
nonlinear model characteristics in the prediction.

This work’s original contributions are summarized as fol-
lows:
1) This paper demonstrates how Reference and Extended Com-

mand Governors [10], both linear and nonlinear, can improve
the output adherence to the driver reference, while maintaining
the vehicle within the desired constraints.

2) Conservatism, effectiveness, and turning response metrics are
defined to evaluate, respectively, the controller command ad-
herence to the driver reference, the constraints enforcement
success, and the adherence of the vehicle trajectory in the
horizontal plane to that desired by the driver.

3) Several methodological extensions to reference governor tech-
niques are developed that can be useful in other applications.

E. Paper Structure

The paper is organized as follows. Section II describes the
vehicle models as well as the control constraints and the
performance metrics used to evaluate the vehicle dynamic

response under different designs. Section III-G describes refer-
ence governors considered in this paper, and includes prelim-
inary performance evaluation to support the controller design
decisions. Section IV illustrates the simulation results obtained
with the different Reference Governors (RGs) and comments
on their comparative performance. Section V describes the
conclusions of the current work, and Section VI discusses
follow-up work, ongoing and envisioned.

II. VEHICLE AND CONSTRAINT MODELING

A. Nonlinear Car Model

The nonlinear vehicle dynamics model is developed follow-
ing [5], [12]–[14]. The model includes a nonlinear model for
the tires’ friction and the suspension. The suspension model
includes parameters to allow the simulation of a differential
active suspension system.

1) Vehicle Body Equations of Motion: Assuming that the
sprung mass rotates about the Center of Mass (CM) of the
undercarriage, that the car inertia matrix is diagonal, and that
all the car wheels touch the ground, the car nonlinear model
is defined by:

Fx,T = m (u̇− vr) +mSMhSMp cosφ, (1a)

Fy,T = m (v̇ + ur)−mSMhSM
(
ṗ cosφ− p2 sinφ

)
, (1b)

LT = −Ks

(
1−Δk

2

ss

)
tanφ−

Ds

(
1−Δd

2

ss

)
p cosφ−mg

(
Δkss +Δdss

)
, (1c)

NT = Izz ṙ, (1d)

ṗ =
hSMmSM

(
Fy,T

m + sinφ
(
g + hSM

mUC

m p2
))

+ LT

Ixx,SM + h2SMmSM
mUC

m cosφ
.

Most of the model parameters are illustrated in Figure 1 and
their values are given in Table II for the simulation model
used. The model dynamics’ states are the vehicle velocity
components in the horizontal plane (u, v), roll (φ), roll rate
(p), turn rate (r), and the tires ground contact forces (Fz,fR,
Fz,fL, Fz,rR, and Fz,rL). The model also includes the planar
kinematic variables, i.e., the horizontal position (x, y) and the
yaw angle (ψ). The symbols Fx,T , Fy,T , LT , and NT are the
forces and moments acting on the car through the tires, and
mSM , mUC , m, Ixx,SM and Izz are the sprung mass, the
undercarriage mass, and the overall vehicle mass and inertia
moments, respectively, while Ks and Ds are the suspension
roll stiffness and damping coefficients, and Δkss and Δdss are
the suspension roll differential stiffness and damping factors.

The simulation results (Sec. IV) include some instants
where the wheels on one of the sides lift from the road.
In such conditions, the car dynamics are similar to a two
segment inverted pendulum [15]. For the sake of readability
and because it is not relevant for the design of the reference
governors that maintain vehicle operation away from this
condition, the extension of the vehicle equations of motion
for the wheel lift condition is not presented here.

2) Magic Formula Tire Model: The main source of non-
linearities in the equations of motion is the tire forces’
dependence on the slip and the ground contact force. The
ground contact force, i.e., the vertical force on the tire contact
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(a) Rear view.

(b) Top view.

Fig. 1. Vehicle forces diagram.

patch, is independent for each tire and is denoted by Fz,(.),
where (.) = fR, fL, rR, rL. As the horizontal tire force is a
function of the tire’s vertical force, the tires’ vertical forces
are included as 4 additional states. In this work, we use the
Magic Formula tire model [13], [16]–[18]. To compute the tire
forces, the slip ratio (λ) and the tire slip angle (α) are defined
as (Fig. 2):

λ =

{
Rwωw−uw

uw
Rwωw < uw

Rwωw−uw

Rwωw
Rwωw ≥ uw

, (2a)

αf = δf − tan−1

(
v + lfr

u

)
, (2b)

αr = tan−1

(−v + lrr

u

)
. (2c)

The tire slip ratio characterizes the longitudinal slip. It is
defined as the normalized difference between wheel hub speed
(uw) and wheel circumferential speed (Rwωw). The tire slip
angle is the angle between the tire heading direction and the
velocity vector at the contact patch (Fig. 2). Equations (2b) and
(2c) define the tire slip angle for the forward and rear wheels,
respectively. For the combined longitudinal and lateral slip,
the Magic Formula takes the following form [12] (Fig. 3):

Fig. 2. Tire slip angle (α) at the contact patch. V is the total tire speed.
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Fig. 3. Tire lateral force variation with the side slip for several levels of
slip ratio. It is noticeable that with increased slip ratio the lateral force tends
to flatten, as illustrated by the inset figure: The blue and red lines represent
conditions with a high slip ratio and no slip ratio, respectively.
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Fig. 4. Tire lateral force variation with the vertical load. The solid red line
is the lateral force generated at nominal vertical load.

[
FTx
FTy

]
= FPP (sc, C, E) ŝ, (3)

P (sc, C, E) = sin
(
C tan−1

[sc
C

(1− E) + E tan−1
(sc
C

)])
,

sc =
Cα ‖s‖
Fp

, Cα = c1mg
(
1− e−

c2Fz
mg

)
,

c1 =
BCD

4
(
1− e−

c2
4

) ,
FP =

Fz1.0527D

1 +
(

1.5Fz

mg

)3 ,

s =

[
sx
sy

]
=

[
λ

tanα

]
, ŝ =

s

‖s‖ ,

where FTx and FTy are the forces along the tire longitudinal and
lateral axis, x and y (Fig. 2), respectively. Cα is the cornering
stiffness, FP is the horizontal (or slip) peak force, ŝ is the
total slip, and B, C, D, E, and c2 are tire parameters that
depend on the tire characteristics and the road conditions (see
Table I).

TABLE I
TIRES MAGIC FORMULA MODEL PARAMETERS.

Conditions B C D E c2

Dry 7.15 2.30 0.87 1.00 1.54
Wet 9.00 2.50 0.72 1.00 1.54
Snow 5.00 2.00 0.30 1.00 1.54
Ice 4.00 2.00 0.10 1.00 1.54

Figure 4 illustrates the variation of the lateral force with the
vertical load. The illustrated model presents almost the same
side slip angle for all vertical load cases, and an initial slope
decreasing for lower vertical loads. This behavior is governed
by the parameter c2.
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B. Constraints

The vehicle constraints reflect the system’s physical limits
or requirements to keep the vehicle state in a safe region.
There are several options to define constraints that protect the
vehicle from rollover. One possibility is to define the rollover
constraints as the states where the car roll is so large that
there is no possible recovery. This approach would require the
treatment of complex, hybrid vehicle dynamics, which involve
the vehicle continuous dynamics states plus two discrete states
(all wheels on the road state and wheel liftoff state), and in
the case of wheel liftoff, multiple-body inverted pendulum-like
dynamics.

In this paper, following [5], [7], [8], more conservative
rollover avoidance constraints are treated, which are, however,
simpler to enforce. These constraints are defined through the
Load Transfer Ratio (LTR). The LTR measures how much of
the vehicle vertical load is concentrated on one of the vehicle
sides:

LTR :=
Fz,R − Fz,L

mg
. (4)

The wheel liftoff happens when the LTR increases above 1
or decreases below −1, i.e., when the right or left wheels,
respectively, bear all the car’s weight. Hence, the rollover
avoidance constraints are imposed as:

LTR ∈ [−LTRlim, LTRlim] , 0 < LTRlim < 1. (5)

Remark 1. Note that the absolute value of the LTR may
exceed 1, even if wheel liftoff does not occur. This can
happen, in particular, due to the suspension roll moment, e.g.,
generated by the spring stored energy, and by the CM vertical
acceleration during wheel liftoff.

The steering input is also considered to be constrained:

δSW ∈ [−δSW,lim, δSW,lim] . (6)

C. Linearized Car Model

The vehicle linear and reduced order model has the follow-
ing form,

ẋ = Ax+BδSkδSW ΔδSW , (7a)
y = Cx+DδSW ΔδSW , (7b)

where x = [Δv,Δr,Δp,Δφ] corresponds to the relevant
lateral state variables, and ΔδSW is the steering control input
deviation. The ratio between the steering wheel angle and the
forward tires steering angles is kδSW .

Linearizing (1) and reducing the model order, the vehicle
linearized model is obtained, with the dynamics matrix of the
form,

A :=

⎡
⎢⎢⎢⎣

∂Fy,T

∂v
1
m′

∂Fy,T

∂r
1
m′ − u h′

SM
∂ṗ
∂p

h′
SM

∂ṗ
∂φ

∂NT
∂v

1
Izz

∂NT
∂r

1
Izz

0 0
∂Fy,T

∂v
hSM
I′xx

∂Fy,T

∂r
hSM
I′xx

∂ṗ
∂p

∂ṗ
∂φ

0 0 1 0

⎤
⎥⎥⎥⎦ , (8)

the steering control matrix is defined as:

BδS :=
[

∂Fy,T

∂δf
1
m′

∂NT

∂δf
1
Izz

∂Fy,T

∂δf
hSM

I′xx
0
]ᵀ
, (9)

and the system output matrices are defined by the operation
constraints (Sec. II-B):

C :=

[
0 0 − 2Ds

mgT − 2Ks

mgT

0 0 0 0

]
, (10a)

DδS :=
[
0 1

]ᵀ
. (10b)

where

m′ =
m2I ′xx

mI ′xx + h2SMm
2
SM cosφ0

, (11a)

I ′xx = Ixx,SM + h2SMmSM
mUC

m
cosφ, (11b)

h′SM =
hSMmSM

m
, (11c)

∂ṗ

∂p
=

2h2SMmSMp0
mUC

m sinφ0 −Ds

(
1−Δd

2

ss,0

)
cosφ0

I ′xx
,

(11d)
∂ṗ

∂φ
=

[
mSMghSM −Ks

(
1−Δk

2

ss,0

) (
1 + tan2 φ0

)−
Ds

(
1−Δd

2

ss,0

)
p0 sinφ0

]
/I ′xx. (11e)

The matrix C represents the LTR [eq. (4)], and reflects the
use of the vehicle weight as an approximation of the total load
supported by the vehicle tires [5], [7], [8]. The vehicle suspen-
sion is approximated by a single angular spring and damper
(fig. 1a and sec. II-A), assuming that T2 (Fz,R − Fz,L) = LT ,
which holds as long as the roll angles are small, the differ-
ential suspension effects are negligible, i.e., Δkss ≈ 0 and
Δdss ≈ 0, and all tires remain in contact with the ground.

D. Performance Metrics

This study uses four performance metrics: the step compu-
tation time, the effectiveness, the conservatism, and the turning
response. We have chosen not to use a metric that compares
the vehicle positions between the reference trajectory and
the trajectory effected by the controllers as there are several
reference trajectories that end in a full rollover.

The step computation time is the time it takes the controller
to validate or compute a command. The effectiveness metric
is the success rate in avoiding wheel lift up to a wheel lift
limit. For each test:

ηlift := 1− max zwheel
zwheel,lim

, (12)

where max zwheel is the maximum wheel lift attained during
a test, and zwheel,lim is the wheel lift limit considered.

The conservatism metric indicates how much the controller
is over-constraining the steering command when compared
with a safe steering command:

χ :=

∫ T
0

(|δSW,ref (t)− δSW (t)| − |δSW,ref (t)− δSW,safe (t)|) dt∫ T
0

|δSW,ref (t)| dt
,

(13)
where δSW,ref is the driver reference command during the
maneuver, δSW is the controller command, δSW,safe is a
reference safe command, and T is the test duration. Two
options for the reference safe command are the driver steering
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Fig. 5. Command governor control architecture for a steering command.

input scaled down to avoid any wheel lift or the driver
steering input scaled down to produce a maximum wheel lift
of zwheel,lim.

The turning response metric indicates how much the con-
troller is limiting the vehicle turn rate relative to the driver
desired turning rate when compared with the turn rate achieved
with a safe steering command:

ηψ̇ :=

∫ T
0

(∣∣∣ψ̇des (t)− ψ̇safe (t)
∣∣∣−

∣∣∣ψ̇des (t)− ψ̇ (t)
∣∣∣
)
dt

∫ T
0

∣∣∣ψ̇SW,ref (t)
∣∣∣ dt

, (14)

where the driver desired turning rate is inferred from the refer-
ence steering command and the steering-to-turn rate stability
derivative: ψ̇des = dψ̇

dδSW

∣∣∣
δSW=0

δSW,ref . ψ̇ and ψ̇safe are the
turn rates caused by the controller command and the reference
safe command, respectively.

III. REFERENCE AND COMMAND GOVERNORS

This work implements different versions of Reference and
Command Governor (CG) controllers, collectively referred to
by their common name as reference governors. Our reference
governors modify the reference command, the steering angle
(Fig. 5), if this reference command is predicted to induce a
violation of the LTR constraints (Sec. II-B).

The reference governors solutions studied for this appli-
cation are based on both linear and nonlinear models. The
following sections describe the various solutions in more
detail.

A. Linear Reference Governors and Command Governors

Both the Linear Reference Governors and the Command
Governors rely on a maximum output admissible set O∞ (or
its subsets) to check if a reference command is safe, i.e., if it
does not lead to constraint violation, and to compute a safe
alternative command, if necessary. The O∞ set characterizes
the combinations of constant commands and vehicle states for
our prediction model that do not lead to constraint violating
responses,

O∞ :=
{
(u,x) |yk ∈ Y, ∀k ∈ Z

0+
} ⊂ R

4+n, (15)

where n = 1 is the number of commands, x and u are the
state and command at the present moment and yk, k ∈ Z

0+,
is the predicted evolution of the system output. The set Y
represents the constraints and delineates safe outputs,

Y := {y|Ayy ≤ by} ⊂ R
l, (16)

where l is the number of system outputs on which constraints
are imposed.

Considering (15), (16), xO∞ :=
[
u x

]ᵀ, where u =
ΔδSW , and a linear model (7), we define an inner approxi-
mation of the maximum output admissible set as

O∞ := {xO∞ |AO∞xO∞ ≤ bO∞} ⊂ R
4+n, (17a)

AO∞ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

AyD AyC
Ay

(
C (I − A)−1 (I − A)B + D

)
AyCA

...
...

Ay

(
C (I − A)−1

(
I − AN

)
B + D

)
AyCAN

AyH 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (17b)

bO∞ :=

⎡
⎢⎢⎢⎢⎢⎣

by

by

...
by

by (1 − ε)

⎤
⎥⎥⎥⎥⎥⎦
, (17c)

H = C (I− A)−1 B + D, (17d)

where N is the selected prediction horizon and ε > 0.
Under mild assumptions [19], O∞ is the same for all N
sufficiently large and is positively invariant (for constant u).
It also satisfies constraints pointwise. Generally, such an N is
comparable to the settling time of the system.

B. Linear Reference Governor (LRG)

The LRG computes a single command value on every
update using the above O∞ set which we re-write as

O∞ :=
{
(u,x) |yk =

(
C (I−A)

−1 (
I−Ak

)
B+D

)
u+

CAkx ∈ Y, k = 0, ..., N
}⋂

Γ ⊂ R
4+n, (18)

Γ = {(u,x) |Hu ∈ (1− ε)Y} .
By checking whether the current state belongs to O∞, the con-
troller checks if the reference or an alternative command are
safe. If the reference command is deemed safe, it is applied.
If not, the controller selects an alternative safe command that
minimizes the difference to the reference:

kLRG = max {k ∈ [0, 1] |vk = vk−1 + k (uk − vk−1) ,

(vk,xk) ∈ O∞} , (19a)
vk = vk−1 + kLRG (uk − vk−1) (19b)

where uk is the current reference command, xk is the current
state, and vk−1 is the previous command used.
Remark 2. Because the reference governor checks at each up-
date if a command is safe for the future steps, vk−1 is assured
to be safe for the current step, provided an accurate model of
the system is used. As such, in the optimization process (19),
one only needs to analyze the interval u ∈ [vk−1,uk].

C. Extended Command Governor (ECG)

The ECG [20] is similar to the LRG, but, when it detects
an unsafe reference command, it computes a sequence of safe
commands governed by:

v = C̄x̄+ ρ, (20a)
x̄k+1 = Āx̄, (20b)

where v is the safe command (output of the ECG) with
dynamics governed by (20b), x̄ is the virtual state vector of
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the command dynamics, and ρ is the steady state command
to which the command sequence converges. The matrices Ā
and C̄ are two of the design elements of the ECG. They are
defined at the end of this section. The key requirement is that
the matrix Ā must be Schur.

To detect if a reference command is safe, the ECG uses the
LRG O∞ set (18). If the reference command is unsafe, the
ECG uses an augmented Ǒ∞ set that takes into account the
computed command dynamics:

Ǒ∞ := {(ρ,xaug) |yk =(
Caug (I−Aaug)

−1 (
I−Ak

aug

)
Baug +Daug

)
ρ+

CaugA
k
augxaug ∈ Y, k = 0, ..., N

}⋂
Γ′ ⊂ R

4+n+m,

(21)
Γ′ = {(ρ,xaug) |Hρ ∈ (1− ε)Y} ,

where m is the size of x̄, xᵀ
aug := [xᵀ, x̄ᵀ]ᵀ is an augmented

state vector, and the matrices Aaug, Baug, Caug, Daug cor-
respond to the augmented system. We note that this event-
triggered execution of ECG is quite effective in reducing
average chronometric loading and to the authors’ knowledge,
has not been previously proposed elsewhere.

In the ECG, both the steady state command and the initial
virtual state are optimized. This optimization is performed by
solving the following quadratic programming problem:

x′ = argmin
x′

{
1

2
x′ᵀH̆x′ + f̆ρ| (ρ,xaug) ∈ Ǒ∞

}
, (22)

x′ :=
[

x̄
ρ

]
, H̆ :=

[
P 0
0 Q

]
, f̆ := −uᵀ

kQ,

where P and Q are symmetric positive-definite matrices. In
this work Q := kLI > 0 is the tuning matrix, while P is
computed by solving the discrete-time Lyapunov equation:

ĀᵀPĀ−P+Q = 0. (23)

The safe command is then computed by (20a).
Several possibilities for the matrices Ā and C̄ exist [10].

These matrices can define a shift register sequence, making
the ECG behave like a Model Predictive Controller (MPC), or
a Laguerre sequence, as follows:

Ā =

⎡
⎢⎢⎢⎢⎢⎣

αIm μIm −αμIm . . . (−α)N−2 μIm
0 αIm μIm . . . (−α)N−3

μIm

0 0 αIm
. . .

...
0 0 0 . . . μIm
0 0 0 . . . αIm

⎤
⎥⎥⎥⎥⎥⎦ ,

(24a)

C̄ =
[
Im −αIm α2Im . . . (−α)N−1 Im

]
, (24b)

where μ = 1 − α and 0 ≤ α ≤ 1 is a tuning parameter
that corresponds to the time constant of the command virtual
dynamics. If α = 0, the ECG becomes a shift register.

D. Application to Steering Control

In our application to steering control, the output and the
constraints are defined as follows:

y :=
[
LTR δSW

]ᵀ
, (25a)

Ay :=

⎡
⎢⎢⎣

1 0
−1 0
0 1
0 −1

⎤
⎥⎥⎦ , by :=

⎡
⎢⎢⎣
LTRlim
LTRlim
δSW,lim
δSW,lim

⎤
⎥⎥⎦ . (25b)

The discrete time step is Δt = 0.01s and the prediction
horizon is N = 100. For the ECG, kL = 1, the size of x̄ is
4, and α = 1 − Δt

τcar
, so that the virtual dynamics match the

vehicle dynamics time constant that, as we have determined
empirically, appears to provide best response properties.

E. Nonlinear Compensation

Both the Linear Reference Governor and the Extended
Command Governor rely on linear model predictions to avoid
breaching the defined constraints. In reality, the controller is
acting on a vehicle with nonlinear dynamics. This results in
deviations between the predicted and the real vehicle response.

1) Nonlinear Difference: For the same state, there is a
difference between the linear model output prediction and
the vehicle’s real output variables, which we refer to as the
nonlinear difference:

d = f (x,u)−Cx−Du− y0. (26)

This difference, further exacerbated by the error in the state
prediction by the linear model, can either cause the vehicle to
breach the constraints when the controller does not predict
so, or cause the controller generated command to be too
conservative. This effect can be mitigated if the controller
takes into account the current nonlinear difference for the
current command computation, assuming that it is persisting
over the prediction horizon. As an example, in the LRG the
nonlinear difference can be compensated for by including it
in the O∞ set:

Ǒ∞ := {(v,x,d) : yk =(
C (I−A)

−1 (
I−Ak

)
B+D

)
v+

CAkx+ d ∈ Y, k = 0, ..., N
}⋂

Γ′′ ⊂ R
4+n+l, (27)

Γ′′ = {(v,x,d) |Hv + d ∈ (1− ε)Y} .
To use the nonlinear difference in the controller, the xO∞

vector and the AO∞ matrix are extended to account for d:

x̆ᵀ
O∞ :=

[
uᵀ, xᵀ, dᵀ ]ᵀ

, (28a)

ĂO∞ :=

⎡
⎢⎢⎢⎣ AO∞

Ay

Ay

...
Ay

⎤
⎥⎥⎥⎦ , b̆O∞ := bO∞ . (28b)

2) Multi-Point Linearization (MPL): The nonlinear differ-
ence compensation in the previous subsection reduces the non-
linear effects in the vicinity of the system’s current state. How-
ever, in this work and, in particular, for large input commands,
that are likely to cause a rollover, this alone is insufficient.
Figure 6 shows how much the vehicle dynamics’ poles can
change for a range of steering angles. If the controller uses



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. #, NO. #, ??? 2016 7

Fig. 6. Vehicle dynamics’ poles for a range of steering angles from 0 degrees
(cross) to 150 degrees (circle).
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(a) Vehicle steering command, LTR response, and
roll response. The dashed blue lines correspond to
the reference command. The dot-and-dashed red
and the solid black lines correspond to the LRG
commands with a single- and multi-point lineariza-
tion, respectively, both with the nonlinear difference
compensation.
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(b) Linearization point selection in the LRG with
multi-point linearization.

Fig. 7. LRG with multi-point linearization. Here, the linearization points used
correspond to steering angles of δSW = 0, 20, 40, 80 & 130deg.

a model linearized around the no actuation point (δSW = 0),
the controller becomes too conservative. The use of multiple
linearization points to define multiple O∞ sets has proved
to be an appropriate compensation method. The multi-point
linearization results in a less conservative controller, when
compared to a controller just with the nonlinear difference
compensation (Fig. 7a).

The control strategy is the same as described in the previous
sections. The difference is that several linearization points
are selected (Fig. 7b) and, for each one, an O∞ set (17) is
computed. The controller then selects the closest linearization
point and corresponding O∞ set, based on the current steering
angle. Note that in Figure 7a and subsequent figures, we report
LTR in percent.

F. Command Computation Feasibility

In practical applications, the LRG and ECG optimization
problems, (19) and (22), may become infeasible due to unmod-
eled uncertainties, in particular, due to the approximation of

0 0.5 1 1.5 2 2.5 3 3.5

−4

−2

0

R
G

fe
as

0 0.5 1 1.5 2 2.5 3 3.5

−4

−2

0

Time (sec)

R
G

C
C

fe
as

(a) Classification of the solution computation feasibility
for the LRG. Level 1 means the controller is able to
compute a solution. Level 0 means that there is no viable
solution, because the current output is already breaching
the constraints and the current reference is the same as the
last used command. The levels −1 and −2 indicate that
for some of the points in the prediction horizon a solution
would only exist if the gain kLRG was set to more than
1 or less than 0, respectively. Level −3 indicates that
for different points in the prediction horizon a solution
would only exist if the gain kLRG was set to more than
1 and less than 0, simultaneously. The levels −4, −5 and
−6 are set when the conditions for level 0 are verified at
the same time as those necessary for the levels −1, −2
and −3, respectively. The dashed blue line for the method
with command contraction allowed shows when a solution
becomes viable due to the contraction.
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(b) Vehicle steering command, LTR response, and
roll response. The dashed blue lines correspond
to the reference command. The dot-and-dashed
red and the solid black lines correspond to the
LRG commands with kLRG ∈ [0, 1] and allowing
command contraction, respectively.

Fig. 8. Feasibility recovery - LRG with command contraction allowed.

the nonlinear vehicle dynamics by a linear model in prediction.
Figure 8a shows the computation feasibility classification
for an example vehicle simulation. This section describes
the different approaches to deal with infeasibility and the
outcomes of their evaluation.

1) Last Successful Command Sequence: The simplest ap-
proach, in the event of infeasibility, is to maintain the last
successfully computed command, for the LRG:

vk = vk−1, (29)

or command sequence, for the ECG:

x̄k = Āx̄k−1, (30a)
ρk = ρk−1, (30b)
vk = C̄x̄k + ρk. (30c)

2) Command Contraction: In its standard form, the LRG
computation limits the LRG gain as kLRG ∈ [0, 1], i.e., the
computed command is limited to the interval vk ∈ [vk−1,uk].
With the LRG, there are situations in which maintaining the
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(a) Number of rows removed from the LRG O∞
set.
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(b) Vehicle steering command, LTR response, and
roll response. The dashed blue lines correspond to
the reference command. The dot-and-dashed red
and the solid black lines correspond to the LRG
commands blocking and allowing the O∞ set rows
removal, respectively.

Fig. 9. Feasibility recovery - O∞ set rows removal.

last successfully computed command might be problematic. If
the solution infeasibility is caused by the differences between
the linear model and vehicle nonlinear dynamics, that usually
means that the controller allowed the command to be too large,
allowing the vehicle state to go too close to the constraints,
and maybe breaching them in the near future (Fig. 8b). In this
case, modifying (19) to allow the command to contract even if
the reference command is not contracting may produce safer
solutions. The computations are modified as follows:

S =

⎧⎪⎨
⎪⎩
[0,max {vk−1,uk}] vk−1 > 0 and uk > 0,

[min {vk−1,uk} , 0] vk−1 < 0 and uk < 0,

[vk−1,uk] otherwise,

(31)

v = argmin
v∈S

{|v − uk| | (v,x) ∈ O∞} . (32)

Figure 8b shows that with the last successful command (RG)
the vehicle actually breaches momentarily the imposed con-
straints, LTR < −100% close to t = 1.9s, while with
the contracted command approach (referred to as RGCC in
Figure 8b) the LTR is kept within the desired bounds and the
command converges to reference value sooner (at t ≈ 1.9s).

3) O∞ Set Constraints Temporal Removal: This method
is based on the premise that the controller may not be able
to avoid the constraint violation in the near term, but will be
able to bring the system into the desired operation envelope in
the future. The method removes as many initial rows from the
representation of the O∞ set as required to make the command
computation feasible (alg. 1). In Algorithm 1, A2il+1:2(Nl+2)

O∞
is the matrix composed by all rows between the (2il+ 1) th
line and the last (2 (Nl+ 2) th row) of the AO∞ matrix.

Figure 9a indicates the number of rows that had to be
removed at each computation step to make the command
computation feasible. As shown by Figure 9b, this approach

i = 0
while v computation fails do

i = i+ 1
A′

O∞ = A
2il+1:2(Nl+2)
O∞

b′
O∞ = b

2il+1:2(Nl+2)
O∞

end
Algorithm 1: Constraint removal from the O∞ set.

(referred to as RGRR in Figure 9a) is prone to failure, limiting
the steering angle only very slightly (at t ≈ 1.35s) and
allowing the car to rollover.

4) O∞ Set Constraints Relaxation: The logic behind this
approach is that by allowing the controller to find a feasible
solution through constraint relaxation, a solution may be found
that unfreezes the command computation. This allows the
controller to find a solution that may lead to a behavior closer
to the intended than a locked command. The method expands
and contracts the O∞ set by modifying the bO∞ vector:

b′
O∞ = (1 + ε)bO∞ , (33)

where ε is the expansion factor. This factor is doubled until
the command computation is successful and then the bisection
method is used to find the minimum ε for which the command
computation is feasible. In Figure 10a ε is referred to as
RGRCby,exp and illustrated as a percentage of bO∞ .

Figure 10a shows the constraint expansion factor that had
to be used at each computation step to make the command
computation feasible. Figure 10b shows that this method
(referred to as RGRC) provides only a small improvement over
the last successful command (RG) by allowing the command
to converge to the reference value sooner (at t ≈ 2.0s). It still
allows the LTR to breach the imposed constraints (at t ≈ 1.9s).

We note that various heuristic and sensitivity-based modifi-
cations can be proposed where only some of the constraints are

(a) LRG constraint relaxation magnitude.
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(b) Vehicle steering command, LTR response, and
roll response. The dashed blue lines correspond to
the reference command. The dot-and-dashed red
and the solid black lines correspond to the LRG
commands without and with constraint relaxation,
respectively.

Fig. 10. Feasibility recovery - O∞ constraints relaxation.
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relaxed but this entails additional computing effort which is
undesirable for this application. Note also that a soft constraint
version of the RG has been proposed in [21]; this strategy has
not been formally evaluated as it appears to be similar to our
O∞ set constraint relaxation approach.

We also note that for the ECG a similar constraint relaxation
method could be implemented, where a relaxation variable is
included as part of the Quadratic Programming (QP) and the
constraints that are most violated are relaxed first.

5) Selected Feasibility Recovery Method: From the differ-
ent methods tested with the LRG, the command contraction
method was the best performing (Sec. IV-C and Fig. 19). In the
simulations section, except for the results comparing directly
the infeasibility recovery methods, the LRG is tested with the
command contraction method.

With the ECG, the infeasibility recovery method used is the
last successfully computed command.

G. Nonlinear Reference Governor (NRG)

The NRG relies on a nonlinear model in prediction to
check if a command is safe or, if otherwise, compute a safe
command. Instead of the O∞ set used by the LRGs, the NRG
uses a nonlinear model (Sec. II-A1) to predict the vehicle
response to a constant command for the specified time horizon,
usually comparable to the settling time. If the predicted vehicle
response stays within the imposed constraints, the command
is deemed safe and is passed on. Otherwise, the NRG uses
bisections to find a safe command in the range between the
last passed (safe) command and the reference command. Each
iteration, including the first with the reference command,
involves a nonlinear prediction of a modified by bisections
command, checks if it respects the constraints, and classifies
the command as safe or unsafe. These bisection iterations
numerically minimize the reference-command difference, i.e.,
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(b) Vehicle lateral response.

Fig. 11. Nonlinear Reference Governor command with 1 and 4 nonlinear
iterations, 0 and 3 bisections, respectively, per step.

the difference between the reference command and the used
safe command. The number of iterations is a configuration
parameter, and governs the balance between the computation
time and the solution accuracy. Parametric uncertainties can be
taken into account following the approach in [22], but these
developments are left to future work.

Figure 11 shows that the NRG with a single iteration
(NRG1), i.e., a simple verification of the trajectory constraints
with the reference command, produces very similar results
when compared with the NRG with three extra bisection steps
(NRG4). The NRG4 initially allows a slightly less constrained
command and then has somewhat smoother convergence with
the reference command (at t = 0.8s & 2s). This behavior is
obtained at the expense of the computational load, taking about
4 times longer to compute a safe command when the reference
is unsafe. For the illustrated example (Fig. 11), the NRG1 and
the NRG4 take an average of 0.16s and 0.31s, respectively,
to compute a safe command.

IV. SIMULATION RESULTS

A. Simulation Setup
1) Simulation Model: The nonlinear simulation model was

setup to have a behavior similar to a North American SUV.
The model parameters are listed in Table II.

TABLE II
VEHICLE SIMULATION PARAMETERS.

Parameter Value
lf 1.160m
lr 1.750m
T 1.260m
hSM 0.8580m
hUC 0.000m
m 2000kg
mSM 1700kg
mUC 300kg

Parameter Value

Ixx,SM 1280kg/m2

Ixx,UC 202kg/m2

Iyy,SM 2800kg/m2

Izz 2800kg/m2

Ixz,SM 0kg/m2

kδSM
17.5

KS 95707N.m
DS 7471N.m.s/rad

We used a CarSim R© simulation model to validate the
realism of the nonlinear model presented in Section II-A,
implemented in MATLAB R©. Figure 12 illustrates the sim-
ulation results from both models in terms of their lateral
dynamics. The lateral dynamics match well and show that
both models react very similarly to the controllers’ feedback.
The MATLAB R© nonlinear model allows us to run a large
number or tests with a wide range of conditions in a timely
fashion when compared with the CarSim environment. The
results presented in the remainder of the paper were obtained
with the MATLAB R© model.

2) Test Maneuvers: The National Highway Traffic Safety
Administration (NHTSA) defines several test maneuvers: Sine
with Dwell, J-Turn, and FishHook [1]. In this work, we choose
to test the controllers and demonstrate rollover avoidance for
Sine with Dwell maneuvers (Fig. 12). Figure 14b illustrates the
variation of the vehicle roll (sprung mass and undercarriage)
and of the maximum wheel lift (hWL,max = T sin |φuc,max|)
with respect to the maximum value of the Sine with Dwell
reference steering angle, showing ≈ 20deg of sprung mass
roll and ≈ 240mm of wheel lift for δSW,lim = 150deg.
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Fig. 12. Vehicle dynamics in a Sine with Dwell maneuver with and without ECG intervention. Comparison between the trajectories simulated by a CarSim
model in open loop (Ref ) and with the ECG’s feedback (ECG(CarSim)), and the trajectory simulated by the MATLAB R© nonlinear model with the ECG’s
feedback (ECG(NLM)) (Sec. II-A).
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Fig. 13. Vehicle dynamics in a Sine with Dwell maneuver. Comparison between the trajectories generated with the intervention of the proposed reference
governors.
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Fig. 14. Variation of the roll propensity for Sine with Dwell maneuvers. The
Sine with Dwell maneuvers vary in terms of steering amplitude, defined by
the limit steering angle (δSW,lim).

B. Trajectories with the Reference Governors (RGs)

Figures 13 and 15 illustrate the effect of the various RGs
on the vehicle trajectory. The simulations have been performed
on our nonlinear vehicle dynamics model in MATLAB R©. The
Linear Reference Governor (LRG) used in this comparison
uses the nonlinear difference compensation (Sec. III-E1), the
Multi-Point Linearization (MPL) (Sec. III-E2), and allows
command contraction (Sec. III-F2). The Extended Command
Governor (ECG) uses the MPL (Sec. III-E2) and maintains the
last successfully computed command sequence (Sec. III-F1)
when an infeasible command computation is found. The
Nonlinear Reference Governor (NRG) performs 4 iterations
to find a suitable command, when the reference command is
deemed unsafe.

It is clear from Figure 13 that the RGs’ steering adjustments
are different in shape, but not so much in their effect on the
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Fig. 15. Vehicle trajectory in a Sine with Dwell maneuver.

Fig. 16. Reference Governors activation, i.e., steering command modification.

LTR, side-slip (β), roll (φ), and lateral acceleration (gy). The
amplitude of the turn rate (r) is more limited by the NRG than
the other RGs. The trajectories with the RGs do not diverge
much from the trajectory with the reference steering command,
up to the moment when the vehicle starts to rollover with the
reference command (Fig. 15). The RefLift, LRGLift, and
NRG4Lift shades over the x-y trajectory illustrate where the
LTR breaches the imposed constraints.

Figure 16 highlights with background shades when the RGs
are active, adjusting the steering command. The darker shades
indicate that the controller was unable to avoid breaching the
LTR constraints. The LTR plots in Figures 13 and 16 show
that in this simulation instance, the LRG allowed the LTR to
slightly exceed the constraints (at t ≈ 1s&1.8s), but was able
to maintain the roll angle well under control.

C. Reference Governors Performance Comparison

The results presented next characterize the performance of
the controllers in terms of constraint enforcement effectiveness,
the adherence to the driver reference (conservatism), the ad-
herence to the desired turning rate (turning response), and the
controllers’ computation time. The results were obtained from
simulation runs with a range of Sine-with-Dwell maneuvers’
amplitudes between 10 and 160 deg.

Figure 17 illustrates the trajectories that serve as reference
in the RGs’ performance evaluation and an example of a
trajectory with a controller intervention (LRG). The reference
safe trajectories used in (13) and (14) are: the reference
trajectory, produced by the original command; the limit lift
trajectory (LimLift), with the maximum allowable wheel lift
(5 cm, 2”); the no lift trajectory (NoLift), that produces
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(b) Vehicle trajectory on the X-Y plane.

Fig. 17. Reference safe trajectories used for the reference governors
performance evaluation. The Ref trajectory is the unmodified sine-with-
dwell maneuver with the maximum steering angle defined for a specific
test, in this case 160 degrees. The LimLift trajectory is the sine-with-dwell
maneuver that produces the maximum allowable wheel lift (5 cm, 2”). The
NoLift trajectory is the sine-with-dwell maneuver with the maximum steering
angle that produces no wheel lift. The NRG4 trajectory illustrates the safe
maneuver, resulting from the Nonlinear Reference Governor intervention, that
is considered to interfere the least with the original steering command and
trajectory (Ref ), while avoiding almost completely wheel lift conditions. The
LRG trajectory illustrates a maneuver resulting from the application of the
Linear Reference Governor.

no wheel lift; and the quasi-optimal safe trajectory (NRG4),
produced by an NRG with 4 iterations. Each reference safe
trajectory has its own merits in the evaluation of the refer-
ence governors’ conservatism. The trajectory produced by the
reference governors is the least conservative when compared
with the NoLift trajectory. This shows how much the controller
reduces the conservatism when compared to a simplistic
safe trajectory. The comparison with the NRG4 trajectory
produces a middle range conservatism evaluation, allowing
us to compare the reference governors’ command with an
almost optimal constraint enforcement strategy. The reference
governors’ trajectory is the most conservative when compared
with the LimLift trajectory. This shows how much leeway
exists between the reference governors’ commands and the
commands that produce the limit lift condition.

The two bottom plots in Figure 18 illustrate the comparison
between different LRG options and the NoLift, NRG4, and
LimLift reference safe trajectories. On all the figures that
illustrate the conservatism and turning response for the same
controller configuration, there are three comparison branches,
where the NoLift and the LimLift trajectories offer the most ad-
vantageous and most disadvantageous comparison trajectories,
respectively. That means that the NoLift branch is the bottom
branch in the conservatism plots and the top one in the turning
response plots (Fig. 18). The middle branch, the comparison
with a trajectory considered to be optimal, NRG4, is the most
interesting, as it shows a comparison with one of the least
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Fig. 18. Variation in performance of the LRG with a single linearization point
(RGNC - LRG with just the nonlinear difference compensation) and different
selections of MPLs (RGMPL#).

conservative trajectories that produce almost no wheel lift.
Figure 18 shows how the LRG performance improves with

Multi-Point Linearization (MPL) and how it changes with the
selection of linearization points:

• RGMPL1: 0, 20, 40, and 100 deg;
• RGMPL2: 0, 80, 110, and 150 deg;
• RGMPL3: 0, 20, 40, 60, 80, 100, 120, 130, 140, and 150 deg.

Note that fewer linearization points might lead to less con-
servatism and a better turning response, however may also
result in a worse effectiveness (Fig. 18). With a dense selection
of linearization points (RGMPL3 case), the LRG is 100%
effective for all amplitudes of the reference command.

The feasibility recovery methods are compared with the
linearization points of the RGMPL3 case (Fig. 19). From the
various feasibility recovery methods presented in Section III-F,
the constraint temporal removal (RGRR), where rows from
the O∞ are removed, is the worst performing. The other three
methods, last successful command (RG), command contraction
(RGCC), and constraints relaxation (RGRC), are similar in
terms of the conservatism metric. The last successful command
(RG) method requires the lowest computational overhead.
Nevertheless, the command contraction (RGCC) method is
preferred, because it provides better effectiveness than the
other three methods when the state estimation includes some
noise (Sec. IV-D).

Most of the RGs’ tests shown were run with an LTR
constraint of 99%. The LTR constraint upper bound can be
relaxed, as shown in Figure 20, to reduce the controllers’ con-
servatism. For LTRmax = 99, 102, &105%, the effectiveness
is only slightly degraded and the conservatism is reduced about
10% from LTRmax = 99% to LTRmax = 105%. Note that
the relaxation of the LTR constraint beyond 100% is an ad hoc
tuning method, without any guarantees on the effectiveness.

As expected, the NRG for a single iteration (NRG1), i.e.,
with a check of the actual reference command, runs faster
than the NRG setup for four iterations (NRG4) (bottom plot
of Fig. 21). The unexpected result is that the NRG1 setup is
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Fig. 19. Variation in performance of the MPL LRG (RGMPL3’s linearization
points) with the different feasibility recovery methods: last successful com-
mand (RG), command contraction (RGCC), constraints’ relaxation (RGRC),
and constraint temporal removal (RGRR).

less conservative and has higher effectiveness (top plots of
Fig. 21). This happens with the Sine with Dwell maneuver,
because the NRG1 is slightly more conservative during the
increment of the reference command, i.e., the moment at which
the NRG command diverges from the reference command,
but that produces an earlier convergence with the reference
command (Fig. 11), while the NRG4 takes longer to converge,
with a much larger difference between the reference command
and the NRG command.

Figure 22 illustrates the performance of the LRG, ECG, and
NRG, for the selected configurations. The effectiveness is very
similar and over 99% for all the RGs (top plot of Fig. 22).
That means that the RGs keep the wheels from lifting more
than 0.5mm (0.02”) from the ground, even when the reference
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Fig. 20. Variation in performance of the MPL LRG allowing contraction for
different choices of LTRmax. LTRmax = 99, 102, & 105% for RG1,
RG2, and RG3, respectively.
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Fig. 21. Variation in performance of the LRG, NRG1, and NRG4.
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Fig. 22. RGs’ performance without estimation errors.

steering would lead to rollover. The LRG and the NRG are
less conservative and provide better turn response than the
ECG (bottom plots of Fig. 22). For the most demanding
conditions (larger reference command amplitudes), both the
LRG and the ECG have a mean computation time of about
0.005s. In the same conditions, the maximum time for the
command computation was lower than 0.01s for the LRG and
about 0.02s for the ECG. The NRG has a larger computation
time, which is about 0.16s per command update step, when
the simulation and control update step is 0.01s. This means
that the NRG setup tested is not able to compute the control
solution in real-time. In C++, the NRG would be about 10
times faster. Also, it may be possible to use slower update
rates or shorter prediction horizons with NRGs to reduce the
computation times, provided this does not cause performance
degradation or increase in constraint violation. We note that
explicit reference governor [23] cannot currently be used for
this application as we are lacking a Lyapunov function.
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Fig. 23. RGs’ performance with estimation errors of σ = 10% about the
true roll angle.
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Fig. 24. RGs’ performance with estimation errors of σ = 20% about the
true roll angle.

D. Performance in the Presence of Estimation Error

In this section, we illustrate the variation of the control
performance for 3 controllers: a LRG with command contrac-
tion, an ECG, and a NRG with a single iteration (NRG1). The
controllers are evaluated through Monte Carlo sampling with
a range of estimation error conditions in all states used by the
controllers: side-slip, turn rate, roll angle, and roll rate.

Figures 23, 24, 25, and 26 illustrate how the errors in the roll
angle affect the controllers performance. Figure 23 shows that
even with roll estimation errors up to 10%, the effectiveness of
all the RGs is almost unaffected. Figures 24 and 25 show that
the effectiveness of the ECG and the NRG is almost unaffected
even for extremely high roll estimation errors. The exception
is the LRG controller. Its average effectiveness approaches the
limit of 0% for larger reference steering angles, meaning that
the wheel could lift an average of 45mm (1.8”). Figure 25
indicates that this only happens in the presence of very high
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Fig. 25. RGs’ effectiveness performance with estimation errors of σ = 20%
about the true roll angle.
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Fig. 26. RGs’ conservatism performance with estimation errors of σ = 20%
about the true roll angle.

roll estimation errors and extremely high steering amplitudes
(> 140 deg).

Figure 26 shows that the conservatism is also affected by the
estimation errors. Nevertheless, even with 20% of estimation
error in roll, the RGs conservatism is quite acceptable, and in
most test runs it is below 50% for the LRG and NRG and
below 60% for the ECG. Most importantly, at lower steering
angles, even in the most extreme test runs, the controllers
conservatism is kept below 12% for steering angles that would
not cause any wheel lift (δSW < 48 deg) and is kept below
35% for steering angles that would take the wheels to reach
the limit wheel lift. Among the controllers compared, the ECG
controller seems to be the most sensitive to the roll estimation
errors in terms of conservatism.

The bottom plots of Figures 23 and 24 show that the con-
trollers turning response is largely unaffected by the estimation
errors. Unlike in the conservatism metric, the ECG seems to
be the least affected controller.
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Fig. 27. RGs’ performance with estimation errors of σ = 20% about the
true roll rate.
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Fig. 28. RGs’ performance with estimation errors of σ = 20% about the
true side-slip angle.

Figures 27, 28, and 29 show that the controllers’ perfor-
mance is only slightly affected by roll rate estimation errors
and is not visibly affected by the side-slip and turn rate errors,
even for the high estimation errors (σ = 20%).

Figure 30 shows that the effect of a combination of roll
and roll rate estimation errors on the controllers performance
is very similar to that of just the roll estimation errors.
These results show that the controllers are most sensitive
to the errors in the roll angle. Nevertheless, the controllers
average response is adequate, even with estimation errors with
a standard deviation of 20%, which is an extremely poor
estimation performance.

V. CONCLUSIONS

We have presented several Reference Governor (RG) de-
signs for vehicle rollover avoidance using active steering com-
mands. We implemented three types of reference governors:
a Linear Reference Governor (LRG), an Extended Command
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Fig. 29. RGs’ performance with estimation errors of σ = 20% about the
true turn rate.
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Fig. 30. RGs’ performance with estimation errors of σ = 20% about the
true roll angle and true roll rate.

Governor (ECG), and a Nonlinear Reference Governor (NRG).
The goal of the reference governors is to enforce Load Transfer
Ratio (LTR) constraints. The reference governors operation is
based on the prediction of the vehicle trajectory in response to
a driver’s steering command to check if it respects the Load
Transfer Ratio (LTR) constraints. The LRG and the ECG use a
linear model to check the safety of the steering command. The
NRG uses a nonlinear model to achieve the same goal. The
controllers were tested with a nonlinear simulation model to
check their performance with realistic vehicle dynamics, that
are highly nonlinear for large steering angles. The nonlinearity
causes the standard versions of the LRG and the ECG to
be too conservative. We have presented several methods to
compensate for such nonlinearities.

To evaluate the controllers we have defined three per-
formance metrics: effectiveness, conservatism, and turning
response. The effectiveness characterizes how well the con-
straints are enforced by the RG. The conservatism and the
turning response characterize if the controller is too intru-

sive or not, by measuring how well the RG command and
respective vehicle trajectory adhere to the driver command
and desired trajectory. An additional evaluation metric is the
command computation time, that characterizes the controller
computational load. The NRG provides the best performance
in terms of effectiveness, conservatism, and turning response,
but it is more expensive in terms of computations. The simula-
tion results show that LRG with the nonlinear compensations
(nonlinear difference and MPL) provides the best balance
between all the metrics. It has a low computational load,
while showing very high constraint enforcement effectiveness
and generating commands with a conservatism almost as
low as the NRG. The simulation results also show that the
reference governors performance is most sensitive to the roll
estimation errors, but that even with very high estimation
errors (σ = 20%) the reference governors can still enforce
the constraints effectively.

VI. FURTHER EXTENSIONS

We are working to extend the current approach to incorpo-
rate differential braking and active suspension commands. It
is important to understand the performance limits in rollover
avoidance for each individual command. It is also important to
understand how the different commands can be combined to
provide the most effective and least intrusive rollover avoid-
ance intervention. Note that the vehicles operate in changing
driving conditions and with changing parameters, e.g., vehicle
speed, road friction coefficient, vehicle mass may all change.
Some of these parameters, e.g., vehicle speed, road friction
coefficient, are measured or estimated, and, with respect to
them, the reference governor solutions can be scheduled or the
models used for onboard prediction can be updated with the
correct parameter values; other parameters may be unknown
and robustness to these noise factors needs to be demonstrated.
While in the paper we focused on demonstration of robustness
to nonlinear dynamics and noise added to lateral state mea-
surements, which we consider the most relevant challenges,
we leave a more comprehensive study of robustness to future
work. In particular, the robust reference governor strategies
[24] may be beneficial to cope with parameter changes.

Research is also needed to determine the slowest acceptable
control update rate, i.e., to characterize how slower update
rates degrade the control performance and the driver handling
perception.

This research shows that the presented reference governors
can cope with a great deal of estimation errors. Further
research should address the state estimation methodology,
given the limited sensing capabilities in standard cars. With
such a methodology, a better estimation error model should be
integrated with the vehicle simulation to verify the reference
governors performance with a realistic estimation error model.
The effects of vehicle and road uncertainties on the estimation
and control performance also need to be studied, in order
to understand how the system will perform in the range of
operating conditions in which the real vehicles will operate.
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