2015 23rd Mediterranean Conference
on Control and Automation, MED 2015 -
Conference Proceedings p. 124-129
DOI: 10.1109/med.2015.7158739

An optimal control approach to reference level tracking in
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Abstract—In this paper the neuromuscular blockade level
and the bispectral index level tracking problems by means
of automatic control are considered in the context of general
anesthesia. These tracking problems are formulated as optimal
control problems that are numerically solved using direct
methods. The obtained results are encouraging when compared
with another strategy recently proposed in the literature.

I. INTRODUCTION

Anesthesia enables a patient to tolerate very painful
surgical procedures. For this purpose the anesthesiologists
administer several drugs while simultaneously maintaining
all the vital functions of the patient. General anesthesia
consists of three main components, namely: hypnosis, anal-
gesia and muscle relaxation. Hypnosis is defined as the
absence of consciousness and the inability of the patient
to recall intra operative events. This is achieved by the
administration of hypnotics and is measured by the elec-
troencephalographic activity. The usual electroencephalo-
gram (EEG)-derived indices for this purpose are: the Spectral
Entropy (SE) [HOVS'04], the Index of Consciousness (IoC)
[CAKB™08] and the Bispectral Index (BIS) [Gan97]. Among
there, the BIS is the most widely used index to infer the
hypnosis of a patient. It is related to the responsiveness
level and the probability of recalling intra operative events,
and ranges from 97.7 (fully awake and alert state) to O
(total absence of brain activity). During a standard general
anesthesia, the BIS level should vary between 40 and 60.
Analgesia is obtained by the administration of analgesics
and it allows the loss of the pain. The level of analgesia
cannot be measured directly and must be estimated based on
autonomic reactions, such as changes in blood pressure and
heart rate, sweating, pupil reactivity and the presence of tears
[GuiO6]. It turns out that hypnotics and analgesics interact
in such way that their effect is enhanced when administered
together. In this way, both types of drugs contribute to the
depth of anesthesia (DoA). It is commonly accepted that the
DoA is also well described by the BIS level [Gan97]. On the
other hand, muscle relaxants cause neuromuscular blockade
and hence the loss of the capacity to move, which is essential
for patient intubation, to facilitate the access to internal
organs and to avoid movement responses as a result of
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surgical stimuli. The NeuroMuscular Blockade (NMB) level
is measured from a muscle response at the hand of the patient
subject evoked by stimulation of the adductor pollicis muscle
through supra maximal train—of—four (TOF) stimulation of
the ulnar nerve. It can be registered by electromyography
(EMG), mecanomyography (MMG) or acceleromyography
(AMG). More concretely, the NMB level corresponds to the
first single response (T1) calibrated by a reference twitch,
ranging between 100% (full muscular activity) and 0% (total
paralysis). In the anesthesia practice, anesthetics are admin-
istered following standard dosing guidelines often based on
an average patient [BHOS5]. The common procedure is to
administer an initial dose of anesthetics, observe the response
and adjust the dose according the desired output (e.g. NMB
and BIS reference levels). However, there is a high inter and
intra patient variability in what concerns the relation between
the administered dose and the patient response. To achieve an
individualized dose the anesthesiologists need to understand
the pharmacokinetics (PK) and pharmacodynamics (PD) of
the drugs in use, as well as the possible drug interaction.
Mathematically, the effects can be modeled by a pharmacoki-
netic/pharmacodynamic (PK/PD) model. However due to the
large number of patient dependent parameters present in the
PK/PD models, in this paper simplified SISO/MISO Wiener
models will be used to describe the relationship between the
muscle relaxant dose and the NMB level, and the relation
between the hypnotic and analgesic doses with the BIS
level, respectively. These models were proposed by [MTT12]
and [MTT14] and use a minimal number of parameters
to characterize the patient while keeping a good modeling
accuracy, [MJA T 14]. Some automatic control schemes have
already been implemented based on such models [JcP11],
[MLc14], [THM™12]. Here alternative control schemes are
proposed adopting optimal control techniques.

Indeed, in the last years, optimal control has been suc-
cessfully applied in biomedical problems [DDV*13], [NJO8],
[BPdP14] which motivates its application also in the context
of anesthesia. The relevant control objectives in this context
consist in reference tracking for the desired NMB and/or
BIS levels. In this work, the problem of reference tracking
is formulated as an optimal control problem (OCP), and is
solved using direct methods [J.TO1]. These methods have
become increasingly useful when computing the numerical
solution of an OCP. Moreover, they are known to provide a
very robust and general approach [PF15]. Two OCPs are
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formulated: one for the NMB case and another for the
control of the depth of anesthesia. The optimal control of
drug effects is clinically important not only since overdosing
or underdosing imply risk for the patients but also due
to economic reasons (related to the use of smaller drug
amounts).

This paper is organized as follows. In Section II, both
neuromuscular blockade model and the depth of anesthesia
model are presented. In Section III, the optimal control
problem formulations applied to the NMB and to the BIS
reference tracking. The main results are shown in Section
IV, and the conclusions are drawn in Section V.

II. DRUG ADMINISTRATION MODELS IN
ANESTHESIA

In this section, two new models proposed in [MTT14],
[MTT12] for the relationship between the drug input and
the effect response are presented. The first one is a SISO
Wiener model for the NMB level and the second one is a
MISO Wiener model for the BIS level. As mentioned before,
these two models have a parsimonious structure, i.e., they use
a minimal number of parameters to characterize the patient
response.

A. NEUROMUSCULAR BLOCKADE

The relationship between the administered dose of muscle
relaxant (u(¢)) and the drug concentration in the relevant part
of the patient body (c,(¢)) can be described by the following
third—order linear dynamical model

ki ko k3 063
(s+kiat)(s+ka)(s+ksor)

where C,(s) and U(s) denote the Laplace transform of the
output c.(z) and of the input signal u(z), respectively. The
values of k= [ki ky k] are positive constants, fixed for
all patients according to [MTT12]; o is a patient—-dependent
positive parameter.

The previous model can be written through the following
state—space model
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where x(r) is the state vector. Note that the state x3(r)
corresponds to the effect concentration c,(r).

The effect concentration is related to the actual effect of
the drug by means of a static nonlinearity known as Hill
equation,
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where 7 is a patient—dependent parameter and Csq has a fixed
value. Thus, this simplified model has only two parameters
— «a and ¥y — to be identified for each patient.

B. DEPTH OF ANESTHESIA

The MISO parsimonious Wiener model proposed in
[MTT14] for the description of the joint effect of hypnotics
and analgesics in the human body consists of two linear parts:
one for the relationship between the hypnotic dose and its
effect concentration and another for the effect concentration
of the analgesic. These linear sub—models are connected in
parallel and then followed by a nonlinear static equation that
describes the drug interaction and corresponding effect.

Each individual linear model is similar to what was
presented in section II.

The hypnotic linear dynamics is hence modelled by
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and the linear model for the effect concentration of the
analgesic is similarly given by
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where CH(s) and C2(s) are the Laplace transforms of the
effect concentration of the hypnotic and the analgesic ,
c(t) and c4(t), respectively; U (s) and UA(s) are the
Laplace transforms of the input doses of the hypnotic and
the analgesic u’(¢) and u?(t), respectively.

Again, w=[wi wy ws| and I=[li L I3] are pa-
rameters that have been suitably determined in [MTT14],
and o and 7 are patient—-dependent parameters.

The state—space representation of the joint linear part is

{ ) =ABNOFBE G
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where x(¢) is the state vector and u(z) is the drug infusion

rate, u(r) = [u"(t) (t)}T. The output is defined as ¢, (t) =
T

[cd(t) ()]

The matrices of the state—space model are
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where the matrices A,, () and A;(1) and the vectors B,,(f3)
and B;(n) are defined as
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The nonlinear static equation proposed in [MTT14] to
describe the drug interaction and the relation between the
effect concentration and the actual drug effect is given by

- Yo
)= L+ (mUM (1) + UA (1)) @
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where U (t) = ce—g) and UA(t) = #; m and y are
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patient—dependent parameters and Cg{) and C?O have fixed
values for all patient, this can be viewed as a simplified Hill

. T. .
equation. 8 = [ﬁ n m y] is the parameter array, which
means a considerable reduction of the number of parameters
as compared to the PK/PD model [SLCT14].

III. OPTIMAL CONTROL PROBLEM

In this section, the formulations of the optimal control
problems (OCP) for the drug administration in order to track
a desired NMB level and a desired BIS level are presented.

A. PROBLEM FORMULATION

Let one consider the following optimal control problem
with input and state constraints [R.B0O0]:

min Jxu) = [ L(6x(0),u())dr

fo
subject to
« the dynamic constraints

x(t) =f(1,x(r),u(r)) ae. 1€ [1,17],
« the input constraints
u(r) eU(r) CR™ ae. t€ [t,ty],

and
« the end—point constraints

x(fo) e Xo CR" and x(ty) €eX; CR",

where X : [to,t7] — R" is the state vector, u : [fo,tf] —
R™ is the input control signal and f € [1g,77] is the time
interval. The functions involved comprise the running cost
L: [to,tf] x R" x R" — R and the dynamic function f :
[t0,1] x R" x R™ — R™.

1) Application to the NMB model: In this section, the op-
timal control problem formulation of the reference tracking
for the NMB level is taken as follows:

min /tf (XT(I) —x9) 0 (x"(r) - x°) +u'(7)Ru(r)dr

subject to
« the dynamic constraints

X(t) = Ag(0)x(1) + Br(o)u(t) ae. t€ [to,17],
« the input constraints
0<u(t) <umy ae. € [f,ty],

and
« the end—point constraints

X(to) =x(t*) and x(t7) =x°,

where Q = QT >0 and R > 0. Due to clinical restrictions the
controller action begins when the patient recovers after an
initial drug bolus. The time instant of the recovery is obtained
by the algorithm developed in [MCa™] and x(¢*) corresponds
to the value of the state vector in this time instant. The target
value x¢ is obtained by the inversion of Hill’s equation (3)
for a desired NMB level of 10%. Note that, the inversion
of equation (3) only gives the target value fot c,(¢) = x3(¢).
However in equilibrium all states are equal, as can be seen
easily from the matrices in the state—space form (2). Thus
determining the desired equilibrium value of x3 gives whole
the desired equilibrium state vector x°.

2) Application to the DoA model: Similar to what was
done for the NMB case, the BIS reference level tracking can
be formulated as an optimal control problem in the following
way:

min /r" (x7(1) —x°) @ (x" () — x°) -+u" (1) Ru(r)ds

0
subject to
« the dynamic constraints

x(t) =A(B,n)x(t) +B(B,n)u(t) ae. 1€ [w,],
« the input constraints
0y <u(t) <umax ae. tre [to,tf] ,

and
« the end—point constraints

X(to) = Og1

where Q = QT >0 and R > 0. The target value x° is obtained
by the inversion of Hill’s equation (7) for a desired BIS level
of 50. Notice that the inversion of (7) is not possible unless
a degree of freedom is removed since y(z) depends both on
UM (t) and UA(t). A way to overcome this drawback was
proposed in [FTP14] by fixing the ratio between x3(f) =
c(t) and x¢(t) = c2(¢t) which amounts to fixing the ratio
between u!?(¢) and u”(¢). Hence, following this approach it
is required that in equilibrium, x3(7) = p x4(¢) for at a certain
value p that will be specified later.

and x(tr) =x°,



B. PROBLEM SOLUTION

The previously formulated OCP’s are solved using direct
methods. These methods have become increasingly useful
when computing the numerical solution of nonlinear opti-
mal control problems (OCP) because they directly optimize
the discretised OCP without using the maximum principle.
Moreover, they are known to provide a very robust and
general approach.

In a direct collocation method, the control and the state
are discretized in an appropriately chosen mesh of the
time interval. Then, the continuous—time OCP is transcribed
into a finite—-dimensional nonlinear programming problem
(NLP) which can be solved using widely available software
packages [Pail4].

The OCP’s formulated in section III-A.1 and III-A.2 were
solved using MATLAB R2014b combined with the ICLOCS,
Imperial College London Optimal Control Software, version
0.1b [FKvW10]. This is an optimal control interface that uses
the IPOPT solver, which is an open-source software package
for large-scale nonlinear optimisation [WBO06]. The proposed
problems were solved in a computer with a Intel™ Core®
i5 1.40 GHz.

IV. SIMULATION RESULTS

The results obtained solving the OCP for the problem of
reference tracking of NMB level and for the BIS level are
presented in the next two sections, respectively.

1) Neuromuscular blockade problem: In order to analyse
the performance of the formulated OCP in section III-A.1
a bank of sixty patient responses was used. The model
parameters

6= %], i=1,...,60

were identified by an offline identification method [MTT12]
using the responses of the muscle relaxant atracurium ob-
tained during general anesthesia procedures. The values of
k1, ko and k3 are fixed and equal to 1, 4 and 10, respectively.

Here, the eighth patient of the bank with parameter vector

65 = [0.0355 2.7160] .

was considered. The parameter Csy was taken to be 3.2435.
The matrix Q and the value R were empirically chosen as
Q=13 and R=1.

The performance of the control input obtained by solving
the optimal control problem (OCP) was compared with a
controller based on a positive control law (PCL) proposed in
[JcP11].

Figure 1 presents a comparison between the input signal,
i.e., the atracurium dose, obtained by the OCP solution (red
line) and the input signal obtained by the PCL (blue line).

As it is possible to see, the OCP input signal is higher
than the input signal obtained via PCL. This is confirmed by
comparing the average infusion rates: i = 28.79ug/kg/min
when using the OCP and i = 27.51ug/kg/min when using
the PCL.

The corresponding NMB levels are depicted in Figure 2.
Note that, as mentioned before the NMB controllers only
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Fig. 1. Comparison between the input signal obtained by the optimal
control problem (solid line) and the one obtained by the positive control
law (dashed line).
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Fig. 2. Comparison between the NMB signal obtained by the optimal
control problem (solid line) and the one obtained by the positive control
law (dashed line).

start after the patient recoveries from an initial bolus, which
happens here around ¢ = 25min. As can be seen, this level
achieves the desired level of 10% in both cases.

Clearly, the controller based on the OCP solution presents
a superior performance with a shorter transient and a good
reference tracking.

A. Depth of anesthesia

The OCP formulated in section III-A.2 was solved for a
bank of eighteen cases. Similar to the NMB case, the model
parameters

ei:[ﬁi n m ,}/l}a l:17718

were identified applying an offline identification method
[MTT14] to the signals u(¢) and y(¢) obtained during general
anesthesia where the used hypnotic was propofol and the
analgesic was remifentanil. The values of wy, wo, ws, I, >
and /5 are fixed and equal to 1, 9, 10, 1, 2 and 3, respectively.
In this paper, the second patient from the bank was chosen
to illustrate the BIS signal behavior when the optimal control
input is applied. The parameter vector for this patient is

6, = [0.0874 0.0670 4.7014 0.9365] .

The parameters CZ) and C%, are fixed to 10 and 0.1, respec-
tively, for all patients in the bank. The matrices Q and R
were empirically chosen as Q = Ilg and R = I, respectively,



and the ratio between the third and the sixth state is p = 2.
The BIS reference level to be tracking was set to 50%.

In order to analyse the performance of the control inputs
obtained by the optimal control solver, a comparison against
a positive control law (PCL) proposed in [FTP14] is made.
This positive control law was designed so as to ensure that
the tracking of the desired BIS level is achieved. Figure
3 shows the propofol rate (red line) and the remifentanil
rate (blue line) obtained with both control approaches. The
optimal control input is lower than the input signal via
the PCL. This is confirmed by the results obtained for the
average infusion rates: @l = 1.78mg/kg " = 0.99mg/kg
when using the OCP and @ = 2.39mg/kg, ii* = 1.20mg/kg
when using the PCL.

0.5 T T T T T T
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—Remifentanil rate - OCP |

b
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041" - - Remifentanil rate - PCL |
\
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Fig. 3. Comparison between the input signals obtained by the optimal

control problem (solid lines) and the ones obtained by the positive control
law (dashed lines).

The corresponding BIS are depicted in Figure 4. As can
be seen, with the optimal control input, the BIS achieves
the desired level of 50% with a lower input when compared
against the one given by PCL. The fact that the PCL leads
the BIS level to a lower than the desired one since to be
explained by the use of a higher drug amount in the infusion.

Although both approaches present a similar behavior, the
optimal control approach, seems to be more conservative
which may be an advantage to explore.

V. CONCLUSIONS

In this work, preliminary results were obtained using
two optimal control problems to control the neuromuscular
blockade and the depth of anesthesia. The proposed problems
were solved using the IPOPT solver which is based on direct
methods. For that purpose, simplified SISO/MISO Wiener
models were used to describe the relationship between the
muscle relaxant dose and the NMB level, and the relation
between the hypnotic and analgesic doses with the BIS level,
respectively.
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