
Controller Design for Neuromuscular Blockade Level
Tracking Based on Optimal Control

Juliana Almeidaa,⇤, Teresa Mendonçab, Paula Rochaa, Luís Rodriguesc

aFaculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465
Porto, Portugal

bFaculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007
Porto, Portugal

cDepartment of Electrical and Computer Engineering, Concordia University, 1515 St.
Catherine W., Montréal, Québec, Canada H3G 2W1

Abstract

The contribution of this paper is to present and compare two state-feedback

design methods for the automatic control of the Neuromuscular Blockade Level

(NMB) based on optimal control. For this purpose a parsimoniously parame-

terized model is used to describe the patient’s response to a muscle relaxant.

Due to clinical restrictions the controller action begins when the patient recov-

ers after an initial drug bolus. The NMB control problem, typically consisting

of tracking a constant NMB reference level, can be associated with an optimal

control problem (OCP) with a positivity constraint in the input signal. Due

to the complexity associated with the introduction of a positivity constraint in

the input, approximate solutions to this OCP will be found in this paper using

two methods. In the first method, the optimal control problem is relaxed into a

Semi-Definite Program (SDP) using a change of variables, whereas in the sec-

ond method the OCP is approximated by an infinite horizon constrained Linear

Quadratic Regulator (LQR) problem. These two controllers are compared with

a classical PI controller in simulation. The PI exhibits a slightly worse perfor-

mance in terms of the control magnitude but it was not optimized taking this

magnitude into account. The simulation results show that the SDP relaxation
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and the saturated LQR methods lead to the same controller gains and there-

fore the same trajectory tracking using parameters from a patient’s database,

thus encouraging its application and validation in clinical trials. Although the

performance of the proposed controllers can be compared in terms of how they

work when applied to the patient’s database models, the two proposed methods

cannot be compared from an optimal control theoretical point of view because

they correspond to the solution of two different relaxations of the original control

problem using two different functions of merit.

Keywords: Optimal control theory, general anesthesia, neuromuscular

blockade level

1. Introduction

State feedback has been widely used to solve a variety of control problems

over the last years, including the automatic control of the drug dosing during

general anesthesia [1]. The aim of this paper is to present and analyse the per-

formance of two state feedback control laws for the administration of a muscle5

relaxant in order to achieve a desired muscle inactivity (neuromuscular block-

ade). At the beginning of the surgery a bolus of muscle relaxant is administered

to the patient to facilitate the intubation; after this initial phase the admin-

istration of muscle relaxants is maintained to enable the remaining surgical

procedures. The effect of the muscle relaxants is measured by the neuromuscu-10

lar blockade (NMB) level. This level is assessed by applying a supramaximal

train-of-four (TOF) stimulus of the adductor pollicis muscle of the patient’s

hand and can be registered by electromyography (EMG), mechanomyography

(MMG) or acceleromyography (AMG) [2]. The NMB level then corresponds to

the first response calibrated by a reference twitch and varies between 100% (full15

muscle activity) and 0% (full paralysis). According to general clinical practice,

the desired NMB level during general surgery is 10%.

As shown in Fig. 1, the NMB can be modelled by a pharmacokinetic/

pharmacodynamic (PK/PD) model, [3]. This is a physiological model that
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Figure 1: PK/PD model diagram scheme.

explains the effect of the muscle relaxant in the patient. The first block relates20

the drug amount, u(t), with the plasmatic concentration c
p

(t), through the

pharmacokinetic model. The pharmacodynamic model relates the plasmatic

concentration with the effect concentration, c
e

(t), by means of a linear equation,

and this is in turn related with the NMB level by a static nonlinearity, known

as Hill’s equation, [3]. This model involves a total of eight patient-dependent25

parameters which may be difficult to estimate.

In this paper an alternative model will be used as basis for the design of

our control strategies. This model has been introduced in [4] to overcome the

drawback related to the high number of parameters of the PK/PD model. The

main advantage of this new model is that it involves a much lower number of30

patient dependent parameters while keeping an adequate modeling accuracy

for control design [5]. For this reason this model is known as parsimoniously

parameterized (PP), as shown in [4].

u(t)
Linear

model

ce(t)
Static

nonlinearity

r(t)

Figure 2: PP model diagram scheme.

The PP model is not a physiological model and does not have a PK/PD

structure. However it maintains a Wiener structure with the Hill’s equation as35

nonlinear part, Fig. 2. The PP model has recently been successfully used for

the design of some automatic control schemes for drug delivery [6, 7].

The problem of tracking a desired NMB level by means of automatic con-
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trollers for the administration of muscle relaxants has been widely addressed

in the literature, see for instance [6] and the references therein. However, the40

optimal control techniques presented here have not been used for solving the

tracking problem, which is an important gap in the literature given the optimal

nature of the tracking problem. One of the major difficulties preventing the use

of optimal control techniques is the positivity constraint in the control input,

which corresponds to the amount of drug to be administered, since it is obviously45

impossible to extract the drug from the blood vessels after its administration,

and, also, because in many cases an antidote is not available. Positive control

systems, also called non-negative control systems, have been widely studied in

the literature but optimal control of positive systems has not been used to ad-

dress the NMB tracking problem, to the best of our knowledge. For an earlier50

account of the properties of positive systems see [8] and for a comprehensive

summary of the research on non-negative systems up to 2010 see [9].

In this paper we focus on the feedback control of a positive linear system

with a static nonlinearity at the output. Our approach is to formulate an Opti-

mal Control Problem (OCP) in order to design a controller that tracks a desired55

NMB level. This has the advantage of enabling a penalty for the excessive use

of drug. An OCP problem with non-negative input and state constraints is in

general hard to solve. Reference [10] proposes a technique based on duality

for Linear Quadratic Regulator (LQR) problems with constrained input but it

assumes that the origin is in the interior of the allowable set for the control60

inputs, which is not the case for positive systems. In [11] LQ optimal control

of positive linear systems is studied. The optimal control is obtained through

the solution of a Hamiltonian two point boundary value problem and it is time

dependent instead of a state feedback solution. Furthermore, for the contin-

uous time example presented in the paper the solution has to be obtained by65

numerical integration of the equations. A more recent paper on constrained

LQR problems [12] proposes to solve the dual problem of the LQR but it yields

again a controller that is time dependent that must be computed by a numerical

algorithm. An alternative technique for positive linear systems yielding a state
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feedback controller is derived in reference [13] where a clamping controller with70

an integral term of the tracking error is proposed. Although this is an extremely

interesting technique leading to a state feedback solution for positive linear sys-

tems, it does not correspond to the solution of an optimal control problem.

Furthermore, the integral term may suffer from the well known phenomenon of

windup, which should be avoided for a drug delivery control problem.75

There are three important objectives of the work in this paper that are

different from the approaches presented in the literature:

• the system has a static nonlinearity at the output,

• integral terms in the controller will be avoided because of possible windup,

• the solution that is sought is a feedback controller instead of a time de-80

pendent control law.

Due to the stated objectives and the added complexity associated with the

introduction of a positivity constraint in the input, we consider two different ap-

proximations to the solution of an OCP. In the first approximation, the tracking

problem is formulated as a suitable finite horizon OCP, which is then relaxed85

into a semi-definite program (SDP) by replacing the original variables by their

moments up to a certain order in the same line of what is done in [14, 15]. The

optimal values of the moments can then be computed by semidefinite program-

ming solvers [16, 17, 18] and the gains of the state-feedback control law are then

computed based on these values. Although the obtained control law is only an90

approximation of the optimal solution, this approach has the advantage of easily

coping with state and input constraints. The second approximation consists of a

reformulation of the OCP as an infinite horizon LQR problem with constraints

following the ideas presented in [19, 20]. The approximate solution consists of

imposing a saturation to the optimal feedback control obtained via the solution95

of the algebraic Riccati equation associated with the unconstrained LQR prob-

lem. As shown in [20] for the discrete-time case, the saturated control law can

be optimal for the constrained problem only under certain special conditions,
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and therefore such a solution is in general only an approximation to the optimal.

Since this method yields an approximate solution of the associated finite hori-100

zon problem while yielding time independent instead of time dependent gains,

it leads to a clear advantage for real-time implementation. These two proposed

methods will be compared to a classical PI in the section on simulation results.

This paper is organized as follows. Section 2 presents the NMB model used

to design the control law and to simulate the patient’s response. Section 3 is105

dedicated to the design of the state-feedback control laws, and Section 4 presents

the main simulation results. Finally, the conclusions are presented in Section 5.

2. NEUROMUSCULAR BLOCKADE MODEL

The PP model for the patient’s NMB level response to the administration

of the muscle relaxant rocuronium is presented in this section. This model will110

be used to design the feedback control laws as well as to simulate the patient’s

response.

2.1. Linear block

The linear part of the PP model relates the input signal with the effect

concentration, thus grouping the pharmacokinetic process with the linear part115

of the pharmacodynamic process (of Figure 1). This model can be represented

by a third order state-space system [6], as follows:

ẋ(t) =

2

6664

�k3↵ 0 0

k2↵ �k2↵ 0

0 k1↵ �k1↵

3

7775

| {z }
A

x(t) +

2

6664

k3↵

0

0

3

7775

| {z }
B

u(t) ,

c
e

(t) =

h
0 0 1

i

| {z }
C

x(t) (1)

where x(t) = [x1(t) x2(t) x3(t)]
T is the state vector, u(t) is the administered

muscle relaxant dose, c
e

(t) is the effect concentration and ↵ > 0 is a patient-
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dependent parameter. The positive parameters k1, k2 and k3 have fixed values,120

identified in [4], namely k1 = 1, k2 = 4 and k3 = 10.

2.2. Nonlinear block

The relationship between the effect concentration and the NMB level is de-

scribed by a static nonlinear equation known as Hill’s equation [3]

r(t) =
100

1 +

⇣
ce(t)
C50

⌘
�

, (2)

where r(t) is the NMB level and C50 = 3.2435 is the half maximal effect con-125

centration. The value of C50 is kept constant for all patients according to the

study performed in [21] whereas � > 0 is a patient-dependent parameter.

2.3. NMB tracking model

As mentioned before, in this paper a NMB level tracking problem will be

considered. For this purpose the system dynamics (1) is written in terms of the130

variables x̂(t) = x(t)� xe, û(t) = u(t)� ue and ĉ
e

(t) = c
e

(t)� ce
e

(t), as:

˙x̂(t) = A x̂(t) + B û(t) ,

ĉ
e

(t) = Cx̂(t) (3)

where the matrices A and B are the same as in (1), ue is a constant input

value and xe is the corresponding equilibrium value for the state vector, i.e.,

Axe

+Bue

= 0 and ce
e

= C xe. More specifically, xe

= [xe

1 xe

2 xe

3]
T satisfies

8
>>><

>>>:

�10↵xe

1 + 10↵ue

= 0

4↵xe

1 � 4↵xe

2 = 0

↵xe

2 � ↵xe

3 = 0

,

8
>>><

>>>:

xe

1 = ue

xe

1 = xe

2

xe

2 = xe

3

,

8
>>><

>>>:
xe

=

2

6664

1

1

1

3

7775
ue , (4)

Note that, according to equations (4) and (1), the constant input value ue

135

corresponds to an equilibrium effect concentration ce
e

=

h
0 0 1

i
xe given by

ce
e

= xe

3 = ue. On the other hand, the problem of tracking a desired NMB level re
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can be translated into a tracking problem for the associated effect concentration

that can be obtained by solving Hill’s equation (2) with respect to ce
e

as

ce
e

= C50(100/r
e � 1)

1/� (5)

In terms of system (3), the tracking problem corresponds to tracking a zero140

reference value for ĉ
e

.

3. FEEDBACK GAIN DESIGN

This section formulates an optimal control problem whose solution will be

approximated using two different methods. These two methods will return a

state-feedback gain matrix for the administration of the muscle relaxant rocuro-145

nium with the aim of tracking a desired NMB level.

Given a NMB reference level re, we compute the corresponding effect con-

centration reference level ce
e

, steady-state input ue and steady state xe. Note

that only non-negative values of the state x and the input u make sense for

drug administration and therefore one must guarantee that the control input u150

is non-negative for all time, in which case ue is also non-negative. Since the ma-

trix A in (1) is a Metzler matrix (i.e, all non-diagonal terms are non-negative)

and the input u will be kept non-negative then the state is guaranteed to be

non-negative (see [8] for a proof). Consider the optimal control problem with

state and input constraints for the controllable and observable system (1):155

min

û(t),tf
J (x̂(t), û(t)) =

1

2

Z
tf

t0

x̂T
(t)Qx̂(t) + ûT

(t)Rû(t)| {z }
h(x̂(t),û(t))

dt

s.t. ˙x̂(t) = A x̂(t) +B û(t)| {z }
f(x̂(t),û(t))

x̂(t0) = x̂0 (6)

x̂(t
f

) = [0 0 0]

T

û(t) 2 G
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with Q = QT > 0 and R > 0, x̂(t) 2 Rn is the state vector, û(t) 2 R is the input

signal, t0 is the time instant when the controller action begins (which coincides

with the time instant of the patient recovery after an initial bolus), h (x̂(t), û(t))

and f (x̂(t), û(t)) are polynomial functions and G is the constrained region for

the input values, which is a set defined as160

G = {û(t) : g (û(t)) � 0, 8t � 0}

= {û(t) 2 R : û(t) + ue � 0}

where g (û(t)) is an affine polynomial function. The system dynamics matrices

are the same as the matrices presented in Section 2. Note that the final state

restriction x̂(t
f

) = [0 0 0]

T forces the tracking error to be zero at time t
f

.

The solution to this OCP will now be approximated using two different

methods explained in the next subsections.165

3.1. LMI relaxation

In the first approximation method the OCP is relaxed into a semi-definite

program (SDP) by introducing as new variables the moments of the original

variables (up to a suitable order) [14, 15]. The transformation of a polynomial

OCP into a SDP together with the explanation of how to obtain an approximate170

optimal control in the form of a feedback law is presented in the sequel.

3.1.1. Semi-definite program

This section follows closely the method proposed in [14, 15]. In order to

obtain an approximate solution of the previous OCP, a change of variables is

made that transforms this problem into an SDP. For this purpose the new175

variables are defined as the moments of x̄ = (x̂ , û), i.e.,

y
�

=

Z
T

0
x̄� dt , (7)

where � = (�1, . . . ,�n

,�
n+1) is a multi-index and x̄�

=

Q
x̄�i
i

.
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To transform a polynomial into a moment we follow a similar procedure to

what is done in [14]. To that end, given a polynomial p(x̄) =
X

�2Nn+1

p� x̄

�
, a

linear bounded functional L is defined as180

L(p) =
X

�2Nn+1

p
�

y
�

. (8)

This amounts to replacing the monomials in p by the corresponding integrals,

according to (7). Based on the moments y
�

with � 2 B
d

def
= {(�1, . . . ,�n+1) 2

Nn+1
:

P
n+1
j=1 �

j

 d} one also introduces the moment matrix of order d, M
d

(y),

which plays an important role in the reformulation of the OCP (6). The moment

matrix has rows and columns labeled by185

V
d

(x̄) = [1, x̄1, x̄2, . . . , x̄n+1, x̄
2
1, x̄1x̄2, . . . , x̄1x̄n+1, x̄

d

1, . . . , x̄
d

n+1]
T (9)

and is constructed as

M
d

(y) = L
�
V
d

(x̄)V
d

(x̄)T
�

(10)

with L as defined in (8). This means that L is applied to each entry of the

matrix V
d

(x̄)V
d

(x̄)T . As a consequence, the cost functional J(x̂(t), û(t)) can be

rewritten as

L(h) =
1

2

X

�

h
�

y
�

, (11)

where h
�

are the coefficients of the polynomial h (x̂(t), û(t)) in the OCP formu-190

lation (6).

To incorporate the system dynamics and the end-point constraints as con-

straints of the semi-definite program, monomial test functions �(x̂) are consid-

ered. These functions are polynomials given by �(x̂) = x̂� . Note that, on one

hand, from the Fundamental Theorem of Calculus:195

Z
T

0

d� (x̂(t))

dt
dt = � (x̂(T ))� � (x̂(0)) , (12)
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and on the other hand, using the chain rule and the system dynamics the total

time derivative is equal to:

d�(x̂)

dt
=

@�

@x̂
· dx̂
dt

=

@�

@x̂
· f (x̂(t), u(t)) . (13)

Thus for each function �(x̂) one obtains:

Z
T

0

@�

@x̂
· f (x̂(t), û(t)) d t = �(x̂

T

)� �(x̂0) 8� . (14)

Since f is a polynomial function of x̂ and û and � and @�

@x̂

are polyno-

mial functions of x̂ this equation can be rewritten in terms of the moments as200

P
j

a
ij

y
↵j = b

i

, where a
ij

are the coefficients of the moments for i = 1, . . . ,M.

The positive integer M represents the number of all possible combinations of

the exponents in the polynomial v(x̂) so that they are not all zero and their

sum is less or equal to d. For example, if there are three state variables

then v(x̂) = x̂�1
1 x̂�2

2 x̂�3
3 and if d = 2 then all possible combinations such that205

�1 + �2 + �3  d yield M = 9 as will be detailed in section 4.

To handle the state and input constraints the localizing matrix M
d

(gy) with

respect to y and to the polynomial g(û(t)) is defined. This matrix is given by

M
d

(gy) = L
�
gV

d

(x̄)V
d

(x̄)T
�
, (15)

with V
d

(x̄) defined in (9). The dimensions of M
d

(gy) will be such that its entries

are moments of order less or equal to d. Therefore, M
d

(gy) is always of smaller210

dimension than M
d

(y). The OCP (6) can then be rewritten as

min

y

L(h)

s.t.
X

j

a
ij

y
↵j = b

i

, i = 1, . . . ,M

M
d

(y) � 0 (16)

M
d

(gy) � 0
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This problem is solved using software with an SDP solver such as [16, 17, 18]

and the values of the optimal moments y
�

= y⇤
�

are obtained. Then, a state

feedback control input

û(t) =

nX

i=1

K
i

x̂
i

(t) . (17)

with unknown gains K
i

can be determined by replacing (17) in the moments215

that involve û and recasting it in terms of the moments involving the state. For

instance, for a simple system with two state components, x̂1, x̂2 and one input

û, the moment y101, where the first index indicates the order of the moment in

x̂1, the second index in x̂2 and the third index in û, becomes:

y101 =

Z
T

0
x̂1(t)û(t) dt =

Z
T

0
x̂1(t) (K1x̂1(t) +K2x̂2(t)) dt

=

Z
T

0
K1x̂

2
1(t) +K2x̂1(t)x̂2(t) dt

= K1y200 +K2y110 (18)

Proceeding in the same way for the other moments involving the input yields220

a system of linear equations. After the values of the optimal moments are

obtained the feedback gains can be computed whenever the system of linear

equations has a solution.

Remark: Note that two approximations have been made that led to the

LMI relaxation when compared to the original problem. First, the considered225

moment matrix has finite order d. Second, after computing the approximation

of order d for the moment matrix we assumed that the control input was a lin-

ear state feedback. Therefore, the solution to this problem (i.e., the computed

optimal moments and corresponding feedback gain) is only an approximation to

the solution of the OCP. As d ! 1 the approximation converges to the optimal230

solution (under some mild assumptions stated in [14, 15]). Due to this reason,

it is necessary to check a-posteriori in simulation if the obtained approximate

solution indeed satisfies the original constraints for the set of possible initial
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conditions of interest to a given application. Therefore, the theoretical guaran-

tees on the input verifying the constraints in the case of the original optimal235

control problem might be lost in the relaxed solution for a finite d. For linear

quadratic problems the hope is that an order d = 2 will be enough based on

the LQG problem but there is no guarantee that this is correct when there are

constraints on the state and/or on the input.

3.2. Constrained Linear Quadratic Regulator240

In this section, an infinite horizon linear quadratic OCP with constraints is

used to design a state-feedback control law for the NMB level tracking problem.

For this purpose consider the following optimal control problem formulation:

min

u(t)
J (x̂(t), û(t)) =

1

2

Z 1

t0

x̂T

(t)Qx̂(t) + ûT
(t)Rû(t) dt

s.t. ˙x̂(t) = A x̂(t) +B û(t)

x̂(t0) = x̂0 (19)

û(t) 2 G

where the state x̂, the input û, the system dynamics, the initial state constraint

and G are the same as defined in OCP (6). The optimal solution to this problem245

will drive the error state x̂ and, consequently, the tracking error (c
e

� ce
e

= x̂3)

to zero asymptotically while respecting the input constraints. The Hamiltonian

for this system is

H = inf

u2G


1

2

�
x̂T

(t)Qx̂(t) + ûT
(t)Rû(t)

�
+ �T

(Ax̂+Bû)

�
(20)

where � = [�1 �2 �3]
T is the costate. Taking into account that u and R > 0

are scalars, the necessary condition for the minimum in (20) is obtained by250

Pontryagin Minimum Principle as

û = �sat
�
R�1BT�

�
=

8
<

:

�10↵�1
R

, �1  Ru

e

10↵

�ue, otherwise
, (21)
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To solve for the costate �1 one would need to resort to the costate differential

equation and essentially solve a two point boundary value problem that would

yield a time dependent control solution instead of a state feedback. Following

the ideas presented in [20] for the discrete time case, a suboptimal approximation255

can be obtained by setting � = P0x̂ and then

û(t) = �sat (K(t)x̂(t)) = �sat
�
R�1BTP0x̂(t)

�
(22)

where P0 is the unique positive definite solution of the algebraic Riccati equation

Q+ATP + PA� PBR�1BTP = 0 (23)

Remark: In a general case for the constrained infinite horizon LQR the

proposed saturated state feedback is only an approximate suboptimal solution.

Since the infinite horizon was also used as an approximation itself of the finite260

horizon original problem (6) the proposed saturated state feedback is clearly a

suboptimal solution of the original problem. The controller will verify the input

constraints due to the saturation but the guarantee of optimality is clearly lost

compared to the original optimal control problem. This approximate solution

however has the advantage of yielding time independent gains, which are more265

convenient than time dependent gains for real-time implementations.

4. SIMULATION RESULTS

In order to simulate the performance of the computed feedback control laws

a bank R of fifty models R
i

with parameters ✓
i

= (↵
i

, �
i

) (i = 1, . . . , 50) was

considered. These models were obtained by offline identification based on the270

data collected from fifty patients subject to general anesthesia using rocuronium

as a muscle relaxant . The first simulation results use the mean database pa-

rameter ¯✓ = (↵̄, �̄) with ↵̄ = 0.0355 and �̄ = 2.716. In all simulations the desired

NMB reference level is re = 10.

The control strategy used here can be summarized by the following steps:275
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Table 1: Exponents � for test function v(x̂)

�1 �2 �3

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

2 0 0

0 2 0

0 0 2

• First, a bolus of muscle relaxant of 500µg/kg of rocuronium is adminis-

tered, which will be modeled in simulation by an impulse corresponding

to an initial condition of x0 = 500B, where B is the input matrix;

• The patient’s response is monitored to determine the recovery time instant

t0 using the algorithm OLARD [22], which yielded t0 = 29.3 minutes in280

all simulations;

• After time t0 the feedback gain matrix obtained by one of the previously

described design methods is used and the state feedback controller is ac-

tivated.

4.1. Moment Relaxation285

For the controller obtained by the moment relaxation from Section 3.1 we

considered Q = CTC and R = 1 and we restricted the moment order to be

d = 2. The reason why we restricted the moment order d to be equal to 2 was

inspired by the fact that if the control problem was not constrained and a Linear

Quadratic Gaussian (LQG) output feedback would be used then moments of290

order d = 2 would be all that was needed to describe the Gaussian distribution.
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The test functions were v(x̂) = x̂�1
1 x̂�2

2 x̂�3
3 . For moments of order up to d = 2, all

possible combinations for the exponents are indicated in table 1. The equality

constraint equations corresponding to the entries in table 1, final conditions

x̂(t
f

) = 0 and initial conditions x̂(t0) = eAT

500B � xe with T = 29.3 minutes295

are

k3↵ (y0001 � y1000) + x̂1(t0) = 0

k2↵ (y1000 � y0100) + x̂2(t0) = 0

k1↵ (y0100 � y0010) + x̂3(t0) = 0

k3↵ (y0101 � y1100) + k2↵ (y2000 � y1100) + x̂1(t0)x̂2(t0) = 0

k3↵ (y0011 � y1010) + k1↵ (y1100 � y1010) + x̂1(t0)x̂3(t0) = 0

k2↵ (y1010 � y0110) + k1↵ (y0200 � y0110) + x̂2(t0)x̂3(t0) = 0

2k3↵ (y1001 � y2000) + x̂2
1(t0) = 0

2k2↵ (y1100 � y0200) + x̂2
2(t0) = 0

2k1↵ (y0110 � y0020) + x̂2
2(t0) = 0

The optimal moment matrix obtained by the solver CVX[18] minimizing y0020+

y0002 subject to the equality constraints and M
d

(y) � 0, M
d

(gy) � 0 is

M⇤
= M

d

(y⇤) = 10

3

2

6666666664

1.3698 �0.0126 �0.0509 �0.0116 0.0079

�0.0126 0.0708 0.0909 �0.0184 �0.0038

�0.0509 0.0909 0.1951 �0.0184 �0.0127

�0.0116 �0.0184 �0.0184 0.0090 �0.0007

0.0079 �0.0038 �0.0127 �0.0007 0.0013

3

7777777775

The feedback gains can be computed from the following system of linear equa-

tions:300

2

6664

M⇤
(2, 5)

M⇤
(3, 5)

M⇤
(4, 5)

3

7775
=

2

6664

M⇤
(2, 2) M⇤

(2, 3) M⇤
(2, 4)

M⇤
(3, 2) M⇤

(3, 3) M⇤
(3, 4)

M⇤
(4, 2) M⇤

(4, 3) M⇤
(4, 4)

3

7775

2

6664

K1

K2

K3

3

7775

(24)
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yielding

K
LMI

=

h
�0.0312 �0.0791 �0.3040

i

Figure 3 shows the simulation of the NMB level response for the initial conditions

x(0) = 500B. Although the values of the the optimal moments will vary when

the initial conditions vary, we observed that the controller gains seemed to be

very insensitive to variations in initial conditions. As can be seen in Figure305

3, the control input u(t) is always non-negative. It can be shown that, due

to the structure of the system, this implies that also the state components

x = x̂ + xe are non-negative. Therefore, the original problem constraints are

indeed satisfied. One can also observe that the NMB level settles to the set-point

of 10%.

Figure 3: Simulation of the NMB level response (upper plot) using the state-feedback control

(bottom plot) given by the moment relaxation design method.

310

4.2. Constrained LQR

The feedback controller is now obtained using the method of Section 3.2, i.e.,

by means of a constrained LQR. Using the same weighting matrices as before,

i.e., Q = CTC and R = 1, the gain vector obtained for the feedback control law

is315

K
LQR

=

h
0.0312 0.0791 0.3040

i
. (25)
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This feedback matrix has the same absolute values of the gain obtained for the

controller using moment relaxations. The saturated control law is given by

u(t) = �sat(K
LQR

x̂(t)).

Since the gains are the same for the LQR and the moment relaxation controllers

and the input did not saturate for the simulation of the moment relaxation

controller, the two controllers will have the same simulation response for the320

same initial conditions used to produce figure 3. Therefore the response of the

LQR controller due of these initial conditions will be omitted. The proposed

controllers based on optimal control were also applied to all patient models in

the available database and the results are shown in figure 4. From the figure

we can see that over the majority of patient models both controllers give a325

comparable performance.

In the next section both controllers are compared with a classical PI.

4.3. Comparison with Classical PI

In this section we design a PI controller and compare the results with the

ones obtained for the LQR and moment relaxation controllers. To design a PI330

we compute the characteristic polynomial of the closed loop transfer function of

the system when û(t) = �K
P

x̂3(t)�K
I

R
t

t0
x3(⌧)d⌧ which yields

�(s) = s3 + 0.533s2 + (0.0681� 0.0018K
P

)s+ 0.0018(1�K
I

)

A simple Routh-Hurwitz approach yields the following conditions for stability

K
I

< 1

K
P

< 38

K
I

� 15K
P

+ 19.25 > 0

We chose K
P

= 1.2, K
I

= 0.01 and obtained a state trajectory similar to

the ones obtained for the case of the LQR and moment relaxation controllers.335

The simulation results are shown in figure 5. It is clear that the control input

respects the positivity constraint.
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Figure 4: Patient’s NMB level response when the control input is determined by the SDP

relaxation method (a), by the constrained LQR (b) and by the PI controller (c) for all cases

of the patient database.
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Figure 5: Simulation of the NMB level response (upper plot) using the PI control input

(bottom plot).

Upon comparison with figure 3 it is also clear that the control signal magni-

tude is similar to the one for the simulation of the moment relaxation controller.

Figure 4 shows the simulation results for all models in the patient’s database.340

It is clear that the PI controller does not have a consistent performance for all

models as opposed to the moment relaxation and LQR controllers.

Figure 6 shows the performance of the controllers presented above when

they are applied to a different model. This model is a physiological model

called pharmacokinetic/pharmacodynamic model, [23]. As it is possible to see,345

the patient responses have the same behavior that the responses presented in

Figure 4, which validates the use of these controllers.

5. CONCLUSION

In this paper an optimal control problem was formulated to control the

neuromuscular blockade level using a positivity constraint in the control input.350

Due to the difficulty posed by the posivity constraint, two methods for obtain-

ing approximate suboptimal solutions were proposed and compared. The first

method consisted of an SDP relaxation leading to Linear Matrix Inequalities

(LMIs). The second method consisted of an infinite horizon constrained LQR.
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(a)

(b)

(c)

Figure 6: Patient’s NMB level response when the control input is determined by the SDP

relaxation method (a), by the constrained LQR (b) and by the PI controller (c) for all cases

of the patient database.
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For the SPD relaxation, since only moments up to a certain order are consid-355

ered, the computed feedback gains only correspond to an approximation of the

optimal solution of the original problem. For the constrained LQR problem the

feedback gain matrix corresponding to a suboptimal solution was obtained using

the standard Riccati equation for the unconstrained problem and the control

input was defined using a saturation of the optimal feedback control solution.360

Both methods yield the same gains. The only difference between the solutions

of these methods is that the LQR saturates the control input (thus guaranteeing

that the positivity constraint is verified) while the moment relaxation solutions

does not. The simulation results show that both relaxation methods lead to

good tracking using parameters from a patient’s database when compared with365

a classical PI solution, thus encouraging its application and validation in clinical

trials of the proposed methods. Although the performance of the controllers can

be compared in terms of how they work when applied to the patient’s database,

the two methods cannot be compared from an optimal control theoretical point

of view because they correspond to the solution of two different relaxations of370

the original control problem using two different functions of merit. Finally, in

term of computational burden the proposed methods are of comparable cost

when the order of the moment relaxation is d = 2. In fact, the moment relax-

ation method with input constraints and d = 2 corresponds to solving an LMI

for a matrix 6 ⇥ 6 while the LQR synthesis solution corresponds to solving a375

Riccati equation that can be implemented by an LMI of 5 ⇥ 5. However, the

moment relaxation has a larger computational cost than the LQR when the

order is d > 2. To the best of the authors’ knowledge it remains to be proved in

the literature if d = 2 is the highest relaxation order that one needs to consider

to solve a LQR problem even if there are no constraints in the input.380
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