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Abstract The aim of this paper is to present a method based on a 2D Hop-
field Neural Network for online damage detection in beams subjected to external
forces. The underlying idea of the method is that a significant change in the beam
model parameters can be taken as a sign of damage occurrence in the structural
system. In this way, damage detection can be associated to an identification prob-
lem. More concretely, a 2D Hopfield Neural Network uses information about the
way the beam vibrates and the external forces that are applied to it to obtain
time-evolving estimates of the beam parameters at the di↵erent beam points. The
neural network organizes its input information based on the Euler-Bernoulli model
for beam vibrations. Its performance is tested with vibration data generated by
means of a di↵erent model, namely Timonshenko’s, in order to produce more re-
alistic simulation conditions.
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2 Juliana Almeida et al.

1 Introduction

Structural health monitoring using vibration based methods has shown to be a
feasible approach to detect and locate damage. For economical and safety reasons,
detecting beam cracks in their growth at an early stage is an important issue.
This topic has been discussed by several authors and di↵erent approaches were
proposed.

Some of the contributions use the fundamental mode shape as the most typical
dynamic property for damage localization and quantification [1]. In beams with
fatigue cracks, the control of the excitation force level is used for damage detection
and does not require a comparative measurement on an intact structure [2]. In [3],
the authors study the detection of fatigue damage on a beam using experimentally
obtained modal parameters. The use of the modal parameters is justified since any
beam can be considered as a dynamic system characterized by sti↵ness, mass and
damping coe�cients. When a beam su↵ers damage, the frequency response func-
tions will change and the modal parameters of the system will also change [4].
This change can be taken as an early sign of damage occurrence in the structural
system. In this way, damage detection can be associated to a problem of tracking
parameter variations through appropriate estimation techniques, like the recursive
least-squares and the Kalman filter [5]. Recently, a Hopfield Neural Network has
been proposed in [6] for parameter estimation in one-dimensional dynamical pro-
cesses. That network detects well parameter changes and can therefore be applied
to damage detection. Here, in order to take into account the higher dimensionality
of the process, a 2D version of that network is proposed. The 2D network enables
a recursive update of the parameter estimate both in time and (one-dimensional)
space. The estimate at a certain time instant and beam point depends on the esti-
mate, vibration data and external forces information at previous time instants and
neighbouring beam points. The way how the network organizes the data collected
from the beam is based on the Euler-Bernoulli model for beam vibration. This
model was chosen due to its simplicity.

The proposed identification method is illustrated by means of simulations. In
order to produce a more realistic simulation environment, the proposed damage
detection procedure is tested using data simulated from a di↵erent, more complex
model, namely a Tiomoshenko beam to which a damage is inflicted at a certain
time instant. These data are obtained using a p-finite element, with appropriate
displacement shape functions, of a beam model based on Timoshenko’s theory
for bending. The crack is represented by a small indentation on the beam, with
consequent changes in its mass and sti↵ness.

The remainder of the paper is organized as follows. Section 2 presents the
parameter estimation method for beam damage detection proposed here. This is
followed by a reformulation of the damped Euler-Bernoulli beam model that allows
for a better use of our methods described in Section 3. Section 4 explains how the
simulated data were obtained and presents the corresponding damage detection
results. The conclusions are drawn in Section 5.
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A 2D Hopfield Neural Network approach to mechanical beam damage detection 3

2 Parameter identification via 2D Hopfield neural networks

The use of Hopfield Neural Networks (HNN) has proved to be an e�cient method
for online parameter estimation in one-dimensional processes [6]. Such networks
are basically nonlinear dynamical systems with an adequate structure, whose out-
puts are the time-evolving estimates of the relevant parameters. In [6], a special
architecture was proposed that guarantees that the parameter estimates converge
to their real values under some mild theoretical assumptions. Motivated by these
results, here a 2D HNN approach based on an extension of the 1D HNN introduced
in [6] is proposed in order to deal with higher dimensional or distributed processes.

Before describing its two-dimensional version, first the 1D HNN introduced in
[6] is presented. This network is designed for one-dimensional dynamical processes
with a linear parameter dependency, i.e., for which the dynamical equations can
be rewritten as

y(t) = A(t) ✓, (1)

where ✓ denotes the vector of parameters to be estimated and the vector y(t) and
the matrix A(t) can be computed from the process data and depend on the model
structure. Note that, the process dynamics may be nonlinear; linearity is only a
requirement for the parameter dependency. The HNN dynamics is then given by

˙̂
✓(t) =

1
��

D
�

⇣
✓̂(t)

⌘
AT (t)

⇣
y(t)�A(t)✓̂(t)

⌘
, (2)

where ✓̂(t) represents the parameter estimate at time t, ˙̂
✓(t) is the first time deriva-

tive, D
�

⇣
✓̂(t)

⌘
is a positive definite (and thus invertible) matrix defined as

D
�

⇣
✓̂(t)

⌘
= diag

⇣
�2 � ✓̂2

i

(t)
⌘

(3)

and � and � are design parameters, � chosen such that ✓
i

2 ]��,�[ and � chosen
to guarantee a suitable network performance (speed of convergence, robustness to
noise in the data, etc.). Letting �(t) = ✓ � ✓̂(t) represent the estimation error,
equation (2) can be equivalently written as

�̇(t) = � 1
��

D
�

(✓ ��(t))A(t)TA(t)�(t). (4)

As shown in [6], the estimate trajectory ✓̂(t) converges to the real parameter
vector ✓ under mild theoretical conditions, as stated in the following theorem.

Theorem 1 The equilibirium �⇤ = 0 of the estimation error dynamics (4) is glob-
ally uniformly asymptotically stable if for all nondegenerate interval I ⇢ [t0,+1[,

\

t2I

ker (A(t)) = 0. (5)

Note that, since A(t) depends on system data, this theorem presents a sort of
persistent excitation condition, under which the neural network is able to estimate
the model parameters.

Discretizing the HNN (2) using finite di↵erences for a discretization step of �t,
yields:
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� ✓̂(k) = ✓̂(k) +
1
��

D
�

⇣
✓̂(k)

⌘
AT (k)

⇣
y(k)�A(k)✓̂(k)

⌘
, (6)

where, for the sake of simplicity notation, ✓̂(k), A(k) and y(k) now respectively
stand for ✓̂(k�t), A(k�t) and y(k�t), k = 0, 1, . . ., the design parameter � rep-
resents �

�t

and � is the time shift operator, defined by �✓̂(k) = ✓̂(k + 1).
It can be shown that for �t small enough the discrete 1D HNN (6) maintains

the convergence properties of (2). Therefore, we shall take this as a basis for
defining a discrete 2D HNN to be used in the sequel for parameter identification
and damage detection in parameterized 2D processes defined over time and (one-
dimensional) space.

Hence, consider a parameterized 2D process in the time/linear-space. Like in
the 1D case, the parameter dependence is assumed to be linear and the system
dynamics can be rewritten as

y(x, t) = A(x, t) ✓, (7)

where the vector y(x, t) and the matrix A(x, t) depend on the system signals and
their partial derivatives and ✓ is a vector of fixed parameters.

In order to estimate the parameters ✓ along time and space, the following 2D
version of the discrete 1D HNN (6) is proposed:

�2 ✓̂(l, k) = ✓̂(l, k) +
N

⇤X

j=�N

⇤

↵
j

(l)�j

1 F
⇣
✓̂(l, k), A(l, k), y(l, k)

⌘
, (8)

where l is the space discrete variable, k is the time discrete variable, �2 stands
for the time-shift, i.e., �2 h(l, k) = h(l, k + 1), �1 is the space-shift, defined by
�j

1 h(l, k) = h(l + j, k), the weights ↵
j

(l) are design coe�cients,

F
⇣
✓̂(l, k), A(l, k), y(l, k)

⌘
=

1
��

D
�

(✓̂(l, k))AT (l, k)
⇣
y(l, k)�A(l, k)✓̂(l, k)

⌘
, (9)

D
�

(✓̂(l, k)) = diag
⇣
�2 � ✓̂

i

2
(l, k)

⌘
,

and � and � are suitable design parameters like in the 1D HNN. Moreover, again to
keep notation simple, A(l, k) and y(l, k) are defined as the discretizations of A(x, t)
and y(x, t), respectively, with spatial lag �x and time lag �t; more concretely,

A(l, k) = A(l�x, k�t) (10)

y(l, k) = y(l�x, k�t) (11)

for l = 0, 1, . . . and k = 0, 1, . . .

The updating structure of the nonlinear 2D di↵erence equation (8) is shown in
Fig. 1.

In this setting, convergence to the parameter vector ✓ is understood as

lim
k!1

sup
l2Z

���✓̂(l, k)� ✓
��� = 0 . (12)

A theoretical analysis of this convergence problem will be presented elsewhere. In
this paper, devoted to an application, we shall focus on the use of the proposed
discrete 2D HNN for damage detection in vibrating beams.
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A 2D Hopfield Neural Network approach to mechanical beam damage detection 5

l

k

(l, k + 1)

(l �N⇤, k) (l, k) (l +N⇤, k)

Fig. 1 Updating structure for Equation (8).

3 BEAM DAMAGE DETECTION

As mentioned before, our approach consists in detecting damage on a beam by
monitoring the online estimates of the parameters of a corresponding mathematical
model. This is based on the idea that damage corresponds to a change on the beam
characteristics, which is in turn translated into a change in the parameters of the
model that describes the beam dynamics.

Note that the damage detection problem is treated in a 2D framework in spite
of the beam length being finite. This type of approach is also frequent in repetitive
processes, in the sense that it is also common to see a system that is finite in one
of the directions to be treated as a 2D system (see [19], for instance). Looking
at the damage detection problem in a 2D context allows us to choose di↵erent
discretization steps in both directions, time and one-dimensional space, which is
an advantage. Moreover, the smaller the step in one direction, the greater the
number of points in that direction, and hence, in a certain sense, the greater the
extension of that direction.

3.1 Beam model

Here, the beam is considered to be described by a damped Euler-Bernoulli model
[8], i.e.,

µ ẅ(x, t) + c ẇ(x, t) + EI
@4w

@x4
(x, t) = q(x, t), (13)

where w(x, t) is the transversal displacement at instant t and location x, ẇ(x, t)
and ẅ(x, t) are, respectively, the first and second derivatives of w(x, t) with respect
to t, and the parameters µ, c, EI correspond to the mass, damping coe�cient and
sti↵ness, respectively. The external force q(x, t) is considered to be a harmonic
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6 Juliana Almeida et al.

excitation with amplitude F and frequency ! applied at the middle point of the
beam, i.e.,

q(x, t) = �

✓
x� L

2

◆
F sin(!t) (14)

where L is the length of the beam and � is the unit spatial impulse. Moreover,
it is assumed that the beam is clamped at both ends, which corresponds to the
following boundary conditions:

w(x, t)|
x=0,L = 0 and

@w

@x
(x, t)

����
x=0,L

= 0. (15)

Note that this model is linear in the parameters in the sense that it can be
rewritten as

y(x, t) = A(x, t) ✓ (16)

with y(x, t) = ẅ(x, t), A(x, t) =
h
�ẇ(x, t) � @

4
w

@x

4 (x, t) q(x, t)
i
and

✓ = [✓1 ✓2 ✓3]
T =

h
c

µ

EI

µ

1
µ

i
T

, for instance.

The presence of the fourth spatial derivative of the deflection w(x, t), @

4
w

@x

4 (x, t),
may cause computational problems. An alternative to overcome this drawback is to
reformulate the original Euler-Bernoulli model. For this purpose, a procedure based
on Galerkin’s method is used [9]. First, the transversal displacement w(x, t) is
expanded in an orthonormal basis for the spatial component with time-dependent
coe�cients. This allows to obtain the natural vibrations forms for the beam as
solutions of ODEs. These spatial functions can in turn be used to obtain the
fourth spatial derivative @

4
w

@x

4 (x, t).
More concretely, the deflection w(x, t) is written as

w(x, t) =
1X

i=1

g
i

(x) f
i

(t) , (17)

and approximated as

w(x, t) =
MX

i=1

g
i

(x) f
i

(t) , (18)

for some M , where the functions g
i

(x) correspond to natural vibration forms for
a beam with clamped ends [10], i.e., each g

i

(x) is the solution of

d4g

dx4
(x)� ⇣4

i

g(x) = 0

g(0) = g(L) = 0 (19)

dg

dx
(0) =

dg

dx
(L) = 0,

where each ⇣
i

is a solution of the equation

cos(⇣ L)cosh(⇣ L) = 1 . (20)
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A 2D Hopfield Neural Network approach to mechanical beam damage detection 7

The values of ⇣
i

i = 1, 2, . . ., can be found in a table (see for instance pp. 371
of [11]).

Thus, g
i

(x) is given by

g
i

(x) = cosh(⇣
i

x)� cos(⇣
i

x)� ↵
i

(sinh(⇣
i

x)� sin(⇣
i

x)) , (21)

with

↵
i

=
1

sinh(⇣
i

L)sin(⇣
i

L)
. (22)

Here, for the sake of simplicity in the exposition, it is assumed that the value
of M in (18) is taken to be 1, M = 1, i.e., only the first natural vibration mode is
considered, and in this way the beam deflection is assumed to be given by

w(x, t) = g(x) f(t), (23)

where g(x) = g1(x) is given by (21) for ⇣1 = 9.46 (see [11, Table D.3]).
Substituting (23) in (13) and recalling that q(x, t) = �

�
x� L

2

�
F sin(!t), the

Euler-Bernoulli equation, with the considered boundary conditions, is equivalent
to:

g(x)f̈(t) + ✓1 g(x)ḟ(t) + ✓2
d4g

d x4
(x)f(t) = ✓3 �

✓
x� L

2

◆
F sin(!t). (24)

Multiplying both sides of equation (24) by the function g(x), integrating with
respect to x in the interval [0, L] and taking into account that w(x, t) = g(x)f(t),
the following alternative formulation is obtained:

ẅ(x, t) + ✓1 ẇ(x, t) + ✓2 ⌘w(x, t) = ✓3K g(x)Fsin(!t), (25)

where K = g(L/2)
G

with G =
R
L

0 g2(x) dx and ⌘ = ⇣1
4.

This finally yields the equation

ẅ(x, t)| {z }
y(x,t)

= [�ẇ(x, t) � ⌘w(x, t) K g(x)Fsin(!t)]| {z }
A(x,t)

2

4
✓1
✓2
✓3

3

5

| {z }
✓

. (26)

For a time discretization lag �t and a spatial discretization lag �x = L

m�1 ,
corresponding to the division of the interval [0, L] into m � 1 intervals of equal
length, one obtains:

y(l, k) = A(l, k) ✓ (27)

where, following the previously introduced notation,

y(l, k) = y(l�x, k�t) and (28)

A(l, k) = A(l�x, k�t). (29)

Finally, it is not di�cult to check that y(l, k) and A(l, k) can be obtained as

y(l, k) = ẅ(l�x, k�t) (30)

A(l, k) = [�ẇ(l�x, k�t) � ⌘w(l�x, k�t) �K g(l�x)F sin(! k�t)] (31)
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4 Simulations

This section starts by presenting the Timoshenko model used to simulate vibration
data di↵erent from those generated by the Euler-Bernouli model, on which the
discrete 2D Hopfield Neural Network damage detection method is based. Then,
the results of the application of this method to that data are presented.

4.1 Simulation model

In order to test the damage detection procedure, a di↵erent model, independent
from the one employed in the damage detection algorithm, was used to gener-
ate vibration data corresponding to healthy and damaged beams. Although being
still within a simulation framework, this seems to be a more realistic situation,
as it mimics the misfit between models and reality. The model used to simu-
lated the beam vibration is based on a Timoshenko type p-version finite element
and was introduced in [12] see also [13]). We used this model to obtain the data
w(x, t), ẇ(x, t) and ẅ(x, t) from which y(x, t) and A(x, t) in (26) are constructed
and then given as inputs in their discrete versions to the 2D HNN (8). For the
sake of completeness, the main steps of the formulation are described here.

Although geometrical non-linearity was taken into account in [12], only the
linear part of the model is now presented, because small displacements are con-
sidered in the test cases of this paper. In this model, damage is represented by an
always open notch or indentation, with corresponding mass and sti↵ness loss. The
beam has rectangular cross section of thickness h and width b. Measured from the
beams middle, the notch starts at x = l1 and ends at x = l2, its depth is h1.

Fig. 2 Damaged beam with local and global coordinate system.

The displacement components along the beam axis, x, and in the direction
perpendicular to it, z, are represented by u(x, z, t) and w(x, z, t), respectively.
They are given by

u(x, z, t) = u0(x, t) + z ⇡0(x, t), w(x, z, t) = w0(x, t), (32)

where superscript
00000

represents the axis that crosses the undamaged cross section
centroids, i.e. axis x, and t represents time; cross section rotations are represented
by ⇡0(x, t).
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A 2D Hopfield Neural Network approach to mechanical beam damage detection 9

Note that the transversal displacement w(x, t) of the Euler-Bernoulli model
corresponds to the w0(x, t) of the Timoshenko model. The derivatives ẇ(x, t) and
ẅ(x, t) are obtained by numerical di↵erentiation.

The longitudinal strain and the engineering shear strain are, respectively,

✏
x

(x, t) =
@u0

@x
(x, t) + z

@⇡0

@x
(x, t) (33)

�
xz

(x, t) =
@w0

@x
(x, t) + ⇡0(x, t). (34)

The displacement components at axis x and the cross section rotation form
vector d0(⇠̄, t), which is expressed as the product of the hierarchical shape functions
matrix N(⇠̄) by the vector of generalized displacements q(t):

d0(⇠̄, t) = N(⇠̄)q(t) ,

2

4
u0(⇠̄, t)
w0(⇠̄, t)
⇡0(⇠̄, t)

3

5 =

2

4
Nu(⇠̄)T 0 0

0 Nw(⇠̄)T 0
0 0 N⇡(⇠̄)T

3

5

2

4
q
u

(t)
q
w

(t)
q
⇡

(t)

3

5 , (35)

q
u

(t), q
w

(t) and q
⇡

(t) are vectors of generalized displacements. The matrix of
shape functions N(⇠̄) is constituted by row vectors of longitudinal, transverse and
rotation shape functions. To improve the accuracy of the discretization, the number
of shape functions and generalized displacements in a finite element are increased.
A non-dimensional co-ordinate, ⇠̄, was inserted in equation (35), as is common in
finite elements; however, because one element is su�cient to describe the whole
beam, the relation between ⇠̄ and x is simply ⇠̄ = 2x/L. The set of shape functions
employed here is given in [12]; this set includes new functions which improve the
e�ciency of the p-version FEM in the presence of localized steep variations.

The material is assumed to behave in a linear elastic manner and to be isotropic,
hence generalized Hooke’s law holds, so (without function arguments, in order to
simplify the notation)

� = D ✏ ,

�
x

⌧
xz

�
=


E 0
0 �G

� 
✏
x

�
xz

�
. (36)

In equation (36) E is the Young modulus and G is the shear modulus of
elasticity, which is equal to 1

2(2+⌫) and ⌫ is the passion ratio and � is the shear

correction factor, which we assume to be 5+5⌫
6+5⌫ after [14]; � and ✏ are vectors

which contain, respectively, the non-zero stresses and the strains of interest here.
The longitudinal strain can be written as

✏
x

=
⇥
1 z

⇤  ✏p0
✏b0

�
, (37)

with ✏p0 the longitudinal and z ✏b0 the bending strain.
Integrating along the normal stress, the shear stress and the moment the nor-

mal stress about y, one obtains a longitudinal force per unit length, T , a transverse
force per unit length, Q, and a moment per unit length, M . They are
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
T
M

�
=


A B
B D

� 
✏p0
✏b0

�
(38)

Q =

(
Eh�

2(1+⌫)�xz , x 2
⇥
�L

2 , l1
⇤
[
⇥
l2,

L

2

⇤

E(h�h1)�
2(1+⌫) �

xz

, x 2 ]l1, l2[
, (39)

where A, B and D are the extension, coupling and bending coe�cients, given by

A =

⇢
Eh ,

⇥
�L

2 , l1
⇤
[
⇥
l2,

L

2

⇤

E(h� h1) , ]l1, l2[
(40)

B =

⇢
0 ,

⇥
�L

2 , l1
⇤
[
⇥
l2,

L

2

⇤
Eh1(h1�h)

2 , ]l1, l2[
(41)

D =

(
Eh

3

12 ,
⇥
�L

2 , l1
⇤
[
⇥
l2,

L

2

⇤

E[h3+(h�2h1)
3]

24 , ]l1, l2[
(42)

The discontinuity in the cross section due to the localized change in the beam
thickness a↵ects coe�cients A, B and D. Actually, B would be zero in a rectan-
gular, homogeneous beam, and only appears in this formulation because of the
notch.

The equations of motion are obtained by applying the principle of virtual work,
according to which

�W
in

+ �W
V

+ �W
ex

= 0, (43)

where �W
in

, �W
V

and �W
ex

are, respectively, the virtual work that the inertia,
internal and external forces do under a virtual vector displacement �d:

�d =

2

4
�u
�w
�✓

3

5 = N�q. (44)

The virtual work of internal and inertia forces are respectively given by

�W
V

= �
Z

V

� ✏ � dV (45)

�W
in

= �
Z

V

⇢ � dT d̈ dV , (46)

where d̈ is the vector containing components of acceleration. More details on the
above written virtual works can be found in [12]. The virtual work of the external
forces is given in [15].

Without damping, the equation of motion in time domain are:
2

4
M l 0 0
0 Mb 0
0 0 Mr

3

5

2

4
q̈
u

(t)
q̈
w

(t)
q̈
⇡

(t)

3

5 +

2

4
0 0 M lr

0 0 0

M lr

T

0 0

3

5

2

4
q̈
u

(t)
q̈
w

(t)
q̈
⇡

(t)

3

5 + (47)

+

2

4
K

`

0 0
0 K�11

`

K�12
`

0 K�21
`

Kb

`

+K�22
`

3

5

2

4
q
u

(t)
q
w

(t)
q
⇡

(t)

3

5 +

2

4
0 0 Klr

`

0 0 0

Klr

`

T

0 0

3

5

2

4
q
u

(t)
q
w

(t)
q
⇡

(t)

3

5 =

2

4
FE

u

(t)
FE

q

(t)
ME(t)

3

5 ,
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⇥
FE

u

(t), FE

w

(t),ME(t)
⇤T

is the vector of generalized external forces. Matrices M
and K

`

are, respectively, the mass and sti↵ness matrices. Superscripts l, b, r and
� indicate, respectively, longitudinal, bending, cross section rotation and shear
e↵ects. Superscript lr represents longitudinal-rotation coupling that occurs due
to damage and is reflected in the mass and linear sti↵ness matrix. The mass and
sti↵ness matrices are given in [12], the vector of generalized external forces in [15].

Finally, introducing Rayleigh-type damping, with damping coe�cients ↵ and
�, and writing the equations of motion in a more condensed form, yields,

(M +Mc)q̈(t) + ↵ (K
`

+ Kc

`

) q̇(t) + � (M + Mc) q̇(t) + (K
`

+ Kc

`

) q(t) = F (t). (48)

Matrices Mc and Kc

`

represent couplings introduced by the notch.

4.2 Simulation results

In this section, the discrete 2D Hopfield Neural Network (8), with y, A and ✓ as
defined in (26), is applied to detect damage in a beam. The vibration data in (26)
were obtained using the Timoshenko model described in subsection 4.1 for a beam
with the following characteristics (before the damage occurs): L = 0.5m, E =
71.72 ⇥ 109N/m2, I = 3.255 ⇥ 10�8 m4, µ = 1.75 kg/m and c = 1808.7N s/m2.
Within this setting, the model initialising parameters are ✓1 = c

µ

= 1033.5, ✓2 =
EI

µ

= 1334.1 and ✓3 = 1
µ

= 0.5714. Then, damage was simulated at t = 0.1 s, and,

as explained in Section 4.1 (second paragraph), was represented by an always open
notch or indentation, with corresponding mass and sti↵ness loss, which translated
into a change in all parameters ✓1, ✓2 and ✓3. The beam was subjected to a
harmonic excitation with amplitude F = 1000N and frequency ! = 3214.87 rad/s.

The beam was spatially discretized in 27 equally spaced points x
l

= l�x with
l = 0, . . . , 26. Moreover, in equation (8), N⇤ was taken equal to 1 and the weights
↵
j

(l) were defined as in [18], i.e., at the beam ends we took

↵�1(0) = 0

↵0(0) = 26/27

↵1(0) = 1/27

↵�1(26) = 1/27

↵0(26) = 26/27

↵1(26) = 0

in the middle of the beam

↵�1(l) = 0.5/27

↵0(l) = 26/27 l = 1, . . . , 25

↵1(l) = 0.5/27
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and finally

↵
j

(l) = 0 l < 0 or l > 26

taking into account that there is a finite number of discretization points in a beam
of limited length. Note that, for each point l = 0, . . . , 26, the sum of the weights
equals 1, and that more importance, corresponding to a weight of 26/27, is given
to the data collected from that point, while less importance, corresponding to
a distributed weight of 1/27, is given to the data collected from the neighbours
of that point. Since in a realistic situation the real values of the parameters are
not known, instead of considering the parameter estimation error, in order to
analyze the performance of the damage identification method, we considered at
each discrete time instant k � 0 the error measure

ECH(k) = max
l

ky(l, k)�A(l, k)✓̂(l, k)k1 (49)

and computed the average ECH(k) of the errors ECH(0), . . . , ECH(k). In the
sequel, we examine the relative change in the average error from time k�1 to time
k, given for k � 1 by

e
r

(k) =
ECH(k)� ECH(k � 1)

ECH(k � 1)
⇥ 100% . (50)

Figure 3 shows the results for the 2D HNN proposed here. It also shows, for com-
parison purposes, the results of a 1D HNN approach based in the work presented
in [6]. It can be seen that, when damage occurs at time t = 0.1 s, the relative
change in the average error is greater for the 2D HNN. This means that our multi-
dimensional approach presented here makes easier to detect damage. Furthermore,
it presents more stable results, as the relative change in the average error does not
oscillate after the initial identification phase, contrary to what happens with the
1D HNN approach.

The 2D HNN proposed here can be used not only for damage detection but
also for damage localization. Figure 4 depicts the time/space evolution of the ✓1
estimate produced by the network. It can be seen where damage occurs by observ-
ing where the peak in the parameter estimate occurs after the initial identification
phase.

Finally, note that the good results obtained by the 2D HNN were achieved in a
context where the beam displacement data was generated by a model di↵erent from
the one on which the network is based. Moreover, the velocity and acceleration
data were contaminated with errors, since they were calculated using numerical
di↵erentiation. For all this, the results suggest that the 2D HNN deals well with
a model mismatch and is robust to noise in the data.

5 Conclusions

This paper presents a multidimensional neural network for mechanical beam dam-
age detection. The network organizes the data collected from the beam based on
the Euler-Bernoulli model for beam vibrations. In order to simulate a mismatch
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Fig. 3 (a) Time evolution of the relative change in the average identification error; (b) zoom
around the time instant where damage occurs.

between this model and reality, we test the network using data from a di↵erent,
more complex model, namely Timoshenko’s. The network deals well with the mis-
match and is robust to noise in the data. It enables not only damage detection
but also damage localization. The results are superior to those of a unidimensional
neural network approach. For all this, we feel encouraged to incorporate the mul-
tidimensional neural network method in an automatic system for online damage
detection. Finally, we remark that this method can be extended to nD processes
with n > 2 (where, as here, one of the variables is the time). This could, for
instance, be useful for damage detection in vibrating plates.
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(a)

(b)

Fig. 4 (a) Time/space evolution of a parameter estimate produced by the 2D HNN; (b) zoom
around the time instant where damage occurs.
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