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In this paper the properties of behavioral reconstructibility and forward-observability for systems over the
whole time axis Z are introduced. These properties are characterized in terms of appropriate rank conditions,
for the time-invariant case. A comparison is made with the existing results in the behavioral setting as well as
in the classical state space framework. In the particular case of a periodic system it is shown that there exists an
equivalence between the reconstructibility of the periodic system and its associated lifted system, which is time-
invariant. Furthermore, we prove that, for a classical state space system, state reconstructibility is equivalent
to behavioral reconstructibility, regardless of the time varying or time-invariant nature of the system. This
allows deriving rank tests for the cases of time-invariant and of periodic systems, rediscovering the already
known results for state reconstructibility from an alternative perspective. The obtained results contribute to
establishing links between two different settings, thus providing a better insight into the considered systems
properties.
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1 Introduction

In the context of the behavioral approach, a dynamical system is characterized by the set of its
admissible signals, called the system behavior. These signals correspond to the time evolution of
the system variables, which have an “external” nature (in spite of not being divided into inputs
and outputs). State variables are viewed as auxiliary variables that may, or not, be present in
the system description. In this context one can still define several structural properties that were
classically only considered for state space models.
In this paper we focus on the property of reconstructibility for linear discrete-time behavioral

systems, considering both the time-invariant and the periodic cases. Behavioral observability
has been defined in (Willems 1989, 1991, Polderman and Willems 1998), whereas behavioral
reconstructibility has been introduced in (Valcher and Willems 1999a,b) for systems over Z+.
Given a linear behavioral system whose variable w is partitioned into two sub-variables w1

and w2, w2 is said to be observable from w1 if whenever the trajectory w1 is null overall in time,
the same happens for the trajectory w2. For systems defined on the half-line Z+, this can be
viewed as the behavioral equivalent of the classical definition of state observability, according to
which the knowledge of the (future) evolution of the inputs and outputs gives information about
the initial state, and hence also gives information about the whole state trajectory from the
initial instant on. However, this does not happen for systems defined over Z, since the definition
of behavioral observability has a global character, as it involves the values of the trajectories
over the whole time axis, rather than over a half-line. Here we propose a generalization of the
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notion of reconstructibility introduced in (Valcher and Willems 1999a,b) for systems over Z+

to systems over Z that only considers half-line information. Very loosely speaking, in a linear
behavioral system whose variable w is partitioned into two sub-variables w1 and w2, w2 is said
to be reconstructible from w1 if whenever the w1 is null from some time instant on, the same
happens with the trajectory w2, but possibly with some time delay. When this delay is not
present, we say that the system is forward observable. This corresponds to the usual notion of
observability for state space systems.
Our purpose is to investigate the relationships among the different aforementioned notions. In

order to give a better insight, we also relate the state space framework to the behavioral one.
This is done not only for time-invariant, but also for periodic behavioral systems.
In Section 2 we introduce some preliminary notions and facts about behaviors. Section 3 is

devoted to the definition of reconstructibility and forward-observability for systems over Z. For
time-invariant systems these properties are compared with other existing behavioral notions
and are characterized in terms of the matrices that are used in the corresponding behavior
description. Using the lifting formulation, a proof is presented that relates the reconstructibility
of a periodic system and of its lifted associated system. Moreover, a rank characterization is
derived. In Section 4 the classical notions of state reconstructibility and state observability are
recalled and related to our behavioral definition of reconstructibility. Finally reconstructibility
tests for time-invariant and periodic state space systems are derived using our behavioral results.
Conclusions are presented in Section 5.

2 Background

In the behavioral framework, see (Willems 1989, 1991), a dynamical system Σ is defined as a triple
Σ=(T,W,B), where T ⊆ R is the time set, W is the signal space and B ⊆WT := {w : T→W}
is the behavior. The behavior B is what characterizes the phenomenon described by the system
Σ, since it consists of all the signal evolutions (system trajectories) that are compatible with
the laws of that phenomenon. Here we shall be concerned with the discrete-time case, more
concretely, T = Z, assuming furthermore that the signal space is W = Rq, with q ∈ N. Thus,
WT = (Rq)Z, i.e., the system trajectories are Rq-valued sequences over Z.

In this section we recall some fundamentals of the behavioral approach.

Definition 2.1: (Willems 1989, 1991) A dynamical system Σ = (T,W,B) is said to be linear
if W is a vector space (over a field F) and B is a linear subspace of WT (which is obviously a
vector space when equipped with the usual operations of point-wise addition and multiplication
by a scalar). ✸

In order to introduce the notion of time-invariance it is essential to define first the time shift
for signals w, defined over Z.

We define the backward time shift as σ : (Rq)Z → (Rq)Z, such that:

(σw) (k) := w (k + 1) ;

while the forward time shift σ−1 : (Rq)Z → (Rq)Z is such that:

(
σ−1w

)
(k) := w (k − 1) .

Given a positive integer L, the composition of L backward/forward shifts is denoted as σL/σ−L.
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Definition 2.2: (Willems 1989, 1991) A dynamical system Σ = (Z,Rq,B) is said to be time-
invariant if σ (B) = B. ✸

Thus, time-invariance is nothing else than the invariance of the set B with respect to the time
shift σ and its inverse σ−1.
Another important notion is the completeness of a behavior B, meaning, roughly speaking,

that it is possible to check whether a trajectory w ∈ (Rq)Z belongs to B, by checking what

happens in the set I of finite intervals of Z. Given I ∈ I, denote by B

∣∣∣
I
the set of all the

restrictions of the system trajectories to the time interval I, that is,

B

∣∣∣
I
=

{
w
∣∣∣
I
: w ∈ B

}
.

Definition 2.3: (Willems 1989, 1991) A dynamical system Σ = (Z,W,B) is said to be complete
if

(
∀I ∈ I, w

∣∣∣
I
∈ B

∣∣∣
I

)
⇔ w ∈ B.

✸

Interesting insights into this property and the connection between systems over Z and systems
over Z+ are given in (Lomadze et al. 1998).

A crucial issue is the representation of the behavior of a system by means of mathematical
equations. It turns out that all the discrete-time dynamical systems that are linear, time-invariant
and complete, allow a special type of mathematical description known as kernel representation,
see (Willems 1989, 1991).

Theorem 2.4 : (Willems 1989, 1991) Let Σ = (Z,Rq,B) be a dynamical system. The following
are equivalent:

i) Σ is linear, time-invariant and complete;
ii) ∃ R

(
ξ, ξ−1

)
∈ R•×q

[
ξ, ξ−1

]
such that

B = kerR
(
σ,σ−1

)
:=

{
w ∈ (Rq)Z : R

(
σ,σ−1

)
w = 0

}
,

where R•×q
[
ξ, ξ−1

]
denotes the set of •× q matrices with entries in R

[
ξ, ξ−1

]
, the ring of

Laurent-polynomials in the indeterminate ξ. ✸

Condition ii), in Theorem 2.4, means that there exists a certain Laurent-polynomial matrix

R
(
ξ, ξ−1

)
= R−Mξ−M + · · · +R0 + · · ·+RNξN ,

with N,M ∈ Z+, such that the trajectories w ∈ B are the elements of (Rq)Z which constitute a
solution of the linear constant coefficient matrix difference equation

R−Mw (k −M) + · · ·+R−1w (k − 1) +R0w (k) +R1w (k + 1) + · · ·+RNw (k +N) = 0,∀k∈Z.

This matrix R
(
ξ, ξ−1

)
is called a kernel representation (KR) matrix of B. A behavior that

allows a KR is called kernel behavior.

While the behavior B of a time-invariant system over Z is characterized by its invariance
under the time shift (and its inverse), P -periodic behaviors are required to be invariant only
with respect to the P th power of the shift, and of its inverse.
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Definition 2.5: (Kuijper and Willems 1997) A system Σ is said to be P -periodic, with P ∈ N,
if its behavior B satisfies

σP
B = B,

but not σQB = B, for any Q ∈ N smaller than P . ✸

Remark 1 : Note that, regarding time-invariance as 1-periodicity, Definition 2.5 yields the
usual definition of time-invariant systems. ✸

According to (Kuijper andWillems 1997), a behaviorB is a σP -invariant linear closed subspace
of (Rq)Z (in the topology of point-wise convergence) if and only if it has a representation of the
type

(
Rt

(
σ,σ−1

)
w
)
(t+ Pk) = 0, t = 0, . . . , P − 1, k∈Z, (1)

where, for each time instant t = 0, . . . , P − 1,

Rt

(
ξ, ξ−1

)
∈ R

gt×q
[
ξ, ξ−1

]

is a Laurent polynomial matrix in the indeterminate ξ. Note that the Laurent-polynomial ma-
trices Rt need not have the same number of rows (in fact we could even have some gt equal to
zero, meaning that the corresponding matrix Rt would be void and no restrictions were imposed
at the time instants Pk + t). Equation (1) can also be written as

(
R
(
σ,σ−1

)
w
)
(Pk) = 0, k∈Z, (2)

where

R
(
ξ, ξ−1

)
:=

⎡

⎢⎢⎢⎣

R0
(
ξ, ξ−1

)

ξR1
(
ξ, ξ−1

)

...
ξP−1RP−1

(
ξ, ξ−1

)

⎤

⎥⎥⎥⎦ ∈ R
g×q

[
ξ, ξ−1

]
,

with g :=
∑P−1

t=0 gt. In the P -periodic case, with P ! 2, with some abuse of language, we refer
to (2) as a P -periodic kernel representation (P -PKR). Clearly, in the time-invariant case, where
P = 1, (2) particularizes to

(
R
(
σ,σ−1

)
w
)
(k) = 0, k∈Z.

Consider now that the system variable w is partitioned as (w1, w2). In this case, the corre-
sponding behavior description (2) can be written as

(
R2

(
σ,σ−1

)
w2

)
(Pk) =

(
R1

(
σ,σ−1

)
w1

)
(Pk) , k∈Z, (3)

where the Laurent-polynomial matrices Ri

(
ξ, ξ−1

)
∈ Rg×qi

[
ξ, ξ−1

]
, g :=

∑P−1
t=0 gt, i = 1, 2, are

obtained by means of a suitable partition (and, if necessary, rearrangement) of the columns of
R.
By decomposing matrices R2 and R1 as, see (Aleixo et al. 2007),

Ri

(
ξ, ξ−1

)
= RL

i

(
ξP , ξ−P

)
ΩP,qi (ξ) , i = 1, 2,
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where

ΩP,qi (ξ) :=
[
Iqi ξIqi · · · ξP−1Iqi

]T
,

we may write down relation (3) as

(
RL

2

(
σP ,σ−P

)
ΩP,q2 (σ)w2

)
(Pk) =

(
RL

1

(
σP ,σ−P

)
ΩP,q1 (σ)w1

)
(Pk) , k∈Z. (4)

Defining the lifted trajectories

(Lwi) (k) =

⎡

⎢⎣
wi (Pk)

...
wi (Pk + P − 1)

⎤

⎥⎦ , i = 1, 2,

see (Urbano 1987, Hernández and Urbano 1987, Khargonekar et al. 1985, Kuijper and Willems
1997, Aleixo et al. 2007), and noting that LσP = σL, (4) may be written as

(
RL

2

(
σ,σ−1

)
(Lw2)

)
(k) =

(
RL

1

(
σ,σ−1

)
(Lw1)

)
(k) , k∈Z. (5)

The behavior LB, defined by {Lw, w ∈ B}, called the lifted behavior, is equal to the set of
trajectories

{
(Lw1, Lw2) ∈

(
R
Pq1

)Z
×

(
R
Pq2

)Z
| (5) holds

}
,

that is,

LB = ker R̃L
(
σ,σ−1

)
,

where R̃L
(
ξ, ξ−1

)
:=

[
RL

2

(
ξ, ξ−1

)
RL

1

(
ξ, ξ−1

)]
. In particular, this implies that LB is time-

invariant.
A well-known technique in the study of periodic systems consists in relating the structural

properties of these systems with the properties of corresponding time-invariant formulations.
In this paper we shall make use of the (time-invariant) lifted behavior in order to obtain a
characterization of reconstructibility for the periodic case.

3 Behavioral reconstructibility

Similar to controllability and reachability, the properties of reconstructibility and observability
also play a central role in systems theory. As in the classical case, for behavioral systems these
properties are related with the possibility of obtaining information about some components of
the system variable, which cannot be directly measured, based on the knowledge of the other
components, which are assumed to be available for measurement.

3.1 Definition

Definition 3.1 Behavioral reconstructibility : Let B ⊂ (Rq)Z ≃ (Rq1 × Rq2)Z be a behavior
whose system variable w is partitioned as w = (w1, w2). Given δ ! 0, we say that w2 is δ-
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reconstructible from w1 if

{
w1

∣∣∣
[k0,+∞)

≡ 0

}
⇒

{
w2

∣∣∣
[k0+δ,+∞)

≡ 0

}
, ∀k0 ∈ Z. (6)

Moreover, w2 is said to be reconstructible from w1 if it is δ-reconstructible from w1 for some
δ ! 0. In this case B is also said to be reconstructible with respect to w2. In particular, w2 is
said to be forward-observable from w1 if it is 0-reconstructible from w1, i.e., if

{
w1

∣∣∣
[k0,+∞)

≡ 0

}
⇒

{
w2

∣∣∣
[k0,+∞)

≡ 0

}
, ∀k0 ∈ Z. (7)

In this case B is said to be forward-observable with respect to w2. ✸

Remark 2 : In this definition and throughout the entire paper, the interval notation [a, b] is
to be understood as [a, b] ∩ Z. ✸

Example 3.2 Consider a time-invariant system Σ =
(
Z,R2,B

)
with variables (w1, w2), whose

behavior B is described by

σw2 = w1,

i.e.,

w2 (k) = w1 (k − 1) , ∀k∈Z.

Clearly w2 is 1-reconstructible from w1, since

w1 (k) = 0, k ! k0

implies

w2 (k) = w1 (k − 1) = 0, k ! k0 + 1.

It is also simple to see that w2 is not forward-observable from w1. Indeed, if w1 (−1) = 1 and
w1 (k) = 0 for k ̸= −1, we have that w2 (0) = 1 and w2 (k) = 0 for k ̸= 0. Thus

w1

∣∣∣
[0,+∞)

= 0, but w2

∣∣∣
[0,+∞)

̸= 0.

However, w1 is forward-observable from w2, as can easily be ascertained. ✸

3.2 The time-invariant case

Observe that, in case of time-invariance, the δ-reconstructibility condition (6) in Definition 3.1
can be replaced by

{
w1

∣∣∣
[0,+∞)

≡ 0

}
⇒

{
w2

∣∣∣
[δ,+∞)

≡ 0

}
, (8)

whereas the forward-observability condition (7) can be replaced by

{
w1

∣∣∣
[0,+∞)

≡ 0

}
⇒

{
w2

∣∣∣
[0,+∞)

≡ 0

}
.
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This agrees with the definitions of reconstructibility and observability given in (Valcher and
Willems 1999b), for discrete-time systems over Z+. However, it does not agree with the definition
of observability given in (Willems 1989, 1991), according to which w2 is said to be observable
from w1 if

{
w1 (k) = 0, ∀k∈Z

}
⇒

{
w2 (k) = 0, ∀k∈Z

}
. (9)

In the sequel, to avoid confusion we refer to this latter property as Willems-observability.

Proposition 3.3: Let B ⊂ (Rq)Z be a time-invariant behavior whose system variable w is
partitioned as w = (w1, w2). Then w2 is Willems-observable from w1 if it is reconstructible
from w1.

Proof
Assume that w2 is δ-reconstructible from w1, for some δ ! 0. Consider a trajectory (w′

1, w
′
2) ∈

B with w′
1

∣∣∣
Z

= 0. In particular,

w′
1

∣∣∣
[k0,+∞)

≡ 0, ∀k0 ∈ Z,

and therefore

w′
2

∣∣∣
[k0+δ,+∞)

≡ 0, ∀k0 ∈ Z.

This clearly implies that w′
2

∣∣∣
Z

≡ 0, allowing to conclude that reconstructibility implies Willems-

observability. "

As we shall see in the sequel, the reciprocal of this result is also valid. For that purpose, we
first characterize reconstructibility and forward-observability by means of rank conditions.

Theorem 3.4 : Consider the time-invariant dynamical system Σ = (Z,Rq1+q2 ,B) described
by

B :=

{
(w1, w2) ∈

(
R
q1+q2

)Z
|
(
R2

(
σ,σ−1

)
w2

)
(k) =

(
R1

(
σ,σ−1

)
w1

)
(k) , k∈Z

}
,

with Ri

(
ξ, ξ−1

)
∈ Rg×qi

[
ξ, ξ−1

]
, i = 1, 2. Then,

i) w2 is reconstructible from w1 if and only if

rankR2
(
λ,λ−1

)
= q2, ∀λ ∈ C \ {0} ; (10)

ii) w2 is forward-observable from w1 if and only if there exist R̃2 (ξ) ∈ Rg×q2 [ξ] and R̃1 (ξ) ∈
Rg×q1 [ξ] such that B is described by R̃2 (σ)w2 = R̃1 (σ)w1, with

rank R̃2 (λ) = q2, ∀λ ∈ C. (11)

Proof

i) Assume that (10) holds. Then, there exists a matrix U
(
ξ, ξ−1

)
∈ Rg×g

[
ξ, ξ−1

]
, which is
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unimodular1 over R
[
ξ, ξ−1

]
, such that (Polderman and Willems 1998),

U
(
ξ, ξ−1

)
R2

(
ξ, ξ−1

)
=

[
Iq2
0

]
.

Thus (leaving out σ and σ−1 in the notation, for simplicity),

R2w2 = R1w1 ⇔ UR2w2 = UR1w1 ⇔

[
Iq2
0

]
w2 =

[
R1

1

R2
1

]
w1

⇔ R2
1w1 = 0 and w2 = R1

1w1,

with UR1 conformably partitioned as

U
(
ξ, ξ−1

)
R1

(
ξ, ξ−1

)
=

[
R1

1

(
ξ, ξ−1

)

R2
1

(
ξ, ξ−1

)
]
.

Let

R1
1

(
ξ, ξ−1

)
= R1

1
−M

ξ−M + · · ·+R1
1
0
+ · · ·+R1

1
N
ξN ,

with N,M ∈ Z+. Applying σM to both sides of the equality w2 = R1
1w1, we obtain

(
σMw2

)
(k) =

(
R̃1

1 (σ)w1

)
(k) , k∈Z,

allowing us to conclude that

{
w1

∣∣∣
[k0,+∞)

= 0

}
⇒

{
w2

∣∣∣
[k0+M,+∞)

= 0

}
,

i.e., w2 is M -reconstructible, and hence reconstructible, from w1.

Suppose now that (10) does not hold. Then, there exists a trajectory w∗
2 ∈ kerR2

(
σ,σ−1

)
,

which is non-zero (Polderman and Willems 1998). This trajectory is such that

w∗ = (w∗
1 ≡ 0, w∗

2) ∈ B .

If w2 were reconstructible from w1, this would imply that

w∗
2

∣∣∣
[k∗,+∞)

≡ 0, ∀k∗ ∈ Z,

and, consequently, w∗
2 would be null in the whole time-axis Z, which is a contradiction.

Therefore, if the rank condition (10) does not hold, w2 is not reconstructible from w1, or,
in other words, the reconstructibility of w2 from w1 implies that (10) holds;

ii) Suppose now that there exist R̃2 and R̃1 such that B is described by

(
R̃2 (σ)w2

)
(k) =

(
R̃1 (σ)w1

)
(k) , k∈Z,

1Given a ring R, a square matrix M ∈ Rg×g is said to be unimodular over R if it has an inverse in Rg×g.
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with R̃2 (ξ) satisfying (11). Then, there exists an unimodular matrix (over R [ξ]) U (ξ) such
that (Polderman and Willems 1998),

U (ξ) R̃2 (ξ) =

[
Iq2
0

]
.

Thus,

R̃2w2 = R̃1w1 ⇔ UR̃2w2 = UR̃1w1 ⇔

[
Iq2
0

]
w2 =

[
R̃1

1

R̃2
1

]
w1

⇔ R̃2
1w1 = 0 and w2 = R̃1

1w1,

with UR̃1 conformably partitioned as

U (ξ) R̃1 (ξ) =

[
R̃1

1 (ξ)

R̃2
1 (ξ)

]

.

Thus, if w1 (k) = 0 for k ∈ [k0,+∞), then

(
R̃1

1 (σ)w1

)
(k) = 0, for k ∈ [k0,+∞)

and hence

w2 (k) = 0, for k ∈ [k0,+∞) ,

which allows us to conclude that w2 is forward-observable from w1.

Assume now that w2 is forward-observable from w1 and let

(
R̂2 (σ)w2

)
(k) =

(
R̂1 (σ)w1

)
(k) , k∈Z,

be a representation of B. Consider a trajectory (w1, w2) ∈ B such that w1 ≡ 0. Then, by
the forward-observability of B, this implies that

∀k0 ∈ Z, w2 (k) = 0, k ! k0,

or, in other words, w2 ≡ 0. This means that ker R̂2 (σ) = {0}, which is equivalent to say,
see (Willems 1991), that

rank R̂2 (λ) = const, ∀λ ∈ C \ {0} .

Note that this also follows immediately from the previous item and from noticing that
forward-observability implies reconstructibility.
Let now U (ξ) and V (ξ) be unimodular matrices (over R [ξ]) that bring R̂2 into its Smith
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form, i.e.,

UR̂2V =

⎡

⎢⎢⎢⎢⎣

ξℓ1

. . .

ξℓq2

0

⎤

⎥⎥⎥⎥⎦
=:

[
Ξ

0

]

.

Then,

R̂2w2 = R̂1w1 ⇔ UR̂2w2 = UR̂1w1 ⇔

[
Ξ

0

]

V −1w2 =

[
R̂1

1

R̂2
1

]

w1,

which is equivalent to

R̂2
1w1 = 0 and w2 = V Ξ−1R̂1

1w1,

with UR̂1 conformably partitioned as

U (ξ) R̂1 (ξ) =

[
R̂1

1 (ξ)

R̂2
1 (ξ)

]

.

Thus, B is also described by

(
R̃2 (σ)w2

)
(k) =

(
R̃1 (σ)w1

)
(k) ,

with R̃2, R̃1 defined by

R̃2 (ξ) :=

[
Iq2
0

]

R̃1 (ξ) =

[
R̃1

1 (ξ)

R̃2
1 (ξ)

]
:=

[
V (ξ)Ξ−1 (ξ) R̂1

1 (ξ)

R̂2
1 (ξ)

]

.

Now, using the forward-observability property, it is clear that the matrix R̃1
1 := V Ξ−1R̂1

1

cannot have terms in ξ−1. Moreover, R̃2 (ξ) has constant column rank over C. This shows
that there exists a representation of B with the desired properties.

The proof is thus completed. "

The Willems-observability condition (9) for behaviors over Z described by

R2
(
σ,σ−1

)
w2 = R1

(
σ,σ−1

)
w1

is equivalent to the rank condition

rankR2
(
λ,λ−1

)
= q2, ∀λ ∈ C \ {0} ,

see (Willems 1991). This coincides with the condition (10) in Theorem 3.4–i), thus leading to
the conclusion that Willems-observability is equivalent to our notion of reconstructibility, rather
than to forward-observability.
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Proposition 3.5: Let B ⊂ (Rq)Z be a time-invariant behavior whose system variable w is
partitioned as w = (w1, w2). Then w2 is Willems-observable from w1 if and only if it is recon-
structible from w1. ✸

Note that the definition of observability, given in (Valcher and Willems 1999b), for systems
over Z+ can be regarded as an adaptation of Willems’s definition (9), since it means that if w1 is
the null trajectory (i.e., is zero over the time-axis Z+), then the same happens for w2. However,
that notion can also be seen as an adaptation of our definition of forward-observability.
The situation is summarized in the following table containing, in bold, the conditions that

define each of the properties

T

Property Z Z+

Forward-observability (C1) (C1)

Willems-observability (C2) (C1)

Reconstructibility (C3)⇔(C2) (C3)

The conditions (C1), (C2) and (C3) are as follows:

(C1) w1

∣∣∣
Z+

= 0⇒ w2

∣∣∣
Z+

= 0;

(C2) w1

∣∣∣
Z

= 0⇒ w2

∣∣∣
Z

= 0;

(C3) ∃δ ! 0 s.t. w1

∣∣∣
Z+

= 0⇒ w2

∣∣∣
[δ,+∞)

= 0.

3.3 The periodic case

The relationship between the reconstructibility of a periodic behavior and of its lifted counterpart
is given by the following result.

Theorem 3.6 : Let Σ = (Z,Rq1 × Rq2 ,B) be a P -periodic system whose system variable w
is partitioned as w = (w1, w2), described by (3), and ΣL its associated lifted system2. Then the
following are equivalent:

i) B is reconstructible with respect to w2;
ii) LB is reconstructible with respect to Lw2;
iii) rankRL

2

(
λ,λ−1

)
= Pq2, ∀λ ∈ C \ {0}. ✸

Proof The equivalence between conditions ii) and iii) follows immediately from Theorem 3.4 and
from the fact that LB is a time-invariant behavior. Now, we prove that conditions i) and ii) are
equivalent. Assume that B is reconstructible with respect to w2. Then, w2 is δ-reconstructible
from w1, for some δ ! 0, i.e., that

{
w1

∣∣∣
[k0,+∞)

≡ 0

}
⇒

{
w2

∣∣∣
[k0+δ,+∞)

≡ 0

}
, ∀k0 ∈ Z. (12)

Consider w̃1, w̃2 ∈ LB and k̃0 ∈ Z. Let w1, w2 ∈ B be such that Lwi = w̃i, i = 1, 2. Define

2Where ΣL =
(
Z,RPq1 × RPq2 , LB

)
.
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k0 := P k̃0 and take δ̃ = ⌈
δ

P
⌉3. Then, ∀k̃0 ∈ Z,

{
w̃1

∣∣∣
[ k̃0,+∞)

≡ 0

}
⇔

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
w1 (Pk)

...
w1 (Pk + P − 1)

⎤

⎥⎦ = 0, ∀k ∈
[
k̃0,+∞

)
⎫
⎪⎬

⎪⎭

⇔
{
w1 (ℓ) = 0, ∀ℓ ∈

[
P k̃0,+∞

)}
⇔ {w1 (ℓ) = 0, ∀ℓ ∈ [k0,+∞)}

4
⇒ {w2 (ℓ) = 0, ∀ℓ ∈ [k0 + δ,+∞)}⇔

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
w2 (Pk)

...
w2 (Pk + P − 1)

⎤

⎥⎦ = 0, ∀k !
k0+δ

P

⎫
⎪⎬

⎪⎭

⇔

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
w2 (Pk)

...
w2 (Pk + P − 1)

⎤

⎥⎦ = 0, ∀k ∈
[
k̃0 + δ̃,+∞

)
⎫
⎪⎬

⎪⎭
⇔

{
w̃2

∣∣∣
[ k̃0+δ̃,+∞)

≡ 0

}
,

showing that Lw2 is δ̃-reconstructible from Lw1.

Assume now that LB is reconstructible with respect to Lw2. Then, Lw2 is δ̃-reconstructible
from Lw1, for some δ̃ ! 0. Let w1, w2 ∈ B and k0 ∈ Z. Let further w̃1, w̃2 ∈ LB such that
Lwi = w̃i, i = 1, 2.

Then,

{w1 (k) = 0, ∀k ∈ [k0,+∞)}⇔

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
w1 (P ℓ)

...
w1 (P ℓ+ P − 1)

⎤

⎥⎦ = 0, ∀ℓ !
k0
P

⎫
⎪⎬

⎪⎭

⇔

{
w̃1 (ℓ) = 0, ∀ℓ ! ⌈

k0
P
⌉

}
5
⇒

{
w̃2 (ℓ) = 0, ∀ℓ ! ⌈

k0
P
⌉+ δ̃

}

⇔

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
w2 (P ℓ)

...
w2 (P ℓ+ P − 1)

⎤

⎥⎦ = 0, ∀ℓ ! ⌈
k0
P
⌉+ δ̃

⎫
⎪⎬

⎪⎭
⇔

{
w2 (k) = 0, ∀k ! k0 + P δ̃

}
.

This shows that w2 is δ-reconstructible from w1 with δ = P δ̃. "

3⌈·⌉ represents the ceiling function, i.e., the integer round-up defined as ⌈x⌉ = min {m ∈ Z : m ! x}.
4By the δ-reconstructibility of w2 from w1.
5By the δ̃-reconstructibility of Lw2 from Lw1.
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4 Behavioral reconstructibility of state space systems

The classical state space approach to linear, time-varying, systems takes as its starting point a
description Σs = (A (·) , B (·) , C (·) ,D (·)) of the form

{
(σx) (k) = A (k) x (k) +B (k)u (k)

k∈Z,
y (k) = C (k)x (k) +D (k)u (k)

(13)

where the matrices A (k) ∈ Rn×n, B (k) ∈ Rn×m, C (k) ∈ Rp×n and D (k) ∈ Rp×m depend on k,
x is the state variable and u and y are the input and output, respectively.

In this section we first recall the classical notions of state reconstructibility and state observ-
ability, and then view a state space system from the behavioral standpoint in order to compare
classical and behavioral properties. This allows us to rediscover, from another perspective, al-
ready known results on the characterization of reconstructibility of state space systems.

4.1 Classical notions

The structural properties of state reconstructibility and state observability for time-varying
systems are introduced following the spirit of the well-known versions for time-invariant systems,
yielding more general definitions that also apply to the time-invariant case.

Definition 4.1 State reconstructibility :

i) A state x1 ∈ Rn is called unreconstructible at time k1 if for all k0 # k1, there exists
x0 = x (k0) ∈ Rn such that

y (k) = C (k)φA (k, k0)x0 = 0, k ∈ [k0, k1 − 1] ,

with x1 = x (k1);
ii) The system (13) is called completely state reconstructible at time k1 if the only state x1 that

is unreconstructible at time k1 is the zero state, i.e., x1 = 0 ∈ Rn. If this happens for all
k1 ∈ Z, (13) is simply called completely state reconstructible. ✸

Definition 4.2 State observability :

i) A state x0 ∈ Rn is called unobservable (at time k0) if for all k1 ! k0

y (k) = C (k)φA (k, k0)x0 = 0, k ∈ [k0, k1 − 1]

i.e., if the zero input response of the system is zero for every k ! k0;
ii) The system (13) is called completely state observable at time k0 if the only state x0 that

is unobservable is the zero state, i.e., x0 = 0 ∈ Rn. If this happens for all k0 ∈ Z, (13) is
simply called completely state observable. ✸

4.2 Property comparison

We start by comparing the behavioral definition of reconstructibility with the classical definition
given by Definition 4.1. For this purpose, consider a behavior B consisting of the set of (x, u, y)-
trajectories of an n-dimensional linear state space model, with n states, m inputs and p outputs
described by (13). It follows, from Definition 4.1, that the state space system is (completely
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state) reconstructible if there exists k0 # k1 such that, for all x0 = x (k0),

{
u ≡ 0, y (k)

∣∣∣
k∈[k0,k1−1]

≡ 0

}
⇒ {x (k1) = 0} .

Suppose now that

(u, y)
∣∣∣
[k0,+∞)

≡ (0, 0) .

Then, in particular,

(u, y)
∣∣∣
[k0,k1−1]

≡ (0, 0)

and hence x (k1) = 0. Moreover, once u ≡ 0, the condition x (k1) = 0 clearly implies that

x (k)
∣∣∣
[k1,+∞)

≡ 0,

and thus
{
(u, y)

∣∣∣
[k0,+∞)

≡ (0, 0)

}
⇒

{
x
∣∣∣
[k1,+∞)

≡ 0

}
.

That is, x is behaviorally δ-reconstructible from (u, y), with δ = k1 − k0, as defined in the
behavioral framework (cf (6)).

In order to see that the opposite implication also holds, assume that the state x is reconstructible
from (u, y), in the behavioral sense. Furthermore, suppose that the state space system (13) is
(classically) unreconstructible. Then, there exists a trajectory with x (k0) = x0 such that

∀δ ! 0, (u, y)
∣∣∣
[k0,k0+δ−1]

≡ (0, 0) but x (k0 + δ) ̸= 0.

Observe that x0 ̸= 0 because otherwise we have that

{
x0 = 0, (u, y)

∣∣∣
[k0,k0+δ−1]

≡ (0, 0)

}
⇒ x (k0 + δ) = 0.

Furthermore, x0 is (classically) unobservable which implies that if u (k) = 0 for k ! k0, then
y (k) = 0 for k ! k0. Thus,

(u, y)
∣∣∣
[k0,+∞)

≡ (0, 0)

and, therefore, there exists a trajectory (x, u, y) such that

(u, y)
∣∣∣
[k0,+∞)

≡ (0, 0) and x
∣∣∣
[k0+δ,+∞)

̸= 0

as x (k0 + δ) ̸= 0, meaning that that state space system is not behaviorally reconstructible.
Hence, it must be (classically) reconstructible.

Thus, this reasoning allows us to state the following result.
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Theorem 4.3 : The state space system (13) is completely state reconstructible in the classical
sense (Def.4.1) if and only if x is reconstructible from (u, y) in the behavioral sense (Def.3.1).✸

4.3 Reconstructibility test

Consider now the time-invariant version of the state space system (13) as a behavioral system
B whose variable is partitioned as (w, v), with

w :=

[
u
y

]
and v := x. (14)

This leads to the following representation, in terms of w and v,

[
σIn −A

C

]
x =

[
B 0

−D Ip

]
w,

and clearly, by Theorem 3.4, x is reconstructible from w, in the behavioral sense, if and only if

rank

[
λIn −A

C

]
= n, ∀λ ∈ C \ {0} ,

which coincides with the (classical) complete state reconstructibility rank condition, see (Urbano
1987, Hautus 1969, Kailath 1980, Kučera 1991).
Contrary to what happens with reconstructibility, the characterization of forward-observability

for state space systems over Z does not coincide with the (classical) complete state observability
rank condition, see (Urbano 1987, Hautus 1969, Kailath 1980, Kučera 1991). This is illustrated
in the following example.

Example 4.4 Consider the state space system with no inputs, state x = [x1 x2]
T and output

y, described by

{
(σx) (k) = Ax (k)

k∈Z,
y (k) = Cx (k)

with

A =

[
0 0
0 1

]
, C =

[
0 1

]
.

It turns out that the state x is forward-observable from the output y, since the system trajectories
satisfy x1 = 0 and x2 = y. However,

[
λI2 −A

C

]

has a rank drop for λ = 0. Nevertheless, the description

⎡

⎣
1 0
0 σ − 1
0 1

⎤

⎦

︸ ︷︷ ︸
R̃2(σ)

x =

⎡

⎣
0
0
1

⎤

⎦ y
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is such that

rank R̃2 (λ) = 2, ∀λ ∈ C,

it satisfies the condition of Theorem 3.4–ii). ✸

If, instead of the time-invariant scenario, we now consider the P -periodic case, that is, if we
take the matrices A (k), B (k), C (k) and D (k), in the state space system (13), to be periodic in
k with period P ∈ N, then, by choosing the same variable partition as the one chosen in (14),
we are led to the following representation, in terms of w and v,

(
Rt

(
σ,σ−1

)
w
)
(t+ Pk) =

(
Mt

(
σ,σ−1

)
v
)
(t+ Pk) , t = 0, . . . , P − 1, k∈Z,

with

Rt

(
ξ, ξ−1

)
=

[
B (t) 0

−D (t) Ip

]
and Mt

(
ξ, ξ−1

)
=

[
ξIn −A (t)

C (t)

]
,

or still

(
R
(
σ,σ−1

)
w
)
(Pk) =

(
M

(
σ,σ−1

)
v
)
(Pk) , k∈Z, (15)

with

R
(
ξ, ξ−1

)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B (0) 0

−D (0) Ip

ξB (1) 0

−ξD (1) ξIp

...
...

ξP−1B (P − 1) 0

−ξP−1D (P − 1) ξP−1Ip

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and M
(
ξ, ξ−1

)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξIn −A (0)

C (0)

ξ (ξIn −A (1))

ξC (1)

...

ξP−1 (ξIn −A (P − 1))

ξP−1C (P − 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The lifted behavior LB corresponding to B is described by

(
RL

(
σ,σ−1

)
(Lw)

)
(k) =

(
ML

(
σ,σ−1

)
(Lv)

)
(k) , k∈Z,

where ML
(
ξ, ξ−1

)
∈ R(n+p)P×nP

[
ξ, ξ−1

]
is equal to

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A(0) In · · · 0

C(0) 0 · · · 0

0 −A(1) · · · 0

0 C(1) · · · 0

...
...

. . .
...

0 0
. . . In

0 0 · · · 0

ξIn 0 · · · −A(P−1)

0 0 · · · C(P−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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By conveniently rearranging some block-rows in the matrix ML
(
ξ, ξ−1

)
we obtain the matrix

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A(0) In 0 0 · · · 0 0

0 −A(1) In 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · −A(P−2) In

ξIn 0 · · · · · · · · · 0 −A(P−1)

C(0) 0 · · · · · · · · · · · · 0

0 C(1) 0 · · · · · · · · · 0

... 0
. . .

...

...
...

. . .
...

...
...

. . .
...

...
...

. . . 0

0 0 · · · · · · · · · 0 C(P−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which we denote by M̃L
(
ξ, ξ−1

)
.

Now, consecutively performing the P − 1 block-column operations

Cj ← Cj + Cj+1A (j − 1) , j = P − 1, . . . , 1,

(where Cj is the jth block-column of matrix M̃L
(
ξ, ξ−1

)
), i.e., taking in the first step j = P − 1

and in the (P − 1)th step j = 1, we obtain the following matrix

M̂L
(
ξ, ξ−1

)
=

⎡

⎣
0 I(P−1)n

M̂L
1

(
ξ, ξ−1

)
M̂L

2

(
ξ, ξ−1

)

⎤

⎦ , (16)

with

M̂L
1

(
ξ, ξ−1

)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ξIn−A(P−1) · · ·A(0)
C(0)

C(1)A(0)
C(2)A(1)A(0)

...
C(P−1)A(P−2) · · ·A(0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Taking Theorem 3.6 into account we conclude that B is reconstructible with respect to x if
and only if

rankML
(
λ,λ−1

)
= nP, ∀λ ∈ C \ {0} .

Clearly the rank of the original ML matrix coincides with the rank of matrix (16) and, there-
fore,

∀λ ∈ C, rankML
(
λ,λ−1

)
= n (P − 1) + rank M̂L

1

(
λ,λ−1

)
,
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where

rank M̂L
1

(
λ,λ−1

)
= rank

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λIn−A(P−1) · · ·A(0)
C(0)

C(1)A(0)
C(2)A(1)A(0)

...
C(P−1)A(P−2) · · ·A(0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore B is behaviorally reconstructible with respect to x if and only if

rank

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λIn−A(P − 1) · · ·A(0)
C(0)

C(1)A(0)
C(2)A(1)A(0)

...
C(P − 1)A(P − 2) · · ·A(0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= n, ∀λ ∈ C \ {0} .

Remark 3 : As expected, it can be shown that this rank condition is equivalent to the rank
conditions obtained in (Urbano 1987, Hernández and Urbano 1987), for reconstructibility of
periodic state space systems, based on a different time-invariant formulation. ✸

5 Conclusion

In this paper, we have introduced and characterized the properties of reconstructibility and
forward-observability for systems over Z. A comparison was made with the existing results in
the behavioral setting, for the time-invariant case. It turned out that our reconstructibility prop-
erty is equivalent to Willems-observability. Moreover, for the case of state space systems (over Z),
the characterization of reconstructibility coincides with the well-known reconstructibility condi-
tion for systems over Z+. However the characterization of forward-observability is different from
the observability condition for state space systems over Z+. A reconstructibility test has been
obtained for period behaviors and a property comparison has been achieved within the classical
state space framework, allowing us to conclude the equivalence between behavioral reconstruc-
tibility and state reconstructibility. Our results not only provide an overview of the relationship
between different behavioral properties, but also establish a bridge between the behavioral and
the classical state space settings.
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