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ABSTRACT

In this paper we give a stronger version of the notion of behavioral controlled in-

variance introduced in (Pereira & Rocha, 2017) in the context of regular partial

interconnections. In such interconnections, the variables are divided into two sets:

the variables to-be-controlled and the variables on which it is allowed to enforce re-

strictions (control variables); moreover, regularity means that the restrictions of the

controller do not overlap with the ones already implied by the laws of the original

behavior. A complete characterization of strong controlled invariance for nD behav-

iors is derived making use of a special controller behavior known as the canonical

controller.
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1. Introduction

Controlled invariance in the behavioral context was introduced in (Pereira & Rocha,

2017), extending the notion of invariance to the control setting. Roughly speaking,

a sub-behavior V of a behavior B is said to be B-invariant if the freedom of the

trajectories of B is “captured” by V, i.e., if B has no free variables modulo V.
This means that the system trajectories whose restriction to a su�ciently large

portion of the domain (the past, in the 1D case) lies in V are in fact contained in

the sub-behavior V (herefrom the term B-invariant). If V is not B-invariant, one

may wish to control the system in order to obtain a restricted dynamics with re-

spect to which V is invariant. When this is possible, V is said to be controlled invariant.

In this context it is important to recall that the behavioral approach to control consists

in interconnecting a given behavior with a suitable controller behavior in order to

obtain a desired controlled behavior. There are two main situations to be considered:

full interconnection (where all the system variables are available for control) and

partial interconnection (where the variables are divided into to-be-controlled variables
and control variables). Of particular importance are regular controllers which are

characterized by imposing restrictions on the control variables that do not overlap

with the ones already implied by the laws of the original behavior.

The full interconnection control problem was firstly addressed for 1D systems

in (Willems, 1997). In (Rocha & Wood, 2001), further results have been obtained not

only for the 1D case, but also for multidimensional (nD) systems.
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As concerns partial interconnections, in (Belur & Trentelman, 2002) the solvability of

a 1D partial interconnection problem has been related to the solvability of a suitable

associated full control problem. Results for the corresponding nD case have been

obtained in (Rocha, 2002) and (Rocha, 2005), considering a special behavior, the

canonical controller, introduced in (Willems, Belur, Julius & Trentelman, 2003) for

the 1D case.

Here we introduce a strong version of the notion of controlled invariance in the context

of regular partial interconnections and study this property from the (easier) standpoint

of full interconnection by resorting to the associated canonical controller.

2. Preliminaries

In this paper we consider nD behaviors B defined over the continuous nD domain

Rn
that can be described by a set of linear constant coe�cient partial di↵erential

equations, i.e.,

B = kerH(@) := {z 2 U : H(@)z = 0} ,

where U = C1
(Rn,Rq

), for some q 2 N, @ = (@
1

, . . . , @n), the @i’s are the elementary

partial di↵erential operators and H(s), with s = (s
1

, . . . , sn), is an nD polynomial

matrix, (i.e, it belongs to the set R•⇥q
[s] of •⇥q matrices with entries in the ring R[s]

of nD polynomials), known as a (kernel) representation of B. For short, whenever the
context is clear we omit the indeterminate s and the operator @. We shall refer to B
as a kernel behavior or simply as a behavior.

Note that di↵erent representations may give rise to the same behavior. In par-

ticular kerH = kerUH for any unimodular nD polynomial matrix U . Moreover,

B
1

= kerH
1

✓ B
2

= kerH
2

if and only if there exists an nD polynomial matrix

¯H
such that H

2

=

¯HH
1

.

Instead of characterizing B by means of a representation matrix H, it is also possible

to characterize it by means of its orthogonal module Mod(B), which consists of all the

nD polynomial rows r such that B ⇢ ker r, and can be shown to coincide with the

polynomial module generated by the rows of H, i.e., Mod(B) = RM(H), where RM
stands for row module, see (Oberst, 1990; Wood, 2000) for details.

The notion of autonomy plays an important role in the context of controlled invariance.

Although there are several (equivalent) ways of defining this property (Rocha & Wood,

2001; Willems, 1997; Zerz, 2000), here we simply define autonomy as the absence of free

variables, in the following sense: given a behavior B in the universe U = C1
(Rn,Rq

)

and trajectories w with components wi, i 2 {1, . . . , q}, wi is said to be a free variable
of B if

8w⇤
i 2 C1

(Rn,R) , 9w 2 B s.t. wi = w⇤
i .

Definition 2.1. An nD behavior B is called autonomous if B has no free variables.

The next proposition provides a characterization of autonomy in terms of kernel rep-
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resentations. This was proven in (Rocha & Wood, 1997) and (Wood, Rogers & Owens,

1999) for the discrete domain case, but the proofs are also valid in the case of contin-

uous domains (Zerz, 2000).

Proposition 2.2. Given an nD behavior B = kerH, then B is autonomous if and
only if the nD polynomial matrix H has full column rank.

Minimal left annihilators will be relevant in the sequel. They are defined as fol-

lows (Zerz, 2000).

Definition 2.3. Let H 2 Rg⇥q
[s]. Then X 2 Rm⇥g

[s] is called a minimal left annihi-
lator (MLA) of H if the following conditions hold:

(1) X is a left annihilator of H, i.e., XH = 0.

(2) If X
1

H = 0, with X
1

2 Rp⇥g
[s], then X

1

= MX, for some nD polynomial matrix

M .

In (Oberst, 1990), it was shown that the quotient of two behaviors admits the structure

of a behavior (see also (Wood, 2000)). Indeed, if B and B0
are behaviors such that

B0 ✓ B, choosing a kernel representation H 0
of B0

the following isomorphism holds:

B/B0 ⇠
=

H 0
(B).

The kernel representation of the quotient of two behaviors can be related with the

kernel representations of the latter as stated in the following result, (Rocha & Wood,

2001; Wood, Oberst, Rogers & Owens, 2000).

Proposition 2.4. Let B0 ✓ B be two nD behaviors, where B0
= kerH 0 and

B = kerEH 0, for some nD polynomial matrices H 0 and E. Let C be a MLA of H 0,
and set

L =


E
C

�
.

Then B/B0 ⇠
=

kerL. In the case where H 0 has full row rank, clearly B/B0 ⇠
=

kerE.

3. Behavioral control

In the behavioral approach, in order to control a behavior one imposes suitable

restrictions to its variables so as to obtain a new desired behavior. This is achieved

by interconnecting (intersecting) the given behavior with another behavior called

controller. As mentioned in the Introduction, two situations can be considered, namely

full interconnection, where all the system variables are available for control, (Rocha &

Wood, 2001; Willems, 1997) and partial interconnection, where the variables are di-

vided into to-be-controlled variables and control variables, (Belur & Trentelman, 2002).

To make the notations more precise, if a behavior B has variables z we denote it by Bz.

In set theoretic terms, control by full interconnection can be formulated as follows.

If Bz is the behavior of the system to be controlled (the plant) and Cz is the full
controller, i.e, the set of all signals compatible with the additional restrictions to be
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imposed, then the resulting controlled behavior is the interconnection given by

Bz \ Cz. (1)

A desired controlled behavior Dz is said to be implementable (from Bz) by full inter-
connection if there exists a full controller Cz that implements it, i.e., such that

Dz = Bz \ Cz.

In order to define partial interconnections, we denote the to-be-controlled variables by

w and the control variables by c. We assume that the joint behavior of these variables,

i.e., the (w, c)-behavior, is given as:

B
(w,c) := {(w, c) 2 Uw ⇥ Uc |R(@)w = M(@)c} , (2)

where, for q 2 N, Uq
:= C1

(Rn,Rq
) and R(s) 2 Rg⇥w

[s],M(s) 2 Rg⇥c
[s] are nD

polynomial matrices.

The w-behavior induced by B
(w,c) is defined as Bw = ⇡w

�
B
(w,c)

�
, where ⇡w de-

notes the projection into Uw
, and is obtained by eliminating c from the equation

R(@)w = M(@)c, which is achieved by applying to both sides of the equation a

minimal left annihilator L(@) of M(@) (Oberst, 1990, Corollary 2.38). This yields

Bw = ker(LR). Analogously, Bc = ker(NM) where N is a MLA of R.

The control action then consists in restricting the behavior of the control variables c in
order to obtain a desired e↵ect on w, this is, given a behavior to be controlled B

(w,c) ⇢
Uw ⇥ Uc

and a desired behavior Dw ⇢ Uw
, a controller behavior Cc ⇢ Uc

(given by

Cc = {c 2 Uc
: C(@)c = 0} = kerC, for some adequate nD polynomial matrix C(s))

has to be determined such that

Dw = ⇡w

⇣
B
(w,c) \ C⇤

(w,c)

⌘
, (3)

where C⇤
(w,c) stands for the lifted behavior

C⇤
(w,c) := {(w, c) 2 Uw ⇥ Uc |w is free and c 2 Cc}.

If (3) holds, we say that Dw is implementable by partial interconnection from B
(w,c),

or, equivalently, that Cc implements Dw.

Regular controllers play an important role in this context. They are characterized

by imposing restrictions on the control variables that do not overlap with the ones

already implied by the laws of the original behavior.

Given two behaviors B1

z = kerH
1

(@) and B2

z = kerH
2

(@) their interconnection

B1

z \ B2

z = ker

✓
H

1

(@)
H

2

(@)

�◆
is said to be a regular full interconnection if

rank


H

1

(s)
H

2

(s)

�
= rankH

1

(s) + rankH
2

(s).
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In terms of modules, the previous equation is equivalent to

Mod(B1

z) \Mod(B2

z) = {0}.

A full controller Cz is called a regular full controller, if its interconnection (1) with the

plant Bz is regular. A behavior Dz is regularly implementable by full interconnection
if it is implemented by a regular full controller.

In partial interconnections, given the nD polynomial matrices R(s),M(s) and C(s)
that respectively describe the to-be-controlled behavior B

(w,c) and the controller Cc, the
regularity of the corresponding partial interconnection is equivalent to the following

condition:

rank


R(s) M(s)
0 C(s)

�
= rank

⇥
R(s) M(s)

⇤
+ rank

⇥
0 C(s)

⇤
.

In terms of modules, the previous equation is equivalent to

Mod(B
(w,c)) \Mod(C⇤

(w,c)) = {0}.

Thus, in particular, every controller Cc = kerC is regular if the nD polynomial matrix

R(s) has full row rank. In turn, this condition means that all the control variables are

free in the to-be-controlled behavior B
(w,c).

A controller Cc is called a regular partial controller, if the interconnection (3) is regular.

In the same way, a behavior Dw is regularly implementable by partial interconnection
if it is implemented by a regular partial controller.

It is not di�cult to see that only sub-behaviors Dw of Bw are implementable from B
(w,c)

by partial interconnection. Moreover, the smallest sub-behavior of Bw implementable

by partial interconnection is clearly obtained by setting all the control variables to be

zero. This gives rise to the behavior

Nw :=

�
w 2 Uw | (w, 0) 2 B

(w,c)

 
,

whose kernel representation isNw = kerR, known as hidden behavior (Belur & Trentel-

man, 2002). As the following result shows, Nw plays an important role in the char-

acterization of (the possibility of) implementation by partial interconnection (Rocha,

2002).

Proposition 3.1. An nD behavior Dw is implementable from B
(w,c) by partial inter-

connection if and only if Nw ⇢ Dw ⇢ Bw.

As concerns regular implementation, the partial interconnection case is more di�cult

to investigate than the full interconnection case. For the 1D case, this di�culty

has been overcome in (Belur & Trentelman, 2002) by proving that a behavior Dw

is regularly implementable by partial interconnection from B
(w,c) if and only if is

regularly implemented by full interconnection from Bw. However, as shown in (Rocha,

2002), this no longer holds in the nD case, (n � 2).

5



In order to analyze the problem of nD regular implementation by partial interconnec-

tion a new kind of controller, called canonical controller, was used in (Rocha, 2005)

based on (Willems et al., 2003).

Definition 3.2. Let B
(w,c) be a given plant behavior and Dw a desired behavior

(control objective). The canonical controller associated with B
(w,c) and Dw is defined

as

Ccan
c := {c | 9w : (w, c) 2 B

(w,c) and w 2 Dw}.

Thus, the canonical controller consists of all the control variable trajectories compat-

ible with the desired behavior for the variables to be controlled.

Based on the canonical controller, a characterization of regular implementation by par-

tial interconnection in terms of full interconnection in the nD case is given next (Rocha,

2005).

Theorem 3.3. Let B
(w,c) be a given plant behavior and Dw a control objective. Let

further Ccan
c be the associated canonical controller. Assume that Dw is implementable

by partial interconnection from B
(w,c). Then Dw is regularly implementable by par-

tial interconnection from B
(w,c) if and only if Ccan

c is regularly implementable by full
interconnection from Bc (the c-behavior induced from B

(w,c)).

This result is crucial for our study in the sequel.

4. Behavioral controlled-invariance

Before introducing the notion of behavioral controlled-invariance, following (Pereira

& Rocha, 2017; Rocha & Wood, 1997) we adopt the next definition for behavioral

invariance.

Definition 4.1. Given an nD behavior Bw, a sub-behavior Vw of Bw is said to be

Bw-invariant if the quotient behavior Bw/Vw is autonomous.

Since autonomy is the absence of free variables, this intuitively means that all the

freedom of the trajectories of Bw is captured by Vw. By Propositions 2.2 and 2.4 the

following corollary is immediate.

Corollary 4.2. Let Vw ✓ Bw be two nD behaviors, where Vw = kerV and
Bw = kerEV , for some nD polynomial matrices V and E, with V full row rank.
Then Vw is Bw-invariant if and only if E is full column rank.

In the previous setting, controlled-invariance was defined in (Pereira & Rocha, 2017)

as follows.

Definition 4.3. Let B
(w,c) ⇢ Uw ⇥ Uc

be an nD behavior. A sub-behavior Vw of the

induced w-behavior Bw ⇢ Uw
is said to be B

(w,c)-controlled-invariant if there exists a

behavior Dw implementable by partial interconnection from B
(w,c), such that Vw ⇢ Dw

and Vw is Dw-invariant.

As mentioned before, when the matrix R(s) of the (w, c)-behavior description (2) is

a full row rank polynomial matrix, every partial controller is regular. For this case,
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controlled invariance for nD behaviors was characterized in (Pereira & Rocha, 2017)

as follows.

Proposition 4.4. Consider the nD behavior B
(w,c) described by Rw = Mc with R full

row rank. Let Bw = ⇡w
�
B
(w,c)

�
, Nw = kerR and Vw = kerV ⇢ Bw. Then

(1) Defining Bw := Nw + Vw,

Vw is B
(w,c)-controlled-invariant , Bw/Vw is autonomous.

(2) If, in addition, V has full row rank,

Vw ⇢ Bw is B
(w,c)-controlled-invariant , rank


R
V

�
= rankR.

Remark 1. Note that if R has full row rank, Bw := Nw + Vw is the smallest imple-

mentable behavior by regular partial interconnection from B
(w,c) containing Vw. Thus,

in this case, Vw is B
(w,c)-controlled-invariant if and only if Vw is invariant with respect

to the smallest regularly implementable behavior that contains it.

Example 4.5. Consider the 2D behavior B
(w,c) described by Rw = Mc with

R =


s
1

+ 1 0

0 s
2

+ 1

�
and M =


s
2

+ 1

�(s
1

+ 1)

�
.

Since L =

⇥
s
1

+ 1 s
2

+ 1

⇤
is a MLA of M then

Bw = kerLR = ker

⇥
(@

1

+ 1)

2

(@
2

+ 1)

2

⇤
.

Define Vw = kerV ⇢ Bw with V =


(s

1

+ 1)

2

0

0 1

�
.

Since Bw = Nw + Vw = kerR + kerV , it follows from (Rocha & Wood, 2001, Lemma

2.14) that Bw = kerF with F = AR = BV and

⇥
�A B

⇤
a MLA of


R
V

�
. It is easy

to check that

A =


s
1

+ 1 0

0 1

�
, B =


1 0

0 s
2

+ 1

�
and F =


(s

1

+ 1)

2

0

0 s
2

+ 1

�
.

By Proposition 2.4, Bw/Vw
⇠
=

kerB and by Proposition 2.2 this quotient behavior is

autonomous since B has full column rank. Hence, by Proposition 4.4, Vw is B
(w,c)-

controlled-invariant. Moreover, by (Pereira & Rocha, 2017), a controller behavior that

regularly implements Bw is Cc = kerC with

C = AM =


s
1

+ 1 0

0 1

� 
s
2

+ 1

�(s
1

+ 1)

�
=


(s

1

+ 1)(s
2

+ 1)

�(s
1

+ 1)

�
.

When the matrix R(s) has not full row rank, Proposition 4.4 does not hold since it

may be impossible to implement Bw by regular partial interconnection, as shown in
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the following example.

Example 4.6. Consider the 2D behavior B
(w,c) described by Rw = Mc with

R =


s
1

� 1 �(s
1

� 1)

s
2

� 1 �(s
2

� 1)

�
and M =


s
1

+ 1

s
2

+ 1

�
.

Since N =

⇥
s
2

� 1 �(s
1

� 1)

⇤
is a MLA of R and L =

⇥
�(s

2

+ 1) s
1

+ 1

⇤
is a MLA

of M then

Bc = kerNM = ker

�
�2(@

1

� @
2

)

�

and

Bw = kerLR = ker

⇥
2(@

2

� @
1

) �2(@
2

� @
1

)

⇤
.

Define Vw = kerV ⇢ Bw with V =


@
2

� @
1

0

0 @
2

� @
1

�
.

Analogously to the previous example we have that Bw = kerF with F = AR = BV ,

where

A =


1 �1

@
2

� 1 @
1

� 1

�
, B =


�1 1

0 0

�
and F =


@
1

� @
2

@
2

� @
1

0 0

�
.

We prove next that Bw is not implemented by regular partial interconnection from

B
(w,c). By Proposition 3.3, Bw is not regularly implementable by partial interconnec-

tion from B
(w,c) if and only if the canonical controller associated to Bw, Ccan

c , is not

regularly implementable by full interconnection from Bc. By Definition 3.2, Ccan
c is

defined by the equations

⇢
Rw = Mc
ARw = 0

By eliminating the variable w, one obtains as describing equations for the associated

c-behavior:


N 0

A �I

� 
M
0

�
c = 0 ,


N
A

�
Mc = 0,

and, therefore,

Ccan
c = ker


NM
AM

�
= ker

2

4
�2(@

1

� @
2

)

@
1

� @
2

2(@
1

@
2

� 1)

3

5 .

Moreover, by (Rocha & Wood, 2001, Theorems 4.1 and 4.5) and (Zerz, 2000, Definition

4), if Ccan
c is regularly implementable by full interconnection from Bc then Bc/Ccan

c can
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be represented by a generalized factor left prime (GFLP) polynomial matrix

1

. Since

Bc = kerNM, Ccan
c = ker


NM
AM

�
, NM =

⇥
1 | 0 0

⇤  NM
AM

�

and


1 2 0

0 �2(@
1

@
2

� 1) @
1

� @
2

�
is a MLA of


NM
AM

�
, by Proposition 2.4

Bc/Ccan
c

⇠
=

ker

2

4
1 0 0

1 2 0

0 �2(@
1

@
2

� 1) @
1

� @
2

3

5
= ker

2

4
1 0 0

0 1 0

0 0 @
1

� @
2

3

5 .

Since this latter matrix is not GFLP, then Ccan
c is not regularly implementable by

full interconnection from Bc and therefore Bw is not implemented by regular partial

interconnection from B
(w,c). ⇤

So, in the case R(s) has not full row rank one should find, if possible, a behavior Dw

containing Bw which is “large” enough to be regularly implementable, but su�ciently

“small” so that Bw/Vw is autonomous. This is a di�cult problem, which is currently

under investigation.

Here we focus on the possibility of taking Dw = Bw in Definition 4.3, and therefore

define the following stronger notion of controlled invariance.

Definition 4.7. Let B
(w,c) ⇢ Uw ⇥ Uc

be an nD behavior. A sub-behavior Vw of

the induced w-behavior Bw ⇢ Uw
is said to be B

(w,c)-strongly controlled-invariant

if Bw is implementable from B
(w,c) by regular partial interconnection and Bw/Vw is

autonomous.

Remark 2. It easily follows from this definition, together with Proposition 4.4 and

Remark 1, that strong controlled-invariance and controlled-invariance are equivalent

when the matrix R has full row rank.

Although strong controlled-invariance is a more restrictive property than controlled-

invariance, it is easier to characterize the former than the latter. The following theorem,

which is the main result of this paper, gives such a characterization in terms of the

canonical controller (see Definition 3.2).

Theorem 4.8. Consider the behavior B
(w,c) described by Rw = Mc and let Vw =

kerV be a sub-behavior of the induced w-behavior Bw. Let A and B be polynomial

matrices such that
⇥
�A B

⇤
is a MLA of


R
V

�
. If N is a MLA of R and Q =

⇥
Q

1

Q
2

⇤

is a MLA of


NM
AM

�
, then Vw is B

(w,c)-strongly controlled-invariant if and only if the

following two conditions hold:

(i) the matrix


B
E

�
has full column rank, where E is a MLA of V ;

1
Recall (Zerz, 2000, Definition 3) that an nD polynomial matrix H(s) is GFLP, if the existence of a fac-

torization H = DH1 (D not necessarily square) with rank(H) = rank(H1) implies the existence of an nD

polynomial matrix E such that H1 = EH.
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(ii) there exists a polynomial matrix Y such that


Q

1

Q
2

I 0

�
(Y

⇥
I 0

⇤
� I)


NM
AM

�
= 0.

Moreover, if an nD polynomial matrix Y as in (ii) exists, then the regular partial
controller can be taken as Cc

= kerC with

C = (Y
⇥
I 0

⇤
� I)


NM
AM

�
.

Remark 3. If the matrix V has full row rank, then the condition (i) of the previous

theorem should be replaced by “The matrix B has full column rank”.

Proof. Considering the behavior B
(w,c) described by Rw = Mc, one has that

Bw = kerLR where L is a MLA of M and Bc = kerNM , where N is a MLA of R.

Moreover, Nw = kerR and since

⇥
�A B

⇤
is a MLA of


R
V

�
, by (Rocha & Wood,

2001, Lemma 2.14), Bw = Nw + Vw = kerF with F = AR = BV .

By definition, Vw is said to be B
(w,c)-strongly controlled-invariant if Bw is imple-

mentable from B
(w,c) by regular partial interconnection and Bw/Vw is autonomous.

If E is a MLA of V , then by Proposition 2.2 and Proposition 2.4, Bw/Vw is

autonomous if and only if the matrix


B
E

�
has full column rank.

On the other hand, by Theorem 3.3, Bw is regularly implementable by partial intercon-

nection from B
(w,c) if and only if Ccan

c is regularly implementable by full interconnection

from Bc. By Definition 3.2, the canonical controller Ccan
c associated with B

(w,c) and

Bw is defined by the equations

⇢
Rw = Mc
ARw = 0

By eliminating the variable w, one obtains:


N 0

A �I

� 
M
0

�
c = 0 ,


N
A

�
Mc = 0,

and so Ccan
c = ker


NM
AM

�
.

Hence, Ccan
c is regularly implementable by full interconnection from Bc if there exists

a full controller Cc = kerC such that

RM
✓

NM
AM

�◆
= RM(NM)�RM(C)

, RM

NM
AM

�
= RM

✓⇥
I 0

⇤ NM
AM

�◆
�RM(C).
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By (Zerz & Lomadze , 2001) this is equivalent to the existence of a polynomial matrix

Y such that


Q

1

Q
2

I 0

�
(Y

⇥
I 0

⇤
� I)


NM
AM

�
= 0,

where Q =

⇥
Q

1

Q
2

⇤
is a MLA of


NM
AM

�
.

Moreover, if such matrix exists, then one may take C = (Y
⇥
I 0

⇤
� I)


NM
AM

�
.

Remark 4. For details on the existence and computation of the polynomial matrix

Y we refer to Zerz & Lomadze (2001).

Example 4.9. Consider the 2D behavior B
(w,c) described by Rw = Mc with

R =

2

4
s
2

+ 3 s
1

+ s
2

+ 6 s
1

+ s
2

+ 6

s
2

s
1

+ s
2

s
1

+ s
2

3 6 6

3

5
and M =

2

4
s
2

+ 1 s
1

+ 1

s
1

+ 1 s
2

+ 1

s
1

+ 1 s
2

+ 1

3

5 .

Note that rankR = 2, and hence R has not full row rank. Since N =

⇥
1 �1 �1

⇤
is

a MLA of R and L =

⇥
0 1 �1

⇤
is a MLA of M then

Bc = kerNM = ker

�⇥
1 �1 �1

⇤
M
�
= ker

⇥
@
2

� 2@
1

� 1 @
1

� 2@
2

� 1

⇤

and

Bw = kerLR = ker

⇥
@
2

� 3 @
1

+ @
2

� 6 @
1

+ @
2

� 6

⇤
.

Moreover, let Vw = kerV with V =


1 1 1

0 1 1

�
. Since LR =

⇥
s
2

� 3 s
1

� 3

⇤
V , Vw is

a sub-behavior of Bw. Further, Vw is also contained in the hidden behavior Nw, since

Nw = kerR and R = BV with B =

2

4
s
2

+ 3 s
1

+ 3

s
2

s
1

3 3

3

5 .

Therefore Bw = Vw +Nw = Nw and, by Proposition 2.4, Bw/Vw
⇠
=

kerB. Since B has

full column rank it follows from Proposition 2.2 that Bw/Vw is autonomous.

To show that Vw is B
(w,c)-strongly controlled-invariant, by Definition 4.7 it remains to

prove that Bw is implementable from B
(w,c) by regular partial interconnection which,

by Proposition 3.3, is equivalent to show that the canonical controller associated to

Bw, Ccan
c , is regularly implementable by full interconnection from Bc. By Definition 3.2,

Ccan
c is defined by the equations

⇢
Rw = Mc
Rw = 0
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and hence Ccan
c = kerM . Considering a controller behavior Cc = kerC with

C =


0 1 0

0 0 1

�
M =


s
1

+ 1 s
2

+ 1

s
1

+ 1 s
2

+ 1

�

it follows that

Bc \ Cc = ker


NM
C

�
= ker

0

@

2

4
1 �1 �1

0 1 0

0 0 1

3

5M

1

A
= kerM = Ccan

c .

Moreover, since rankNM = 1, rankC = 1 and rankM = 2, we have that

Bc \ Cc = Ccan
c is a regular full interconnection and thus Vw is B

(w,c)-strongly

controlled-invariant.

It is easy to check that condition (ii) of Theorem 4.8 hold with the matrices

A = I
3

,
⇥
Q

1

Q
2

⇤
=


0 L
1 N

�
and Y =

⇥
1 3 1 1

⇤T
. ⇤

5. Conclusions

In this paper, the property of strong controlled invariance of nD behavioral systems

was introduced in the context of partial interconnections, and completely character-

ized from the point of view of full interconnections by resorting to the associated

canonical controller. The obtained conditions can be easily checked my means of com-

puter algebra tools. The property of controlled invariance, which is less restrictive

but more di�cult to characterize than strong controlled invariance, is currently under

investigation.
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