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Stability of switched linear differential systems
J.C. Mayo-Maldonado, P. Rapisarda and P. Rocha

Abstract—We study the stability of switched systems

where the dynamic modes are described by systems of

higher-order linear differential equations not necessarily

sharing the same state space. Concatenability of trajec-

tories at the switching instants is specified by gluing

conditions, i.e. algebraic conditions on the trajectories

and their derivatives at the switching instant. We provide

sufficient conditions for stability based on LMIs for sys-

tems with general gluing conditions. We also analyse the

role of positive-realness in providing sufficient polynomial-

algebraic conditions for stability of two-modes switched

systems with special gluing conditions.

Index Terms—Switched systems; behaviours; LMIs;

quadratic differential forms; positive-realness.

I. INTRODUCTION

In established approaches, switched systems consist of
a bank of state-space or descriptor form representations
(see [8], [10], [28], [29]) sharing a common global state
space, together with a supervisory system determining
which of the modes is active. In many situations, mod-
elling switched systems with state representations shar-
ing a common state is justified from first principles. For
example, when dealing with switched electrical circuits,
it can be necessary to consider the state of the overall
circuit in order to model the transitions between the
different dynamical regimes. However, in other situations
modelling a switched system using a common global
state space is not justified by physical considerations. For
example, in a multi-controller control system consisting
of a plant and a bank of controllers which have different
orders, the dynamical regimes have different state space
dimensions. Such a system can be modelled using a
global state space common to the different dynamics;
however, there is no compelling reason to do so, since
at any given time only one controller is active. In hybrid
renewable energy conversion systems (see e.g. [32])
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several energy sources are connected to power devices
in order to transform and deliver energy to a grid. Due
to the intermittent nature of renewable energies, the need
arises to connect or disconnect dynamical conversion
systems such as wind turbines, photovoltaic/fuel cells,
etc., whose mathematical models have different orders.
A similar situation arises in distributed power systems
[35], where different electrical loads are connected or
disconnected from a power source.

Modelling such systems using a global state variable
results in a more complex (more variables and more
equations) dynamical model than alternative represen-
tations. For instance, such a description of a distributed
power system would include the state variables of each
possible load, even though in general not all loads are
connected at the same time and contributing to the dy-
namics of the overall system. This approach also scores
low on modularity, i.e. the independent development and
incremental combination of models.

Another issue with the classical approach to switched
systems is that modelling from first principles usually
does not yield a state-space description (for a detailed
elaboration of this position see [33]). A system is
the interconnection of subsystems; to model it one
first describes the subsystems and the interconnection
laws, possibly hierarchically repeating such procedure
until simple representations (e.g. derived from a library
or from elementary physical principles) can be used.
Such a model typically involves algebraic relations (e.g.
kinematic or equilibrium constraints), and differential
equations of first- and second-order (e.g., constitutive
equations of electrical components, dynamics of masses),
or of higher-order (e.g., resulting from the elimination of
auxiliary variables).

These considerations motivate the development of a
framework to model and analyse switched systems using
higher-order models describing dynamics with different
complexity. In our approach, each dynamic mode is
associated with a mode behaviour, the set of trajectories
that satisfy the dynamical laws of that mode. A switching
signal determines when a transition between dynamic
modes occurs. To be admissible for the switched be-
haviour, a trajectory must satisfy two conditions. Firstly,
it must satisfy the laws of the mode active in the interval
between two consecutive switching instants. Secondly, at
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the switching instants the trajectory must satisfy certain
gluing conditions, representing the physical constraints
imposed by the switch, e.g. conservation of charge, kine-
matic constraints, and so forth. The set of all admissible
trajectories is the switched behaviour, and is the central
object of study in our framework.

Following the preliminary investigations for systems
with one variable reported in [20], [22], in this paper we
propose such a framework for the linear multivariable
autonomous case. Each mode behaviour is represented
by a set of linear, constant-coefficient higher-order dif-
ferential equations. The gluing conditions consist of
algebraic equations involving the values of a trajectory
and its derivatives before and after the switching instant.
We focus on closed systems, i.e. systems without input
variables, and we study their Lyapunov stability using
quadratic functionals of the system variables and their
derivatives. We present new sufficient conditions based
on systems of LMIs for the existence of a higher-
order quadratic Lyapunov function for arbitrary gluing
conditions. Such systems of LMIs can be set up straight-
forwardly from the equations of the modes and the gluing
conditions. We also study the relation of positive-realness
with the stability of a class of (“standard”) two-modes
switched systems; these conditions are multivariable
generalisations of those presented in the scalar case in
[20], [22]. Finally, we introduce the notion of positive-
real completion of a given transfer function.

Following the behavioural approach for linear systems
(see [18]), the mode equations and the gluing conditions
are represented by one-variable polynomial matrices,
and the Lyapunov functionals by two-variable ones. The
calculus of such functionals and representations is a
powerful tool conducive to the use of computer algebra
techniques for the modelling and analysis of switched
systems.

The approaches closest to ours are those of Geerts and
Schumacher (see [6], [7]) on impulsive-smooth systems
and polynomial representations; and that of Trenn about
linear differential-algebraic equations (DAE’s; see [11],
[28], [29], [30]), and most pertinently his recent publica-
tion [31] (also worth mentioning is [2], which however
is less related to our setting). These authors consider
mode dynamics with different state-space dimension,
a situation generally involving impulses in the system
trajectories, a relevant issue also for practical reasons
(see e.g. [5]). In [28] a unifying, rigorous distributional
framework for switched systems has been given. When
the modes are described by DAE’s this approach en-
compasses also the detection of impulses directly from
the equations; for higher-order representations as in [31],
impact maps are used instead to specify explicitly the

impulsive part of the behaviour. Stability (also in a
Lyapunov sense) for impulse-free switched DAE’s has
been investigated in [11].

In this paper we deal with autonomous (i.e. closed)
modes; impulsive effects are implicitly defined by the
gluing conditions and the mode dynamics involved in the
transition (i.e. do not depend for example on the degree
of differentiability of some input variable). Our position
is that gluing conditions are a given; we take them at
face value. Whether they are physically meaningful or
not; whether they imply impulses or not; and whether
the latter is an important issue for the particular physical
system at hand, are major modelling issues that we
assume have been weighed carefully by the modeller (on
this issue see also p. 749 of [6]). In certain cases, see
Examples 1 and 3 below, our attitude towards gluing
conditions seems to involve less conceptual difficulties
than letting the equations to dictate the re-initialisation
mechanism at the switching instants. This “agnostic”
position does not absolve us though from the impor-
tant task, relevant for instance in the case of models
assembled from libraries, of studying how to determine
the presence of impulses directly from the equations and
associated gluing conditions; this is a pressing research
question to be considered elsewhere (on this issue see
[28], [29]).

We study stability for higher-order representations also
in the presence of impulses. We recognise the validity of
the position taken in [29] for switched DAE’s that when
impulses are allowed, the idea that in a stable system
small initial states produce state trajectories vanishing
at infinity is awkward. However, we also notice that
the impulsive nature of solutions has not discouraged
investigation of stability (also with Lyapunov methods),
both in the classical impulsive differential equations
framework (see e.g. Ch. 3 of [23]), and in the state-
space approach to switched systems, where impulses are
implicit in the reset maps (see e.g. [8]). Other recent
approaches are focused on the study of switched sys-
tems whose trajectories are everywhere continuous, and
thus not contain impulses; e.g. [38], where a complete
framework for dissipative switched systems is presented
(see Sec. II ibid.).

The paper is organised as follows: in section II we
define switched linear differential systems (SLDS), we
give examples of SLDS, and we discuss the issue of well-
posedness. In section III we give sufficient conditions for
stability of a SLDS based on the existence of a multiple
Lyapunov function (MLF). We also discuss how to com-
pute MLFs using LMIs. In section IV we focus on two-
modes SLDS, and we investigate the role of positive-
realness in establishing the stability of such systems. The
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notational conventions and some background material on
the behavioural approach and quadratic differential forms
is gathered in Appendix I, while the proofs are gathered
in Appendix II.

II. SWITCHED AUTONOMOUS LINEAR DIFFERENTIAL
SYSTEMS

A. Basic definitions

Recall from App. A-B the definition of Lw as the
set of linear differential behaviours. A switched linear
differential system is defined in the following way (see
also [20], [22]).

Definition 1. A switched linear differential system
(SLDS) ⌃ is a quadruple ⌃ = {P,F ,S,G} where
P = {1, . . . , N} ⇢ N, is the set of indices; F =

{B1, . . . ,BN

}, with B
j

2 Lw for j 2 P , is
the bank of behaviours; S = {s : R ! P |
s is piecewise constant and right-continuous}, is the set
of admissible switching signals; and

G =

�
(G

�
k!`

(⇠), G

+
k!`

(⇠)) 2 R•⇥w
[⇠]⇥ R•⇥w

[⇠]

| 1  k, `  N , k 6= `

 
,

is the set of gluing conditions. The set of switching
instants associated with s 2 S is defined by T

s

:=

{t 2 R | lim

⌧%t

s(⌧) 6= s(t)} = {t1, t2, . . . }, where
t

i

< t

i+1.

A SLDS induces a switched behaviour, defined as
follows.

Definition 2. Let ⌃ = {P,F ,S,G} be a SLDS, and let
s 2 S . The s-switched linear differential behaviour Bs

is the set of trajectories w : R ! Rw that satisfy the
following two conditions:

1) for all t
i

, t

i+1 2 T
s

, there exists B
k

2 F , k 2 P
such that w |[ti,ti+1)2 B

k

|[ti,ti+1);
2) w satisfies the gluing conditions G

at the switching instants for each
t

i

2 T
s

, i.e. (G

+
s(ti�1)!s(ti)

(

d

dt

))w(t

+
i

) =

(G

�
s(ti�1)!s(ti)

(

d

dt

))w(t

�
i

).

The switched linear differential behaviour (SLDB) B⌃

of ⌃ is defined by B⌃
:=

S
s2S Bs.

We make the standard assumption (see e.g. sect. 1.3.3
of [26]) that the number of switching instants in any
finite interval of R is finite. Moreover, in this paper we
assume that the behaviours B

i

, i 2 P are autonomous.
Since the trajectories of an autonomous behaviour are
infinitely differentiable (see 3.2.16 of [18]), the trajecto-
ries of a switched behaviour as in Def. 2 are smooth in
any interval between two consecutive switching times.

We now give three examples of switched behaviours;
besides exemplifying the Definitions, they allow us to
point out some important features of our approach to
switched systems (see also section III for another more
realistic example).

Example 1. Consider the electrical circuit in Fig. 1,
where C = 1 F , R = 1 ⌦, and w1 and w2 are voltages.
With the switch in position 1, the dynamical equations

Fig. 1. An electrical circuit

are
d

dt

w2 + w2 = 0

w1 � w2 = 0 ; (1)

when the switch is in position 2, the dynamical equations
are

d

dt

w2 + w2 = 0

w1 = 0 . (2)

The gluing conditions follow from the principle of
conservation of charge (see also [4]): for a transition
B2 ! B1 the matrices are

G

�
2!1 :=


0

1
2

0

1
2

�
, G

+
2!1 := I2 , (3)

and for a transition B1 ! B2 they are

G

�
1!2 :=


0 0

0 1

�
, G

+
1!2 := I2 . (4)

The switched behaviour consists of all piecewise smooth
functions col(w1, w2) that satisfy (1) or (2) depending
on the position of the switch, and that at the switching
instant satisfy either w1(0

+
) =

1
2w2(0

�
), w2(0

+
) =

1
2w2(0

�
) (for a transition B2 ! B1) or w1(0

+
) = 0,

w2(0
+
) = w2(0

�
) (for a transition B1 ! B2). These

gluing conditions imply that in any non-trivial case the
value of w1 jumps at the switching instant.

Example 2. Depending on the value of a switching
signal a plant ⌃

P

with two external variables, described
by the differential equation d

dt

w1 � w1 � w2 = 0, is
connected with one of two possible controllers ⌃

C1
and

⌃

C2
, described respectively by �3

d

dt

w1�w1� d

dt

w2 = 0
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and �2w1 � w2 = 0. Depending on which controller is
active, the resulting closed-loop behaviours are

B1 := ker


d

dt

� 1 �1

�3

d

dt

� 1 � d

dt

�
and

B2 := ker


d

dt

� 1 �1

�2 �1

�
.

Note that B1 and B2 have different McMillan degree (2
and 1, respectively). We define the gluing conditions for
the SLDS associated with B1 and B2 by

G

�
2!1(⇠) :=


0 1

0 �2

�
, G

+
2!1(⇠) :=


0 1

1 0

�

and by

G

�
1!2(⇠) :=

⇥
1 0

⇤
, G

+
1!2(⇠) :=

⇥
1 0

⇤
.

The rationale underlying our choice of gluing conditions
is that any trajectory of B1 is uniquely specified by the
instantaneous values of col(w1, w2), while a trajectory of
B2 is uniquely specified by the instantaneous value of
w1. Moreover, when switching from the dynamics of B1

to those of B2, we require that the values of w1 before
and after the switching instant coincide. In a switch
from B2 to B1, since the second differential equation
describing B2 yields w2 = �2w1 before the switch, we
impose that w2(t

+
k

) = w2(t
�
k

) = �2w1(t
�
k

). This makes
the switched trajectory as smooth as possible, taking
into account the restrictions imposed by each individual
behaviour B1 and B2.

Example 3. Consider two behaviours respectively de-
scribed by the equations

d

dt

w2 + w2 = 0

w1 � w2 = 0 , (5)

and
d

dt

w1 +
d

dt

w2 + w1 + w2 = 0

w1 = 0 . (6)

The gluing conditions for a transition B2 ! B1 are
associated with the matrices

G

�
2!1 :=


0 1

0 1

�
, G

+
2!1 := I2 , (7)

and for a transition B1 ! B2 they are defined by

G

�
1!2 :=


0 0

1
2

1
2

�
, G

+
1!2 := I2 ; (8)

i.e. in a switch B1 ! B2 the new value of w2 is the
average of the old values of w1 and w2.

Examples 1 and 3 offer the opportunity of making two
important remarks.

Remark 1. Note that (2) and (6) describe the same set
of solutions; indeed, the description (2) can be obtained
from (6) by unimodular operations, which in the case of
autonomous systems do not alter the solution set (see Th.
2.5.4 and Th. 3.2.16 of [18])1. Considering that (1) and
(5) are the same equation, the dynamic modes are the
same for both switched systems; thus the two switched
behaviours are different because the gluing conditions
are. We will prove later in this paper that these two
switched systems also have different stability properties-
that of Ex. 1 is stable under arbitrary switching signals,
while the other is not. Stability arises from the interplay
of mode dynamics and gluing conditions.

Remark 2. Gluing conditions should be defined on the
basis of the physics of the system under study. Those
for the system of Example 1 are meaningful for the
particular physical system at hand. However, for another
physical system whose modes happen to be described
also by (5)-(6), the conditions (7)-(8) may also be
physically plausible. In each case we assume that well-
grounded physical considerations have been motivating
the choice.

B. Well-posedness of gluing conditions

In principle Def.s 1 and 2 do not restrict the gluing
conditions; however, since we assume that the modes
are autonomous, i.e. no external influences are applied
to the system between consecutive switching times, it
is reasonable to require more. Namely, no different ad-
missible trajectories should exist with the same past (i.e.
same mode transitions at the same switching instants,
and same restrictions from t = �1 up until a given
switching instant t). If such trajectories exist, then at
t the past “splits” in different futures; however, since
no external inputs could trigger such a change, the past
of a trajectory should uniquely define its future. These
considerations lead to the concept of well-posed gluing
conditions, which we now introduce.

In order to do so, we first fix kernel representations
B

k

=: kerR

k

�
d

dt

�
, with R

k

2 Rw⇥w
[⇠] nonsingular,

k = 1, ..., N for the modes. We also define n

k

:=

deg(det(R
k

)), k = 1, ..., N , and we fix minimal state
maps (see App. A-C) X

k

2 Rnk⇥w
[⇠], k = 1, ..., N . Ev-

ery polynomial differential operator G
�
d

dt

�
on B

k

has a

1Some equivalence results for the C1-case are not valid for non-
autonomous systems and Lloc

1

trajectories; see for example [17]. On
equivalence of polynomial representations of switched systems, see
sect. 3 of [7].
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unique R

k

-canonical representative G

0 � d

dt

�
, denoted by

G

0
= G mod R

k

, such that G0 � d

dt

�
w = G

�
d

dt

�
w for

all w 2 B
k

(see App. A-B). Now let
�
G

�
k!`

, G

+
k!`

�
2 G;

then
�
G

�
k!`

mod R

k

, G

+
k!`

mod R

`

�
are equivalent

to
�
G

�
k!`

, G

+
k!`

�
, in the sense that the algebraic con-

ditions imposed by the one pair are satisfied iff they are
satisfied by the other. Moreover, since G

�
k!`

mod R

k

and G

+
k!`

mod R

`

are R

k

-, respectively R

`

-canonical,
there exist constant matrices F

�
k!`

and F

+
k!`

of suitable
dimensions such that G

�
k!`

(⇠) mod R

k

= F

�
k!`

X

k

(⇠)

and G

+
k!`

(⇠) mod R

`

= F

+
k!`

X

`

(⇠). We call

G0
:= {(F�

k!`

X

k

(⇠), F

+
k!`

X

`

(⇠)) | 1  k, `  N, k 6= `}

the normal form of G.

Definition 3. Let ⌃ be a SLDS with B
i

= kerR

i

�
d

dt

�

autonomous, i = 1, . . . , N . The normal form gluing con-
ditions G0

:= {(F�
k!`

X

k

(⇠), F

+
k!`

X

`

(⇠))}
k,`=1,...,N,k 6=`

are well-posed if for all k, ` = 1, . . . , N , k 6= `, and for
all v

k

2 Rnk there exists at most one v

`

2 Rn` such that
F

�
k!`

v

k

= F

+
k!`

v

`

.

Thus if a transition occurs between B
k

and B
`

at t
j

,
and if an admissible trajectory ends at a “final state”
v

k

= X

k

�
d

dt

�
w(t

�
j

), then there exists at most one
“initial state” for B

`

, defined by X

`

�
d

dt

�
w(t

+
j

) := v

`

,
compatible with the gluing conditions.

Example 4. Consider the gluing conditions of Example
2. A minimal state map for B1 is X1(⇠) := I2, and a
minimal state map for B2 is X2(⇠) =

⇥
1 0

⇤
. It follows

that G

+
2!1 mod R1(⇠) = G

+
2!1(⇠) = F

+
2!1X1(⇠) :=

0 1

1 0

�
I2. Moreover, G+

1!2 mod R2(⇠) = G

+
1!2(⇠) =

F

+
1!2X2(⇠) := 1

⇥
1 0

⇤
. These gluing conditions are

well-posed. It can be verified in a similar way that the
gluing conditions of Examples 1 and 3 are also well-
posed.

Remark 3. Well-posedness only concerns uniqueness,
not existence of an admissible “initial condition” v

`

in
B

`

for a given “final condition” v

k

in B
k

. It may happen
that the gluing conditions cannot be satisfied by nonzero
trajectories; they may not be “consistent” with the mode
dynamics. For example, consider a SLDS with modes (5)
and (6), and (well-posed) gluing conditions G

�
2!1 :=

I2, G
+
2!1 := I2, G

�
1!2 := I2, G

+
1!2 := I2. w 2 B1

iff w(t) = ↵ col(e�t

, e

�t

), ↵ 2 R; and w 2 B2 iff
w(t) = ↵ col(e�t

, 0), ↵ 2 R. Since constant switching
signals �1 = 1 and �2 = 2 are admissible, it follows
that B⌃ � B

i

, i = 1, 2. However, no genuine switched
trajectory exists besides the zero one, since the gluing
conditions cannot be satisfied by nonzero trajectories of
either of the behaviours.

The problem whether a given “initial condition” is
consistent or not with the mode dynamics was solved
most satisfactorily in the switched DAE’s framework of
Trenn (see Ch. 4 of [28]); algorithms are stated that from
the matrices describing a mode compute “consistency
projectors” whose image is the subspace of consistent
initial values. We briefly discuss the issue of consistent
gluing conditions in our framework.

Denote the roots of det R

k

(⇠) by �

k,i

, i = 1, . . . n

k

.
We assume for ease of exposition that the algebraic
multiplicity of �

k,i

equals the dimension of kerR
k

(�

k,i

).
It follows from sect. 3.2.2 of [18] that w 2 B

k

iff
there exist ↵

k,i

2 C, i = 1, . . . , n

i

such that w =P
nk

i=1 ↵k,i

w

k,i

exp

�it
, where w

k,i

2 Cw is such that
R

k

(�

k,i

)w

k,i

= 0, and the w

k,i

associated with equal �
k,i

are linearly independent. Note that the ↵

k,i

associated to
conjugate �

k,i

are conjugate.
Now define

V

i

:=

⇥
X

i

(�

i,1)wi,1 . . . X

i

(�

i,ni)wi,ni

⇤
2 Cni⇥ni

and ↵

i

:=

⇥
↵

i,1 . . . ↵

i,ni

⇤>, i = k, `; and consider
a switch from B

k

to B
`

at t = 0. The gluing con-
ditions stipulate that G

�
k!`

(w)(0

�
) = F

�
k!`

V

k

↵

k

=

F

+
k!`

V

`

↵

`

= G

+
k!`

(w)(0

+
). Nonzero ↵

i

, i = k, ` exist
satisfying this equality if and only if im F

�
k!`

V

k

✓
im F

+
k!`

V

`

. Standard arguments in ordinary differential
equations show that V

k

and V

`

are nonsingular; conse-
quently the consistency condition can be equivalently
stated as im F

�
k!`

✓ im F

+
k!`

.

Well-posedness implies that for all k, ` = 1, . . . , N ,
k 6= `, F+

k!`

is full column rank, and consequently there
exists a re-initialisation map L

k!`

: Rnk ! Rn` defined
by L

k!`

:= F

+⇤
k!`

F

�
k!`

, where F

+⇤
k!`

is a left inverse
of F

+
k!`

. For all t
j

2 T
s

and all admissible w 2 B⌃ it
holds that

[s(t

j�1) = k, s(t

j

) = `] and
G

+
k!`

✓
d

dt

◆
w(t

+
j

) = G

�
k!`

✓
d

dt

◆
w(t

�
j

)

�

=)

X

`

✓
d

dt

◆
w(t

+
j

) = L

k!`

✓
X

k

✓
d

dt

◆
w(t

�
j

)

◆�
.

Note that the re-initialisation map is not uniquely de-
termined unless F

+
k!`

is nonsingular. In the rest of the
paper, we assume well-posed gluing conditions with
fixed re-initialisation maps.

III. MULTIPLE LYAPUNOV FUNCTIONS FOR SLDS
We call a SLDB B⌃ (and by extension, the SLDS

⌃) asymptotically stable if lim

t!1w(t) = 0 for all
w 2 B⌃. It follows from this definition that in an asymp-
totically stable SLDS, all mode behaviours B

i

must be
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asymptotically stable and consequently autonomous (see
[18], sec. 7.2).

Asymptotic stability for linear differential behaviours
can be proved by producing a higher-order quadratic
Lyapunov function, i.e. a quadratic differential function

(QDF) Q such that Q 
B
� 0 and d

dt

Q 
B
< 0, see sect.

4 of [34]. The next result gives a sufficient condition
for stability of SLDS in terms of quadratic multiple
Lyapunov functions (MLFs) (see e.g [12] and sect. III.B
of [13]).

Theorem 1. Let ⌃ be a SLDS (see Def. 1). Assume that
there exist QDFs Q i

, i = 1, ..., N such that

1. Q i

Bi

� 0, i = 1, ..., N ;
2. d

dt

Q i

Bi

< 0, i = 1, ..., N ;
3. 8 w 2 B⌃ and 8 t

j

2 T
s

, Q s(tj�1)
(w)(t

�
j

) �
Q s(tj)

(w)(t

+
j

).
Then ⌃ is asymptotically stable.

Proof: See Appendix B.
Conditions 1 and 2 of Th. 1 are equivalent to Q i

being a Lyapunov function for B
i

, i = 1, . . . , N . Con-
dition 3 requires that the value of the multiple functional
associated to Q i

, i = 1, ..., N , does not increase at the
switching instants.

We now describe a procedure, based on the calculus of
QDFs and on LMIs, to compute a MLF as in Th. 1. We
first recall the following result from [34], that reduces
the computation of quadratic Lyapunov functions to the
solution of two-variable polynomial equations.

Theorem 2. Let B = kerR

�
d

dt

�
, with R 2 Rw⇥w

[⇠]

nonsingular. If B is asymptotically stable, for every Q 2
R•⇥w

[⇠] there exist  2 Rw⇥w
s

[⇣, ⌘] and Y 2 Rw⇥w
[⇠]

such that Q � 0 and

(⇣+⌘) (⇣, ⌘) = Y (⇣)

>
R(⌘)+R(⇣)

>
Y (⌘)�Q(⇣)

>
Q(⌘) .

(9)
If either one of Q or Y is R-canonical, then
also the other and  are R-canonical. Moreover if
rank col(R(�), Q(�)) = w for all � 2 C such that
detR(�) = 0, then Q 

B
> 0.

Proof: The result follows from Th. 4.8 and Th. 4.12
of [34].

Thus, a quadratic Lyapunov function Q can be com-
puted by choosing some Q and solving the polynomial
Lyapunov equation (PLE) (9). Algebraic methods for
solving it are illustrated in [15]; we devise an LMI-based
one more suitable to our purposes. We first relate (9) with
a matrix equation.

Proposition 1. Let B = kerR

�
d

dt

�
, with R 2 Rw⇥w

[⇠]

nonsingular. Let X 2 Rn⇥w
[⇠] be a minimal state

map for B. Assume that B is asymptotically stable.
Let Q,Y , and  satisfy (9), and assume that either
Q or Y is R-canonical. There exist K = K

> 2
Rn⇥n, Y 2 Rw⇥n, Q 2 R•⇥n such that  (⇣, ⌘) =

X(⇣)

>
KX(⌘), Y (⇠) = Y X(⇠), and Q(⇠) = QX(⇠).

Write R(⇠) =

P
L

i=0Ri

⇠

i, with R

i

2 Rw⇥w, i = 0, . . . , L;
then there exist X

i

2 Rn⇥w, i = 0, 1, ..., L�1, such that
X(⇠) =

P
L�1
i=0 X

i

⇠

i. Moreover, denote the coefficient
matrices of R(⇠) and X(⇠) by e

R :=

⇥
R0 . . . R

L

⇤

and e
X :=

⇥
X0 . . . X

L�1
⇤
. The following statements

are equivalent:

1.  (⇣, ⌘), Y (⇠) and Q(⇠) satisfy (9);
2. There exist K = K

> 2 Rn⇥n, Y 2 Rw⇥n, Q 2
R•⇥n such that


0w⇥n

e
X

>

�
K

h
e
X 0

n⇥w

i
+

 e
X

>

0w⇥n

�
K

h
0

n⇥w
e
X

i

�
 e
X

>

0w⇥n

�
Y

> e
R� e

R

>
Y

h
e
X 0

n⇥w

i

+

 e
X

>

0w⇥n

�
Q

>
Q

h
e
X 0

n⇥w

i
= 0 . (10)

If moreover, rank col(R(�), Q(�)) = w for all � 2 C,
then 1) is equivalent with 2) and K > 0.

Proof: See Appendix B.

We now show how to compute MLFs for SLDS. For
ease of exposition we assume that all roots of detR

k

(⇠)

have equal algebraic and geometric multiplicity.

Theorem 3. Let ⌃ be a SLDS (see Def. 1), with
B

k

= kerR

k

�
d

dt

�
asymptotically stable, k = 1, . . . , N

and R

k

2 Rw⇥w
[⇠] nonsingular. Let X

k

2 Rn⇥w
[⇠]

be a minimal state map for B
k

. Write R

k

(⇠) =P
Lk

i=0Rk,i

⇠

i, and denote the coefficient matrix of R
k

(⇠)

by e
R

k

:=

⇥
R

k,0 . . . R

k,Lk

⇤
and that of X

k

(⇠)

by e
X

k

:=

⇥
X

k,0 . . . X

k,Lk�1

⇤
. Denote the roots

of det R

k

(⇠) by �

k,i

, i = 1, . . . n

k

. Assume that
the algebraic multiplicity of �

k,i

equals the dimen-
sion of kerR

k

(�

k,i

). Let w

k,i

2 Cw be such that
R

k

(�

k,i

)w

k,i

= 0, with the w

k,i

associated with equal
�

k,i

linearly independent. Define V

k

2 Cnk⇥nk by V

k

:=⇥
X

k

(�

k,1)wk,1 . . . X

k

(�

k,nk
)w

k,nk

⇤
, k = 1, . . . , N .

Denote by L

k!`

, k, ` = 1 . . . , N , k 6= `, the re-
initialisation maps of ⌃.

If there exist K

k

2 Rnk⇥nk , Y

k

2 Rw⇥nk , k =
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1 . . . , N such that

e
�

k

:=


0w⇥n

e
X

>
k

�
K

k

h
e
X

k

0

n⇥w

i

+

 e
X

>
k

0w⇥n

�
K

k

h
0

n⇥w
e
X

k

i
�
 e
X

>
k

0w⇥n

�
Y

>
k

e
R

k

� e
R

>
k

Y

k

h
e
X

k

0

n⇥w

i
 0 , (11)

then there exist F

k

2 Rnk⇥nk such that e
�

k

= e
X

>
k

0w⇥n

�
F

k

h
e
X

k

0

n⇥w

i
, k = 1, . . . , N .

Moreover, if for k, ` = 1, . . . , N , ` 6= k, it holds that

F

k

< 0 and V

⇤
k

K

k

V

k

� V

⇤
k

L

>
k!`

K

`

L

k!`

V

k

, (12)

then ⌃ is asymptotically stable, and
{X

k

(⇣)

>
K

k

X

k

(⌘)}
k=1,...,N induces a MLF.

Proof: See Appendix B.
Th. 3 reduces the computation of quadratic MLFs to

the solution of a system of structured LMIs (11)-(12), a
straightforward matter for standard LMI solvers.

Remark 4. The fact that no (multiple) quadratic Lya-
punov function exists cannot be used to conclude that
a system is unstable: the class of quadratic Lyapunov
functionals is not universal in the sense of [1], see
Corollary 4.3 and Remark 4.1 p. 457. On this, see also
Example 5 below.

The class of polyhedral Lyapunov functions (PLFs) is
universal for linear systems with structured uncertainties;
in [37] PLFs are applied to linear switched systems in
state space form, and a numerical procedure to overcome
the complexity of PLF computations is illustrated, see
pp. 1021-1022 ibid.

Example 5. The SLDS in Ex. 1 is stable. A MLF is

(Q 1
, Q 2

), where  1(⇣, ⌘) =


0

1

� ⇥
0 1

⇤
=  2(⇣, ⌘),

inducing the QDFs Q 1
(w) = w

2
2 = Q 2

(w). Their
derivatives along B1 and B2 equal �2w2

d

dt

w2 = �2w

2
2;

due to the gluing conditions, the value of the MLF is the
same before and after the switch.

For the system in Ex. 3, straightforward computations
show that since the only R

i

-canonical quadratic Lya-
punov functionals for B

i

are of the form  

i

(⇣, ⌘) =

c


0

1

� ⇥
0 1

⇤
, i = 1, 2 for c > 0, no quadratic multiple

Lyapunov functions for the SLDS exist. In fact, an
argument analogous to that of pp. 126-ff. of [28] proves
that the system is unstable.

Remark 5. QDFs act on C1-functions, while trajec-
tories of a SLDS are non-differentiable; however, this
mismatch in differentiability is irrelevant to Th. 3 and

the other results of this paper. Indeed, we only use the
calculus of QDFs as an algebraic tool. For example, in
the proof of Th. 3 when considering the value of Q k

and Q `
before and after a switch, only the properties

of their coefficient matrices are used.

Remark 6. Th. 3 and the associated LMI-based proce-
dure to find a MLF assume that the �

k,i

and associated
directions w

k,i

are known. If one wants to avoid such
pre-computations, a weaker (i.e. more conservative) suf-
ficient condition for the existence of a multiple Lyapunov
function can be obtained by solving (11) together with
F

k

< 0 and K

k

� L

>
i!`

K

`

L

k!`

in place of (12).

Remark 7. For state-space switched systems, R
k

(⇠) =

⇠I

n

�A

k

and X

k

(⇠) = I

n

, k = 1, . . . , N ; straightforward
computations yield that in (11) Y

k

= K

k

; with the
first condition in (12) we obtain the matrix Lyapunov
equations A

>
k

K

k

+ K

k

A

k

< 0. The second condition
in (12) reduces to the classical condition on the reset
maps (see e.g. Cor. 2.2 of [14]). For the case of switched
DAE’s, see sect. 6.3 of [29].

We conclude with an example illustrating our mod-
elling framework and the application of Th. 3 in a
realistic setting.

Example 6. Some source converters used in distributed
power systems (see e.g. [16]) consist of a traditional
DC-DC boost converter coupled with a (dis-)connectable
load, see Fig. 2. We take w = col(i

L1
, v

o

) as the external

Fig. 2. Source converter.

variable. In order to deal with autonomous behaviours,
set the input voltage V = 0. From standard circuit
modelling we conclude that the modes are F = {B

k

=

ker R

k

�
d

dt

�
}
k=1,...,4 where
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R1(⇠) :=

2

4
L1⇠ +R

L1
0

0 C1⇠ +
1

R

o

3

5
,

R2(⇠) :=

2

4
L1⇠ +R

L1
1

�1 C1⇠ +
1

R

o

3

5
,

R3(⇠) :=2

4
L1⇠+RL1 0

0 L2C1⇠
2+

0

@
RL2C1+

L2

R

o

1

A
⇠+

R

L2

R

o

+ 1

3

5

R4(⇠) :=2

4
L1⇠+RL1 1

�L2⇠�RL2 L2C1⇠
2+

0

@
RL2C1+

L2

R

o

1

A
⇠+

R

L2

R

o

+ 1

3

5
.

The gluing conditions derived from physical consid-
erations are

(I2, I2)

=

�
G

+
1!2(⇠), G

�
1!2(⇠)

�
=

�
G

+
2!1(⇠), G

�
2!1(⇠)

�

=

�
G

+
3!1(⇠), G

�
3!1(⇠)

�
=

�
G

+
3!2(⇠), G

�
3!2(⇠)

�

=

�
G

+
4!1(⇠), G

�
4!1(⇠)

�
=

�
G

+
4!2(⇠), G

�
4!2(⇠)

�
;

�
G

+
1!3(⇠), G

�
1!3(⇠)

�
:=

0

B@

2

64

1 0

0 1

0 �C1⇠ �
1

R

o

3

75 ,

2

4
1 0

0 1

0 0

3

5

1

CA

=:

�
G

+
2!3(⇠), G

�
2!3(⇠)

�
;

�
G

+
1!4(⇠), G

�
1!4(⇠)

�
:=

0

B@

2

64

1 0

0 1

1 �C1⇠ �
1

R

o

3

75 ,

2

4
1 0

0 1

0 0

3

5

1

CA

=:

�
G

+
2!4(⇠), G

�
2!4(⇠)

�
;

�
G

+
3!4(⇠), G

�
3!4(⇠)

�
=

�
G

�
4!3(⇠), G

+
4!3(⇠)

�

:=

0

B@

2

64

1 0

0 1

1 �C1⇠ �
1

R

o

3

75 ,

2

64

1 0

0 1

0 �C1⇠ �
1

R

o

3

75

1

CA .

The following polynomial differential operators induce
state maps for B

k

, k = 1, . . . , 4:

X1(⇠) = X2(⇠) :=


1 0

0 1

�
;

X3(⇠) :=

2

64

1 0

0 1

0 �C1⇠ �
1

R

o

3

75 ;

X4(⇠) :=

2

64

1 0

0 1

1 �C1⇠ �
1

R

o

3

75 .

They can be derived by physical considerations or auto-
matically, using the procedures in [21]. Proceeding as in
sect. II-B, we compute the re-initialisation maps

L1!2 = L2!1 :=


1 0

0 1

�
;

L1!3 = L1!4 = L2!3 = L2!4 :=

2

4
1 0

0 1

0 0

3

5
;

L3!4 = L4!3 := I3 ;

L3!1 = L3!2 = L4!1 = L4!2 :=


1 0 0

0 1 0

�
.

With the parameters L1 = 100µF , R

L1
= 0.01⌦,

C1 = 100µF , R
o

= 2⌦, R
L2

= 0.02⌦, L2 = 100µF

we obtain the characteristic frequencies �1,1 = �5000,
�1,2 = �100, �2,1 = �2550 + j9695.2 = �2,2, �3,1 =

�2600+j9707.7 = �3,2, �3,3 = �100, �4,1 = �149.94,
�4,2 = �2575 + j13933 = �4,3. The V -matrices of Th.
3 are

V1 =


0 1

1 0

�
;

V2 =


0.70711 0.70711

0.17324� j0.68556 0.17324 + j0.68556

�
,

V3 =

2

4
0 0 1

0.16971 + j0.68644 0.16971� j0.68644 0

0.62564� j0.32949 0.62564 + j0.32949 0

3

5
;

V4 =


0.70796 0.08739 + j0.49199 0.08739� j0.49199
0.00353 0.70711 0.70711
0.70625 �0.08407� j0.49323 �0.17147 + j0.98522

�
.

Using standard LMI solvers for the LMIs (11), (12) we
obtain

K1 = K2 =


0.00123 �0.00002

�0.00002 0.00112

�
;

K3 = K4 =

2

4
0.00123 �0.00002 0

�0.00002 0.00112 0

0 0 0.00121

3

5
.

Applying Th. 3 we conclude that
{X

k

(⇣)

>
K

k

X

k

(⌘)}
k=1,...,4 induces a MLF.

To illustrate the modularity of our modelling frame-
work, assume that the source converter can also be
connected to yet another RC load as depicted in Fig. 3.
This results in two additional behaviours in F , namely
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Fig. 3. DC-DC Boost converter/RC-Circuit interconection.

B
i

= ker R

i

�
d

dt

�
, i = 5, 6, where

R5(⇠) :=2

4
L1⇠+RL1 0

0 RC2C1C2⇠
2+

0

@
R

C2
C2

R

o

+ C1 + C2

1

A
⇠+

1

R

o

3

5

R6(⇠) :=2

4
L1⇠+RL1 1

�RC2C2⇠�1 RC2C1C2⇠
2+

0

@
R

C2
C2

R

o

+ C1 + C2

1

A
⇠+

1

R

o

3

5
.

We choose as state maps for B5 and B6

X5(⇠) :=

2

64

1 0

0 1

0 R

C2
C1⇠ +

R

C2

R

o

+ 1

3

75 ;

X6(⇠) :=

2

64

1 0

0 1

�R

C2
R

C2
C1⇠ +

R

C2

R

o

+ 1

3

75 ,

corresponding to the re-initialisation maps

L5!6 = L6!5 := I3 ;

L1!5 = L1!6 = L2!5 = L2!6 :=

2

4
1 0

0 1

0 0

3

5
;

L5!1 = L5!2 = L6!1 = L6!2 :=


1 0 0

0 1 0

�
.

Given the values R

C2
= 1⌦, C2 = 100µF , in order to

compute a MLF for F := {B
k

}
k=1,...,6 we only need to

add two LMIs to those set up previously; the solution is

K1 = K2 =


0.00127 �0.00002

�0.00002 0.00126

�
;

K3 = K4 =

2

4
0.00127 �0.00002 0

�0.00002 0.00126 0

0 0 0.00131

3

5
;

K5 = K6 =

2

4
0.00127 �0.00002 0

�0.00002 0.00126 0

0 0 0.00382

3

5
.

IV. POSITIVE-REALNESS AND STABILITY OF
STANDARD SLDS

The PLE’s resemblance to the dissipation equality
(see App. A-E) underlies the results of this section,
aimed at connecting positive-realness and stability of
two-modes SLDS (see [24], [25] in the classical setting).
We begin by recalling the definition of strict positive-
real rational function (note that this definition is not
universally accepted; cf. [27], Th. 2.1.).

Definition 4. G 2 Rw⇥w
(⇠) is strictly positive-real if it

is analytic in C+ and G(�j!)

>
+G(j!) > 0 8! 2 R.

We now relate the PLE (9) with strict positive-realness
of an associated transfer function.

Proposition 2. Let N,D 2 Rw⇥w
[⇠]. Assume that D

and N are Hurwitz, and that ND

�1 is strictly proper
and strictly positive real. There exist Q 2 R•⇥w

[⇠] such
that D(�⇠)

>
N(⇠) + N(�⇠)

>
D(⇠) = Q(�⇠)

>
Q(⇠);

moreover rank col(D(�), Q(�)) = w for all � 2
C, and QD

�1 is strictly proper. Define  (⇣, ⌘) :=

D(⇣)>N(⌘)+N(⇣)>D(⌘)�Q(⇣)>Q(⌘)
⇣+⌘

. Then  (⇣, ⌘) is a D-
canonical Lyapunov function for kerD

�
d

dt

�
, and  (⇣, ⌘)

mod N is a Lyapunov function for kerN

�
d

dt

�
.

Proof. See Appendix B.

Thus if  is a suitable storage function of the sys-
tem with transfer function ND

�1, associated with a

supply rate induced by

0 I

I 0

�
and with dissipation

rate Q(⇣)

>
Q(⌘), then it is also a Lyapunov function

for kerD

�
d

dt

�
and (after the “mod” operation) also for

ker N

�
d

dt

�
(on dissipativity and Lyapunov stability see

also [19]). Remarkably, it turns out that such storage
functions also induce a MLF for a SLDS with modes
kerN

�
d

dt

�
, kerD

�
d

dt

�
, and special gluing conditions,

naturally associated with the “mod” operation. We now
define such systems.

In the following, we consider SLDSs where F =�
kerR1

�
d

dt

�
, kerR2

�
d

dt

��
, with R

j

2 Rw⇥w
[⇠], j = 1, 2

nonsingular. We assume that R2R
�1
1 is strictly proper;

this implies that the state space of kerR2
�
d

dt

�
is included

in that of ker R1
�
d

dt

�
, as we presently show.

Lemma 1. Let B
i

= kerR

i

�
d

dt

�
, i = 1, 2. Assume that

R1, R2 2 Rw⇥w
[⇠] are nonsingular, and that R2R

�1
1 is

strictly proper. Let n
i

:= deg(det(R

i

)); then n2 < n1.
There exist X

0
1 2 R(n1�n2)⇥w

[⇠], X2 2 Rn2⇥w
[⇠] such

that X2
�
d

dt

�
is a minimal state map for B2, and

X1

✓
d

dt

◆
:= col

✓
X2

✓
d

dt

◆
, X

0
1

✓
d

dt

◆◆
, (13)
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is a minimal state map for B1. Moreover, there exists
⇧ 2 R(n1�n2)⇥n2 such that X 0

1(⇠) mod R2 = ⇧X2(⇠).

Proof: See Appendix B.

Example 7. If w = 1, R2R
�1
1 is strictly proper iff

n1 = deg(R1) > deg(R2) = n2. A state map for B1

is col(⇠k)
k=0,...,n1�1, whose first n2 elements form a

basis for the state space of B2. The rows of ⇧ consist
of the coefficients of the polynomials ⇠

k mod R2(⇠),
k = n2, . . . , n1 � 1.

In the rest of this section we consider standard SLDS,
defined as follows.

Definition 5. Let ⌃ = {P,F ,S,G} be a SLDS
with F =

�
kerR1

�
d

dt

�
, kerR2

�
d

dt

��
, where

R

j

2 Rw⇥w
[⇠] is nonsingular, j = 1, 2. Assume that

R2R
�1
1 is strictly proper. Let n

j

:= deg(det(R
j

)),
j = 1, 2, and let X

0
1 2 R(n1�n2)⇥w

[⇠],
X2 2 Rn2⇥w

[⇠] and ⇧ 2 R(n1�n2)⇥n2 be as
in Lemma 1. ⌃ is a standard SLDS if the
gluing conditions are

�
G

�
2!1(⇠), G

+
2!1(⇠)

�
:=

(col(X2(⇠),⇧X2(⇠)), col(X2(⇠), X
0
1(⇠))) and�

G

�
1!2(⇠), G

+
1!2(⇠)

�
:= (X2(⇠), X2(⇠)).

It is straightforward to check that the gluing conditions
of a standard SLDS are well-posed.

Remark 8. In a standard SLDS, the state space of B2

is contained in that of B1; however, at any time the state
used for the description of the system is that of the active
dynamics, and not a global one.

Example 8. Assume that R1 and R2 in
Ex. 7 are monic, and that n1 = n2 + 1.
Denote R2(⇠) =:

P
n1�1
j=0 R2,j⇠

j , and define
S(⇠) :=

⇥
1 . . . ⇠

n1�2
⇤>. The gluing conditions

of the standard SLDS are
�
G

�
2!1(⇠), G

+
2!1(⇠)

�
=⇣

col(S(⇠),�
P

n1�2
j=0 R2,j⇠

j

), col(S(⇠), ⇠n1�1
)

⌘

and
�
G

�
1!2(⇠), G

+
1!2(⇠)

�
= (S(⇠), S(⇠)). In a

switch B2 ! B1, to obtain “initial conditions”
uniquely specifying w 2 B1, we need to define
the value of d

n1�1

dt

n1�1w after the switch. Standard
gluing conditions stipulate that it coincides with
d

n1�1

dt

n1�1w = �
P

n1�2
i=0 R2,i

d

i

dt

iw, since before the switch
w 2 B2. In a switch B1 ! B2, we project the vector
of derivatives characteristic of w 2 B1 down onto the
shorter vector of derivatives of w 2 B2.

We now prove that a standard SLDS where R2R
�1
1 is

strictly positive real admits a multiple Lyapunov function
induced by { 1, 2} where  1 is a storage function for
R2R

�1
1 , and  2 =  1 mod R2. This is the multivariable

generalisation of some results presented in [22], [20].

Theorem 4. Let ⌃ be a standard SLDS (see Def.
5), with R1 and R2 Hurwitz. Assume that R2R

�1
1

is strictly proper and strictly positive-real. Define
�(⇣, ⌘) := R1(⇣)

>
R2(⌘) + R2(⇣)

>
R1(⌘). There exists

Q 2 R•⇥w
[⇠] such that �(�⇠, ⇠) = Q(�⇠)

>
Q(⇠),

rank col(R1(�), Q(�)) = w for all � 2 C and QR

�1
1

is strictly proper. Define

 1(⇣, ⌘) :=
�(⇣, ⌘)�Q(⇣)

>
Q(⌘)

⇣ + ⌘

. (14)

Then  1 is R1-canonical. Moreover, define  2 :=

 1 mod R2; then { 1, 2} induces a multiple Lyapunov
function for ⌃.

Proof: See Appendix B.
Th. 4 yields two approaches to computing a MLF for

a standard SLDS. The first is algebraic and consists of a
polynomial spectral factorisation and the computation of
 1 from (14). The second, based on LMIs, arises from
the proof of Th. 4. We state it in the following result.

Corollary 1. Let X(⇠) be a minimal state map for B1 as
in Lemma 1, and denote by e

R1 the coefficient matrix of
R1(⇠). Under the assumptions of Th. 4, there exist Y 2
Rw⇥n1 ,  11 2 Rn2⇥n2 , and  22 2 R(n1�n2)⇥(n1�n2)

such that e 1 :=


 11 �⇧>

 22

� 22⇧  22

�
> 0 satisfies the

LMI

0w⇥n1

e
X

>

�
e
 1

h
e
X 0

n1⇥w

i
+

 e
X

>

0w⇥n1

�
e
 1

h
0

n⇥w
e
X

i

�
 e
X

>

0w⇥n1

�
Y

> e
R1 � e

R

>
1 Y

h
e
X 0

n1⇥w

i
 0 .

Then X(⇣)

>e
 1X(⌘) and

X2(⇣)
> �
 11 �⇧>

 22⇧
�
X2(⌘) induce a MLF

for ⌃.

Remark 9. If w = 1 the proof of Th. 4 simplifies
considerably; see [20] for details.

Remark 10. Theorem 4 holds also if R2R
�1
1 is bi-

proper, i.e. proper and with a proper inverse; note that in
this case the state spaces of B1 and of B2 coincide. Let
X 2 R•⇥•

[⇠] be a state map for B1; the standard gluing
conditions are (G

�
1!2(⇠), G

+
1!2(⇠)) = (X(⇠), X(⇠)) =

(G

�
2!1(⇠), G

+
2!1(⇠)). It is straightforward to check that

e.g. the largest storage function for R2R
�1
1 yields a MLF.

For w = 1 this is shown in [22].

Remark 11. In the state-space framework it is well-
known that if the open-loop transfer function of a system
is positive-real, then all closed-loop systems obtained
from it by state feedback share a common quadratic
Lyapunov function (see sect. 2.3.2 of [10] and [24],
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[25]). Th. 4 offers a new perspective on the relation be-
tween positive-realness and stability: in our framework,
the different dynamical regimes do not arise from closing
the loop around some fixed plant, and positive-realness
arises from the interplay of the mode dynamics.

Remark 12. Theorem 4 can also be used to com-
pute from a given Hurwitz matrix R1, some matrix
R2 such that the SLDS with modes ker R

i

�
d

dt

�
,

i = 1, 2 and standard gluing conditions is asymptot-
ically stable. Namely, select Q 2 R•⇥w

[⇠] such that
rank col(R1(�), Q(�)) = w for all � 2 C and QR

�1
1

is strictly proper; solve the PLE for R2. Then the
standard SLDS with behaviours ker R

i

�
d

dt

�
, i = 1, 2

is stable.

Finally, we discuss the concept of positive-real com-
pletion, defined as follows.

Definition 6. Let R

i

2 Rw⇥w
[⇠], i = 1, 2 be nonsin-

gular and R2R
�1
1 strictly proper. M 2 Rw⇥w

[⇠] is a
strictly positive-real completion of R2R

�1
1 if MR2R

�1
1

is strictly positive-real.

The following result shows that if a MLF exists, then
a positive-real completion can be found.

Theorem 5. Let ⌃ be a standard SLDS (see Def. 5). If
{ 1, 1 mod R2} induces a MLF for ⌃ such that (⇣+
⌘) 1(⇣, ⌘) mod R1 = �Q(⇣)

>
Q(⌘) with rank Q(j!) =

w for all ! 2 R and QR

�1
1 strictly proper, then there

exists a strictly positive-real completion M 2 Rw⇥w
[⇠]

for R2R
�1
1 .

Proof: See Appendix.

Remark 13. An interesting question is whether given
a positive-real completion, a MLF induced by  1 and
 1 mod R2 can be found for some  1 2 Rw⇥w

s

[⇣, ⌘].
The existence of such a MLF can be checked by solving
a structured LMI, namely that derived from the positive-
real lemma for MR2R

�1
1 , together with the structural

requirement that the storage function does not increase
at the switching instants (see Lemma 2). Such a convex
feasibility problem is analogous to those arising in struc-
tured Lyapunov problems (see [3]), and can be solved
using standard LMI solvers.

V. CONCLUSIONS

We presented a framework for the modelling and
stability analysis of close linear switched systems in
which the dynamical modes are not described in state-
space form, and do not share a common state space.
Pivotal in our approach is the concept of gluing con-
ditions, that impose concatenation constraints on the

system trajectories at the switching instants. We devised
Lyapunov conditions for general gluing conditions and
an arbitrary finite number of modes, amenable to be
checked via systems of LMIs. We have also given
Lyapunov conditions of a more algebraic flavour based
on the concept of positive-realness for two-mode SLDS.

APPENDIX A
BACKGROUND MATERIAL

A. Notation
The space of n dimensional real vectors is denoted

by Rn, and that of m ⇥ n real matrices by Rm⇥n. R•⇥m

denotes the space of real matrices with m columns and
an unspecified finite number of rows. Given matrices
A,B 2 R•⇥m, col(A,B) denotes the matrix obtained by
stacking A over B. The ring of polynomials with real
coefficients in the indeterminate ⇠ is denoted by R[⇠]; the
ring of two-variable polynomials with real coefficients in
the indeterminates ⇣ and ⌘ is denoted by R[⇣, ⌘]. Rr⇥w

[⇠]

denotes the set of all r ⇥ w matrices with entries in ⇠,
and Rn⇥m

[⇣, ⌘] that of n ⇥ m polynomial matrices in ⇣

and ⌘. The set of rational m ⇥ n matrices is denoted
by Rm⇥n

(⇠). We denote by ¯

� the conjugate of � 2 C.
The set of infinitely differentiable functions from R to
Rw is denoted by C1

(R,Rw
). If f : R ! R•, we

set f(t

�
) := lim

⌧%t

f(⌧) and f(t

+
) := lim

⌧&t

f(⌧)

provided that these limits exist.

B. Linear differential behaviours
B ✓ C1

(R,Rw
) is a linear time-invariant differ-

ential behaviour if it is the set of solutions of a
finite system of constant-coefficient linear differential
equations, i.e. if there exists R 2 Rg⇥w

[⇠] such that
B = {w 2 C1

(R,Rw
) | R(

d

dt

)w = 0} =: ker R(

d

dt

). If
B = kerR(

d

dt

), then we call R a kernel representation
of B. We denote with Lw the set of all linear time-
invariant differential behaviours with w variables. B
is autonomous if there are no free components in its
trajectories; it can be shown that such B admits a kernel
representation with R 2 Rw⇥w

[⇠] square and nonsingular
(see [18], Theorem 3.2.16).

Let R 2 Rw⇥w
[⇠] be nonsingular, and let f 2 R1⇥w

[⇠];
f is uniquely written as fR

�1
= s + n, where s 2

R1⇥w
(⇠) is a vector of strictly proper rational functions,

and n 2 R1⇥w
[⇠]. We call sR 2 R1⇥w

[⇠] the canonical
representative of f modulo R, denoted by f mod R.
Note that the polynomial differential operators f

�
d

dt

�

and f

0 � d

dt

�
, with f

0
= f mod R, are equivalent along

kerR

�
d

dt

�
in the sense that f

�
d

dt

�
w = f

0 � d

dt

�
w for all

w 2 kerR

�
d

dt

�
. The definition of R-canonical represen-

tative extends in a natural way to polynomial matrices.
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C. State maps
A latent variable ` (see [18], def. 1.3.4 ) is a state

variable for B iff there exist E,F 2 R•⇥•, G 2 R•⇥w

such that B =

�
w | 9 ` s.t. E d`

dt

+ F `+Gw = 0

 
, i.e.

if B has a representation of first order in ` and zeroth
order in w. The minimal number of state variables
needed to represent B in this way is called the McMillan
degree of B, denoted by n(B).

A state variable for B can be computed as the image
of a polynomial differential operator called a state map
(see [21]). To construct state maps for B := kerR

�
d

dt

�
,

with R 2 Rw⇥w
[⇠] nonsingular, consider the set X(R) :=

{f 2 R1⇥w
[⇠] | fR

�1 is strictly proper}. X(R) is a
finite-dimensional subspace of R1⇥w

[⇠] over R, (see [21],
Prop. 8.4), of dimension n := deg(det(R)) (see [21],
Cor. 6.7). To compute a state map for B, choose a set
of generators x

i

2 R1⇥w
[⇠], i = 1, . . . , N of X(R), and

define X := col(x
i

)

i=1,...,N ; to obtain a minimal state
map, choose {x

i

}
i=1,...,N so that they form a basis of

X(R). It can be shown that there exists a state map X

and A 2 R•⇥•, B 2 R•⇥w such that ⇠X(⇠) = AX(⇠) +

BR(⇠) (see [21], Th. 6.2).
Let B 2 Lw, and X 2 R•⇥w

[⇠] be a state map for
B. A polynomial differential operator d

�
d

dt

�
is a (linear)

function of the state of B if there exists a constant vector
f 2 R1⇥w such that d

�
d

dt

�
w = fX

�
d

dt

�
w for all w 2

B.

D. Quadratic differential forms
Let � 2 Rw⇥w

[⇣, ⌘]; then �(⇣, ⌘) =

P
h,k

�

h,k

⇣

h

⌘

k,
where �

h,k

2 Rw⇥w and the sum extends over a finite
set of nonnegative indices. �(⇣, ⌘) induces the quadratic
differential form (QDF) acting on C1-trajectories de-
fined by Q�(w) :=

P
h,k

(

d

h
w

dt

h )
>
�

h,k

d

k
w

dt

k . Without loss
of generality QDF is induced by a symmetric two-
variable polynomial matrix �(⇣, ⌘), i.e. one such that
�(⇣, ⌘) = �(⌘, ⇣)

>; we denote the set of such matrices
by Rw⇥w

s

[⇣, ⌘].
Given Q , its derivative is the QDF Q� defined by

Q�(w) :=
d

dt

(Q (w)) for all w 2 C1
(R,Rw

); this holds
if and only if �(⇣, ⌘) = (⇣ + ⌘) (⇣, ⌘) (see [34], p.
1710).

Q� is nonnegative along B 2 Lw, denoted by Q�

B
� 0

if Q�(w) � 0 for all w 2 B; and positive along B,

denoted by Q�
B
> 0, if Q�

B
� 0 and [Q�(w) = 0 8w 2

B] =) [w = 0]. If B = C1
(R,Rw

), then we call Q�
simply nonnegative, respectively positive. For algebraic
characterizations of these properties see [34], pp. 1712-
1713.

Let R 2 Rw⇥w
[⇠] be nonsingular and � 2 Rw⇥w

[⇣, ⌘].
Factorise �(⇣, ⌘) = M(⇣)

>
N(⌘) and compute the

R-canonical representatives (see App. A-B) M

0
=

M mod R and N

0
= N mod R. The R-canonical

representative of �(⇣, ⌘) is defined by �(⇣, ⌘) mod R :=

M

0
(⇣)

>
N

0
(⌘). The QDFs Q�, Q�0 are equivalent along

kerR

�
d

dt

�
, i.e. Q�0

(w) = Q�(w) for all w 2 kerR

�
d

dt

�
.

E. Dissipativity

A controllable (see Ch. 5 of [18]) behaviour B 2 Lw

is dissipative with respect to the supply rate Q� if there
exists a QDF Q , called a storage function, such that
Q�(w) � d

dt

Q (w) � 0 for all w 2 B. This inequality
holds iff there exists a dissipation function, i.e. a QDF

Q�

B
� 0 such that for all w 2 B of compact support

it holds that
R +1
�1 Q�(w)(t)dt =

R +1
�1 Q�(w)(t)dt (see

Prop. 5.4 of [34]). Moreover, there is a one-one corre-
spondence between storage- and dissipation functions,
defined by d

dt

Q (w)+Q�(w) = Q�(w) for all w 2 B.
If B = C1

(R,Rw
), this equality holds if and only if

(⇣ + ⌘) (⇣, ⌘) +�(⇣, ⌘) = �(⇣, ⌘).

APPENDIX B
PROOFS

Proof of Th. 1: Let s 2 S be a switching signal,
and from {Q 1

, . . . , Q N
} define the “switched func-

tional” Q⇤ acting on B⌃ by Q⇤(w)(t) := Q s(t)
(w)(t).

Observe that in every interval [t
j�1, tj) Q⇤ is nonnega-

tive, continuous and strictly decreasing, since Q s(tj�1)

satisfies conditions 1) � 2). Moreover, for every ad-
missible trajectory the value of Q⇤ does not increase
at switching instants (condition 3)). It follows from
standard arguments (see e.g. Th. 4.1 of [36]) that ⌃ is
asymptotically stable.

Proof of Prop. 1: The existence of K = K

> 2
Rn⇥n, Y 2 Rw⇥n, Q 2 R•⇥n follows from Th. 2
and the fact that the rows of X(⇠) are a basis for
the vector space over R defined by {f 2 R1⇥w

[⇠] |
fR

�1 is strictly proper}. The fact that the degree of
X(⇠) is less than that of R(⇠) follows from XR

�1 being
strictly proper and Lemma 6.3-10 of [9].

In order to prove the equivalence of statements 1.

and 2., define S

L

(⇠) :=

⇥
Iw ⇠Iw . . . ⇠

L

Iw

⇤>;
the equivalence follows in a straightforward
way from the first part of the claim and the
equalities X(⇠) =

⇥
X0 . . . X

L�1 0

n⇥w

⇤
S

L

(⇠),
⇠X(⇠) =

⇥
0

n⇥w X0 . . . X

L�1
⇤
S

L

(⇠), and
R(⇠) =

⇥
R0 . . . R

L�1 R

L

⇤
S

L

(⇠). The final
part of the claim follows in straightforward way.

Proof of Th. 3: If solutions K

k

, Y
k

to (11) exist,
multiplying on the left by S

L

(⇣)

> defined as in the
proof of Prop. 1 and on the right by S

L

(⌘), and defining
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k

(⇣, ⌘) := X

k

(⇣)

>
K

k

X

k

(⌘) and Y

k

(⇠) := Y

k

X

k

(⇠)

we obtain (⇣+⌘) (⇣, ⌘)�Y (⇣)

>
R(⌘)�R(⇣)

>
Y (⌘) =

�

i

(⇣, ⌘). Since Y

i

is R-canonical, it follows from Th.
2 that also �(⇣, ⌘) is, and consequently F

i

exist as
claimed. Now observe that the first inequality in (12)
is equivalent with V

>
k

F

k

V

k

< 0 and thus it implies
Q�k

(w) =

d

dt

Q k
(w) < 0 for all w 2 B

i

. Applying
Th. 2 we conclude that Q k

is a Lyapunov function for
B

k

. The second LMI in (12) implies condition 3. of Th.
1.

Proof of Prop. 2: From the strict positive-realness
of ND

�1 (see Def. 4) and the fact that D is Hurwitz
conclude that N(�j!)

>
D(j!) +D(�j!)

>
N(j!) > 0

for all ! 2 R. The existence of Q then follows from
standard arguments in polynomial spectral factorisation.

That  is a polynomial matrix follows from Th. 3.1
of [34]. Since rank col(D(�), Q(�)) = w for all � 2 C,
d

dt

Q (w) < 0 for all w 2 kerD

�
d

dt

�
, w 6= 0. Apply

Th. 2 to conclude that Q (w) > 0 for all nonzero w 2
kerD

�
d

dt

�
. This proves that  is a Lyapunov function

for kerD

�
d

dt

�
. That  is D-canonical, and that QD

�1

is strictly proper, follow from strict properness of ND

�1

and Th. 2.
We prove the second part of the claim. Use Prop. 4.10

of [34] to conclude that since  is D-canonical, it is also
� 0. Denote  0

:=  mod N . Since Q (w) = Q 0
(w)

for all w 2 ker N

�
d

dt

�
, it follows that Q 0 � 0

also along ker N

�
d

dt

�
. We now show that d

dt

Q 0 is
negative along ker N

�
d

dt

�
. To do so it suffices to show

that col(Q(�), N(�)) = w for all � 2 C. Assume by
contradiction that there exists � 2 C and a corresponding
v 2 Cw, v 6= 0, such that Q(�)v = 0 and N(�)v = 0.
Substitute ⇣ = ��, ⌘ = � in the PLE, obtaining
D(��)

>
N(�)+N(��)

>
D(�) = Q(��)

>
Q(�). Multi-

ply on the right by v; it follows that N(��)

>
D(�)v = 0.

Since N is Hurwitz, this implies D(�)v = 0, but this
contradicts the assumption rank col(D(�), Q(�)) = w.

Proof of Lemma 1: That n2 < n1 follows from
R2R

�1
1 being strictly proper.

To prove the claim on X1 defined by (13), de-
fine X

i

:= {f 2 R1⇥w
[⇠] | fR

�1
i

is strictly proper},
i = 1, 2; we now show that X2 ⇢ X1. Observe that
fR

�1
2 ·R2R

�1
1 = fR

�1
1 ; since both fR

�1
2 and R2R

�1
1 are

strictly proper, so is their product. Consequently, f 2 X1.
Observe that X

i

is the state space of B
i

, i = 1, 2 (see
App. A-C).

Arrange the vectors of a basis for X2 in X2 2
Rn2⇥w

[⇠]; then X2
�
d

dt

�
is a state map for B2. Complete

X2 with X

0
1 2 R(n1�n2)⇥w

[⇠] to form a basis of X1; this
defines a state map for B1.

Since each row of X

0
1 mod R2 belongs to X2, it can

be written as a linear combination of the rows of X2.
This proves that ⇧ exists.

Proof of Theorem 4: The existence of Q 2
R•⇥w

[⇠] and the R1-canonicity of  1 follow from Prop.
2. To prove that  1 and  2 :=  1 mod R2 yield a MLF
we show that:

C1. Q 1

B1

� 0 and d

dt

Q 1

B1

< 0;

C2. Q 2

B2

� 0 and d

dt

Q 2

B2

< 0;
C3. The multiple functional associated with  1 and  2

does not increase at switching instants.
Conditions C1 and C2 follow from Prop. 2.
To prove C3, we first define the coefficient matrices

of  1 and  2. Since  1 is R1-canonical, it can
be written as X1(⇣)

>e
 1X1(⌘) for some coefficient

matrix e
 1 2 Rn1⇥n1 . Since QR

�1
1 is strictly proper,

it follows (see Th. 2) that Q 1

B
> 0 and since

X1 is a minimal state map for B1 it follows that
e
 1 > 0. Note that col(X2(⇠), X

0
1(⇠)) mod R2 =

col(X2(⇠) mod R2, X
0
1(⇠) mod R2) =

col(X2(⇠),⇧X2(⇠)). Consequently (see Prop. 4.9
of [34]),

 1(⇣, ⌘)modR2 =
⇥
X2(⇣)

>
X2(⇣)

>
⇧

>⇤ e
 1


X2(⌘)

⇧X2(⌘)

�
,

from which it follows that the coefficient matrix of  2

is e
 2 = col(I

n2 ,⇧)
> e
 1 col(I

n2 ,⇧).
We prove C3 showing that e

 1 and e
 2 satisfy some

structural properties. We begin proving the following
linear algebra result.

Lemma 2. Let ⇧ 2 R(n1�n2)⇥n2 , and
e
 1 =

e
 

>
1 2 Rn1⇥n1 . Assume e

 1 > 0, and define e
 

e

2 :=
I

n2 ⇧

>

(0

n1�n2⇥n2) (0

n1�n2⇥n1�n2)

�
e
 1


I

n2 (0

n2⇥n1�n2)

⇧ (0

n1�n2⇥n1�n2)

�
.

e
 1 � e

 

e

2 if and only if there exist  11 2 Rn2⇥n2 ,
 12 2 Rn2⇥(n1�n2) and  22 2 R(n1�n2)⇥(n1�n2) such

that e 1 =


 11 �⇧>

 22

� 22⇧  22

�
.

Proof of Lemma 2: Partition e
 1 =:


 11  12

 

>
12  22

�
,

with  11 2 Rn2⇥n2 ,  12 2 Rn2⇥(n1�n2) and  22 2
R(n1�n2)⇥(n1�n2). Straightforward manipulations show
that e 1 � e

 

e

2 iff

�( 12 +⇧

>
 22) 

�1
22 ( 

>
12 + 22⇧) 0

0  22

�
� 0 .

Now  22 > 0, since e
 1 > 0; thus the inequality holds

iff  >
12 = � 22⇧.

We aim to show that Lemma 2 holds for the coefficient
matrix of  1 and the ⇧ arising from the standard gluing
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conditions. To this purpose we first prove the following
result.

Lemma 3. Define K := lim

⇠!1 ⇠X

0
1(⇠)R1(⇠)

�1;
then K 2 R(n1�n2)⇥w. Moreover, partition e

 1 as
e
 1 =:


 11  12

 

>
12  22

�
, with  11 2 Rn2⇥n2 ,  12 2

Rn2⇥(n1�n2) and  22 2 R(n1�n2)⇥(n1�n2). Then
R2(⇠) = K

> �
 

>
12X2(⇠) + 22X

0
1(⇠)

�
.

Proof of Lemma 3: That the limit is finite follows
from X

0
1R

�1
1 being strictly proper. To prove the rest,

recall from App. A-C that there exist A1 2 Rn1⇥n1 ,
F1 2 Rn1⇥w such that

⇠X1(⇠) = A1X1(⇠) + F1(⇠)R1(⇠) . (15)

Multiply both sides of (15) by R

�1
1 , and take

the limit for ⇠ ! 1. Since R2R
�1
1 is strictly

proper and X2(⇠) is a state map for B2, it fol-
lows that lim

⇠!1 ⇠X2(⇠)R1(⇠)
�1

= 0

n2⇥w. Moreover,
lim

⇠!1X1(⇠)R1(⇠)
�1

= 0

n1⇥w. Consequently F1 is
constant, and

F1 = lim

⇠!1
col(0

n2⇥w, ⇠X
0
1(⇠)R1(⇠)

�1
) = col(0

n2⇥w,K) .

The claim on R2 now follows from Prop. 4.3 of [15].
From Lemma 3 and the fact that R2 is square and

nonsingular, it follows that K> is of full row rank, and
consequently n1 � n2 � w. We now prove that K is
square, thus nonsingular.

Lemma 4. deg(det(R1))�deg(det(R2)) = n1�n2 = w,
and consequently K is nonsingular.

Proof of Lemma 4: We prove the first part of
the claim, well-known in the scalar case, but for whose
multivariable version we have failed to find a proof in
the literature.

Let U 2 Rw⇥w
[⇠] be a unimodular matrix such that

R

0
1 := R1U is column reduced (see sect. 6.3.2 of [9]);

define R

0
2 := R2U . Observe that R

0
2R

0�1
1 = R2R

�1
1 ;

moreover n1 = deg(det(R

0
1)) = deg(det(R1)) and

n2 = deg(det(R2)) = deg(det(R

0
2)). Thus w.l.o.g. we

prove the claim for R0
2R

0�1
1 .

Define X0
1 := {f 2 R1⇥w

[⇠] | fR0�1
1 is strictly proper}

and similarly X0
2; it is straightforward to see that X0

i

equals X
i

defined as in Lemma 1, i = 1, 2. Denote the
degree of the i-th column of R

0
1 by �

1
i

and that of the
i-th column of R0

2 by �

2
i

, i = 1, . . . , w; strict properness
yields �

1
i

> �

2
i

, i = 1, . . . , w. A basis for X0
1 is e

i

⇠

k,
k = 1, . . . , �

1
k

� 1, i = 1, . . . , w, where e

i

is the i-th
vector of the canonical basis for R1⇥w. A straightforward
argument proves that these vectors can be arranged in a
matrix X(⇠) = col(X2(⇠), X

0
1(⇠)) so that the n2 rows of

X2 span X0
2 and those of X 0

1 span its complement in X0
1.

Permute the rows of X

0
1 so that e

i

⇠

�

1
i�1, i = 1, . . . , w,

are its last w rows.
An analogous of (15) holds for R0

1; given the arrange-
ment of the basis vectors for X0

1, it is straightforward to
verify that the last w rows of K contain the inverse of
the highest column coefficient matrix of R1, while its
first n1 � n2 � w rows are equal to zero, i.e. K

>
=h

0(n1�n2�w)⇥w K

0>
i
, with K

0 2 Rw⇥w nonsingular.

Now let  0
1 be a storage function for R

0
2R

0�1
1 with

the same properties as  1 in the statement of Th. 4;
we denote with  

0
ij

, i, j = 1, 2 the block subma-
trices arising from a partition of its coefficient ma-
trix f

 

0
1 as in Lemma 3. Use the formula for R

0
2(⇠)

established in Lemma 3 to conclude that R

0
2(⇠) =

K

0>
 

0>
12X2(⇠) + K

0> ⇥
 

00
22  

000
22

⇤
X

0
1(⇠), where  0>

12 2
Rw⇥n2 ,

⇥
 

00
22  

000
22

⇤
2 Rw⇥(n1�n2), and  

000
22 has w

columns. f 0
1 > 0 implies  000

22 > 0; thus the highest
column coefficient matrix of R2(⇠) is K

0
 

000
22 and it

is nonsingular. Thus also R

0
2(⇠) is column reduced;

moreover, its column degrees are �

1
i

� 1, i = 1, . . . , w.
From this it follows that deg det(R0

2) =
Pw

i=1(�
1
i

�1) =

(

Pw
i=1 �

1
i

)� w = n1 � w. The claim is proved.
We resume the proof of Th. 4. From the formula for

R2(⇠) proved in Lemma 3 it follows that

0 = R2(⇠)modR2

= K

>
⇣
 

>
12X2(⇠) + 22X

0
1(⇠)

⌘
modR2

= K

>
⇣
 

>
12 + 22⇧

⌘
X2(⇠) .

(16)

The rows of X2(⇠) are linearly independent over R, since
X2 is a minimal state map. Consequently (16) implies
K

>
( 

>
12 +  22⇧) = 0, and since K is nonsingular by

Lemma 4, we conclude that  >
12 + 22⇧ = 0. Thus the

coefficient matrix of  1 is structured as in Lemma 2.
We now show that this structure implies that condition

C3 holds. Consider first a switch from B1 to B2 at
t

k

. Taking the standard gluing conditions into account,
Q 1

(w)(t

�
k

) � Q 2
(w)(t

+
k

) if and only if


X2(

d

dt

)w(t

�
k

)

X

0
1(

d

dt

)w(t

�
k

)

�>
e
 1


X2(

d

dt

)w(t

�
k

)

X

0
1(

d

dt

)w(t

�
k

)

�

�

X2(

d

dt

)w(t

+
k

)

⇧X2(
d

dt

)w(t

+
k

)

�>
e
 1


X2(

d

dt

)w(t

+
k

)

⇧X2(
d

dt

)w(t

+
k

)

�

=


X2(

d

dt

)w(t

�
k

)

X

0
1(

d

dt

)w(t

�
k

)

�>✓
e
 1 �


I

n2 ⇧

>

0 0

�
e
 1


I

n2 0

⇧ 0

�◆


X2(

d

dt

)w(t

�
k

)

X

0
1(

d

dt

)w(t

�
k

)

�
� 0 .

(17)
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Since the matrix between brackets is semidefinite posi-
tive (see Lemma 2), (17) is satisfied.

It is straightforward to check that in a switch from
B2 to B1 the value of the multi-functional is the same
before and after the switch. The theorem is proved.

Proof of Th. 5: W.l.o.g. assume that Q is R1-
canonical; then by Lemma 1, given a minimal state
map X1

�
d

dt

�
for B1 as in (13) there exists e

 =

e
 

> 2 Rn1⇥n1 such that  (⇣, ⌘) = X1(⇣)
>e
 X1(⌘).

Partition e
 as e

 =:


 11  12

 

>
12  22

�
where  11 2 Rn2⇥n2 ,

 12 2 Rn2⇥(n1�n2) and  22 2 R(n1�n2)⇥(n1�n2). At
a switch from B1 to B2 at t

k

the inequality (17)
holds in particular for a switching signal s(t) = 1 for
t  t

k

, s(t) = 2 for t > t

k

. Since for every choice
of v 2 Rn1 there exists a trajectory w 2 B1|(�1,0] s.t.�
X1

�
d

dt

�
w

�
(0

�
) = v, using Lemma 2 we conclude that

(17) holds, then  >
12 + 22⇧ = 0. Consequently,

e
 =


 11 �⇧ 22

� 22⇧  22

�

=

e
 

0
0

0 0

�
+


⇧

>

�I

n1�n2

�
 22

⇥
⇧ �I

n1�n2

⇤
,

(18)

where e
 

0
:=  11 � ⇧>

 22⇧. Pre- and post-multiply
(18) by X1(⇣)

> and X1(⌘) to obtain

 (⇣, ⌘) = X2(⇣)
>
˜

 

0
X2(⌘)| {z }

=: 0(⇣,⌘)

+X1(⇣)
>


⇧

>

�I(n1�n2)

�
 22

⇥
⇧ �I(n1�n2)

⇤
X1(⌘) .

(19)

Since  1 is a Lyapunov function for ker R1
�
d

dt

�
,

there exists V 2 Rw⇥w
[⇠] such that (⇣ + ⌘) 1(⇣, ⌘) =

�Q(⇣)

>
Q(⌘) + V (⇣)

>
R1(⌘) + R1(⇣)

>
V (⌘). We now

show that there exists M 2 Rw⇥w
[⇠] such that V = MR2.

From Prop. 4.3 of [15] it follows that V (⇠) =

lim

µ!1 µR1(µ)
�>
 1(µ, ⇠); substituting (19) in this

expression we obtain

V (⇠) = lim

µ!1

⇣
µR1(µ)

�>
X2(µ)

>
˜

 

0
X2(⌘)

+ µR1(µ)
�>

X1(µ)
>


⇧

>

�I(n1�n2)

�
 22

⇥
⇧ �I(n1�n2)

⇤
X1(⌘)

⌘
.

Since R2R
�1
1 is strictly proper, the first term goes to

zero. Now
⇥
⇧ �I

n1�n2

⇤
X1(⇠) = �X

0
1(⇠) + ⇧X2(⇠)

and consequently

V (⇠) = �µR1(µ)
�>

X

0>
1 (µ) 22

⇥
⇧ �I(n1�n2)

⇤
X1(⇠)

+ lim

µ!1
µR1(µ)

�>
X2(µ)

>
| {z }

!0

⇧

>
 22

⇥
⇧ �I(n1�n2)

⇤
X1(⇠)

= �
⇥
0(n1�n2)⇥w K

0>⇤
 22

⇥
⇧ �I(n1�n2)

⇤
X1(⇠) ,

where K

0 2 Rw⇥w is a nonsingular matrix, as proved
in Lemma 3 and 4. That V has the right factor R2

follows from the following argument. Observe that
⇥
⇧ �I(n1�n2)

⇤ 
X2(⇠)

X

0
1(⇠)

�
= X

0
1(⇠)modR2 � X

0
1(⇠).

Write X

0
1(⇠)R2(⇠)

�1
= P (⇠)+S(⇠), with S(⇠) a strictly

proper polynomial matrix and P 2 R(n1�n2)⇥w
[⇠];

then ⇧X2(⇠) � X

0
1(⇠) = X

0
1(⇠) � P (⇠)R2(⇠) �

X

0
1(⇠) = �P (⇠)R2(⇠). This proves that V (⇠) =⇥
0(n1�n2)⇥w K

0>⇤
 22P (⇠)R2(⇠) =: M(⇠)R2(⇠).

The equality (⇣ + ⌘) 1(⇣, ⌘) = �Q(⇣)

>
Q(⌘) +

R2(⇣)
>
M(⇣)

>
R1(⌘) + R1(⇣)

>
M(⌘)R2(⌘), together

with rank Q(j!) = w for all ! 2 R and R1 being
Hurwitz, prove strict positive-realness of MR2R

�1
1 . That

MR2R
�1
1 is strictly proper follows from QR

�1
1 being

strictly proper and Th. 2. This concludes the proof.
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