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Abstract

Optimal control theory has gained increasing importance in

biomedical applications, e.g., in the automatic administra-

tion of anesthetics during general anesthesia. One example

of a monitored state is the depth of anesthesia, which is

usually achieved by the joint administration of hypnotics

and analgesics. This state is quantified by the bispectral in-

dex that varies between 97.7% and 0%. On the other hand,

the amount of drug to be administered should be optimized

both for patient health and for economical reasons. This

motivates the use of optimal control in this field of appli-

cation. In this contribution, a static state–feedback control

law is considered. In order to determine a suitable feedback

gain, a nonlinear optimal control problem is formulated and

solved using direct methods. These methods have become

increasingly useful when computing the numerical solution

of an optimal control problem. Moreover, they are known

to provide a very robust and general approach.

1 Introduction

Nowadays the optimal control theory has received
increasing importance in biomedical applications
[ISN+13, CL08, BPd14]. In particular, in the control of
the joint administration of analgesics and hypnotics in
the patients under general anesthesia these techniques
are emerging. Standard physiological–based models are,
in general, used to describe the relationship between
the administered drug dose and the measurement of the
corresponding e↵ect – the depth of anesthesia (DoA).
The bispectral index (BIS) [SC94] has a high sensitivity
and specificity to measure the depth of anesthesia and
will be used in this work. This index ranges between
97.7% (awake) and 0% (isoelectric electroencephalogra-
phy), while an appropriate level for general anesthesia is
between 40% and 60%. The most commonly used mod-
els to describe the e↵ect of the propofol and remifen-
tanil in the body human present a Wiener structure:
a linear dynamics followed by a static nonlinearity. A
three–compartment linear model combined with an ef-
fect compartment is used to explain the linear distribu-
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tion of each drug, both propofol and remifentanil, in the
di↵erent theoretical compartments of the human body
[EFJ87]. This compartmental model is illustrated in
Figure 1. The nonlinear concentration–response rela-
tionship for any ratio of the two drugs can be described
by the generalized Hill’s equation [RGL+08]. Since the
high level of variability of the patient response and the
high number of the model parameters, a reduced multi-
ple input, single output (MISO) model has been intro-
duced by [SWM14]. This new model has the advantage
of involving a minimal number of parameters to describe
the relationship between the drug profile and the e↵ect
concentration while keeping a good modelling accuracy
[SLC+14]. This new model does not have a PK/PD
structure but it maintains a Wiener structure with the
Hill’s equation as nonlinear part. Due to its advantages,
this MISO Wiener model has already been used for the
application of some controllers [dSWM12].

In this work, the problem of tracking the desired
BIS target level of 50% is formulated as an optimal
control problem (OCP) and will be solved by the use
of direct methods [Bet01]. These methods have become
increasingly useful when computing the numerical solu-
tion of the OCP. Moreover, they are known to provide a
very robust and general approach [PF15]. The control
of the drug e↵ect is clinically important since overdos-
ing or underdosing incur risks for the patients as well as
due to economical reasons.

This paper is organized as follows. In Section 2,
the DoA model is presented. This model is used to
describe the relationship between the drug dose and
the measured e↵ect, the BIS. In Section 3, the optimal
control problem formulation applied to the DoA model
is described. The main results are shown in Section 4.
The conclusions are drawn in Section 5.

2 Depth of anesthesia

During general anesthesia, it is necessary an adequate
level of unconsciousness which is obtained by admin-
istration of hypnotics and analgesics. This level can
be evaluated in terms of the bispectral index (BIS)
[SC94]. The BIS values range from 97% (completely
awake state) and 0% (isoleletric EEG) and it should be
kept between 40% and 60% during a general anesthesia.
In this work, the input signals are the dosage of propofol
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Figure 1: Mammilary model for the pharmacokinetic for each drug.

and remifentanil, and the dynamic models for each drug
are presented in subsection as well as the relationship
between the e↵ect concentration and the output signal
– the BIS level.

2.1 DoA Model The e↵ect of profofol and remifen-
tanil in the human body is frequently modelled
by a higher order pharmacokinetic/pharmacodynamic
model. However, the model used in this work is the one
proposed by [SWM14] since it has a minimal number of
patient–dependent parameters.

2.1.1 Linear part A third–order continuous–time
model is used for the linear dynamics of both propofol
and remifentanil. The propofol linear dynamics is
modelled by the following state–space representation:
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where c

p
e(s) is the e↵ect concentration of propofol and

u

p(s) is the propofol infusion rate. Similarly, the
remifentanil linear dynamics is modelled by

ẋr(t) = A

r (⌘) xr(t) + B

r (⌘) ur(t)

=

2

4
�3⌘ 0 0
2⌘ �2⌘ 0
0 ⌘ �⌘

3

5 xr(t) +

2

4
3⌘
0
0

3

5
u

r(t)(2.2)

c

r
e(t) =

⇥
0 0 1

⇤
xr(t)

where c

r
e(s) is the e↵ect concentration of remifentanil

and u

p(s) is the remifentanil infusion rate. The param-
eters ↵ and ⌘ are patient–dependent.

The joint representation of (2.1) and (2.2) becomes
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where x(t) = [xp(t) xr(t)]T is the state and u(t) =

[up(t) u

r(t)]T is the input.

2.1.2 Nonlinear part The nonlinear concentration–
response relationship is described by the static Hill’s
equation [RGL+08]:

(2.3) h (x(t)) =
y

0

1 + (z (x(t)))�

where � is a patient–dependent parameter, y

0

is the
baseline value, Cp

50

and C

r
50

are propofol and remifen-
tanil normalizing constants, respectively, which were de-
termined by o✏ine identification over a real database
[dSMW10]. The patient–dependent parameters to be
identified are m and �. This model has a total of four
patient–dependent parameters

✓ =
⇥
↵ ⌘ m �

⇤
T

.

3 Optimal control problem

In this section, the formulation of an optimal control
problem (OCP) for the administration of both propofol
and remifentanil is proposed for tracking a desired BIS
level.

3.1 Problem formulation Let one consider the fol-
lowing optimal control problem with input and state
constraints [Vin00]:

min J(x,u) =

Z tf

t0

L (t,x(t),u(t)) dt
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Figure 2: The MISO Wiener model for the DoA.

subject to

• the dynamic constraints

ẋ(t) = f(t,x(t),u(t)) a.e. t 2 [t
0

, tf ] ,

• the input constraints

u(t) 2 U(t) ⇢ Rm a.e. t 2 [t
0

, tf ] ,

and

• the end–point constraints

x(t
0

) 2 X
0

⇢ Rn and x(tf ) 2 X
1

⇢ Rn
,

where x : [t
0

, tf ] ! Rn is the state, u : [t
0

, tf ] ! Rm

is the control and t 2 [t
0

, tf ] is time. The functions
involved comprise the running cost L : [t

0

, tf ] ⇥ Rn ⇥
Rm ! R and the dynamic function f : [t

0

, tf ] ⇥ Rn ⇥
Rm ! Rn.

3.1.1 Application to the DoA model In this
section, the optimal control problem formulation is
applied to the DoA model for tracking a reference level
for the BIS.

The following OCP can be written for the DoA
model:

min

Z tf
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�
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�
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�
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and x(tf ) = xe
,

where Q = Q

T � 0 and R > 0, x(t) 2 R6 is the state,
u(t) = [up(t) u

r(t)] 2 R2 is the input where u

p(t) and
u

r(t) correspond to the drug profile of propofol and
remifentanil, respectively. The outputs of the linear
blocks in Figure 2 are given by c

p
e(t) = x

3

(t) and
c

r
e(t) = x

6

(t). The target value xe is obtained by the
inversion of Hill’s equation (2.3) for a desired BIS level
of 50% and taking into account that the ratio between
x

3

(t) and x

6

(t) is constant and equal to ⇢, similar to
what was done by [NMR14].

3.1.2 Solving the optimal control problem This
OCP was solved using direct methods. These methods
have become increasingly useful when computing the
numerical solution of nonlinear optimal control prob-
lems (OCP) because they directly optimize the discre-
tised OCP without using the maximum principle. More-
over, they are known to provide a very robust and gen-
eral approach.

In a direct collocation method, the control and
the state are discretized in an appropriately chosen
mesh of the time interval. Then, the continuous–time
OCP is transcribed into a finite–dimensional nonlinear
programming problem (NLP) which can be solved using
widely available software packages [Pai14].

The OCP formulated in section 3.1.1 was solved
using MATLAB R2014b combined with the ICLOCS,
Imperial College London Optimal Control Software,
version 0.1b [FKvW10]. This is an optimal control
interface that uses the IPOPT solver, which is an
open-source software package for large-scale nonlinear
optimisation [WB06]. The proposed problem was solved
in a computer with a IntelTM Core c� i5 1.40GHz.

4 Simulation results

To analyse the performance of the presented formula-
tion, a bank R with real cases was used. The data
was collected during eighteen breast surgeries where all
patients were female (6 ASA I, 8 ASA II, 4 ASA III)
with age: 54± 13 years, height: 160± 5 cm, and weight:
69± 18 kg.
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The parameters of each patient

✓i = (↵i, ⌘i, mi, , �i) , i = 1, . . . , 18

were identified by an o✏ine method via the prediction
error method [MAdS+12]. In this paper, the second
patient was chosen to illustrate the BIS signal when the
optimal control input is computed and the parameter
vector is

✓

2

= (0.0874 0.0670 4.7014 0.9365) .

The parameters Cp
50

and C

r
50

are 10 and 0.1, respec-
tively. The matrices Q and R were empirically chosen
as I

6

and R = I
2

, respectively, and the ratio between
the third and the sixth state is ⇢ = 2.

In order to analyse the performance of the input
controllers obtained by the optimal control solver, a
comparison against a positive control law (PCL) pro-
posed in [NMR14] is made. This positive control law
was designed in such a way that ensures that the track-
ing of the desired BIS level is achieved. Figure 3 shows
the propofol rate (red line) and the remifentanil rate
(blue line) obtained with both control approaches. As
expected, the optimal input corresponding to the pro-
posed formulation is lower than the input signal ob-
tained via PCL. This remark was confirmed by the re-
sults obtained for the total rate infusion: ū

p = 1.7764
ū

r = 0.9944 when using the OCP and ū

p = 2.7054,
ū

r = 1.3527 when using the PCL.

Figure 3: Comparison between the input signals ob-
tained by the optimal control problem (solid lines) and
the ones obtained by the positive control law (dashed
lines).

Applying these inputs in the DoA model presented
in section 2, the BIS was determined and depicted in
Figure 4. As it can be seen, the BIS achieves the desired
level of 50% and yet with a lower input when compared
against the one given by PCL.

Figure 4: Comparison between the BIS signal obtained
by the optimal control problem (solid line) and the one
obtained by the positive control law (dashed line).

5 Conclusions

In this work, preliminary results were obtained using
an optimal control problem to control the depth of
anesthesia. The proposed problem was solved using the
IPOPT solver which is based on direct methods. For
that purpose, a reduced MISO Wiener to describe the
patient’s e↵ect of a joint administration of hypnotics
and analgesics was used. The results motivate the use of
the closed–loop control methods that will be presented
in a future work.
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