Proceedings of the 10th Mediterranean Conference
on Conirol and Automation - MED2002
Lishon, Portugal, Julv 9-12, 2002.

A FRAMEWORK FOR THE AUTOMATION OF A
REMOTELY OPERATED VEHICLE

Sérgio Loureiro Fraga, Jodio Borges Sousa, Fernando Lobo Pereira

* Laboratdrio de Sistemas e Tecnologias Subaquética
Faculdade de Engenharia da Universidade do Porto

Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal
e-mail: {slfraga,jtasso,flplefe.up.pt
http://www.fe.up.pt/~lsts

Keywords: Remotely Operated Vehicle, Trajectory
Generation, Vehicle Automation, Manoeuvres,
Underwater Inspection

Abstract

A framework for the automation of a Remotely
Operate Vehicle (ROV) is presented. This
framework entails a three-layered control
architecture, a principled approach to design and
implementation within the architecture, and hybrid
systems design techniques. The control architecture
is structured according to the principle of
composition of vehicle motions from a minimal set
of elemental manoeuvres that are designed and
verified independently. The principled approach is
based on distributed hybrid systems techniques, and
spans integrated design, simulation and
implementation as the same model is used
throughout. Hybrid systems control techniques are
used to synthesize the elemental manoeuvres and to
design protocols that coordinate the execution of
elemental manoeuvres within a complex
manoeuvre. The architecture is fault-tolerant by
design since it uses verified manoeuvres.

This work is part of the Inspection of Underwater
Structures (IES) project whose main objective is
the implementation of a ROV-based system for the
inspection of underwater structures.

1 Introduction

Remotely Operated Vehicles (ROV) are small,
tethered submersibles. There are numerous
applications for ROVs, such as oceanographic

surveys, operations in hazardous environments,
underwater structure inspection, and military
applications. Admittedly, ROV control presents
many difficult challenges. However, recent
advances tn navigation, power and communication
systems offer the appropriate technology to use
ROV for data gathering in the coastal and open
ocean very feasible.

Here, and in this context, we will concentrate on
the development of a framework for the automation
of a ROV. By a control framework, we mean the
organization of the problems faced by the ROV as
manoeuvres and manoceuvre switching. In our
experience, the design of the control and software
framework is one of the most critical phases in
automated vehicle development. The architecture
helps us understand what the system does,
understand how the system works, be able to think
and work on pieces of the system, extend the
system, and reuse parts of the system to build
another one.

We foresee two levels of automation, one in which
“high-level” manoeuvre commands are sent by the
operator and one of complete automation. The
literature is abundant in low-level control
techniques for ROV and/or ship applications. These
techniques are mainly tailored to solve low level
contro} problems (the level of control that directly
interfaces with actuators such as auto-pilots, etc...)
that are formulated in the framework of continuous
time and differential equations. However, the high-
level manoeuvre automation encompasses the
realm of logic, and of discrete event models
interacting with differential equations that model
ROV dynamics. To reach the next level of

automation, it will be necessary to consider hybrid
systems and new control techniques, in which
continuous time and discrete events interact.

We organize the ROV motions in terms of
manoeuvres. We are faced with a whole range of
manoeuvres, of which some are simpler, and others
more complex. We strive to define a basic set of
“elemental manoeuvres”, from which all the
manoeuvres can be derived. Once we have found a
minimal set of elemental manoeuvres, we can
verify their design for safety. We then compose the
complex ROV manoeuvres, using the elemental
manoeuvres as building blocks. This enables us to
always design correct manoeuvres, that s,
manoeuvres that meet the given specifications,
which may include safety and ensured results, even
in the presence of disturbances. The novelties of the
framework are the introduction of concepts and
theories from distributed hybrid systems, and the
use of systems engineering principles for
architectural design [1]. We illustrate this approach
with a case study from the project Inspection of
Underwater Structures (IES). This project concerns
the design and implementation of an advanced low
cost system for the inspection of underwater
structures based on a ROV.

This paper is organized as follows. In section 2, we
describe the IES project. Section 3 presents our
principled approach to design and implementation.
Section 4 contains an overview of the control
framework. Finally, section 5 deals with some
concluding remarks, and future work.

2 The IES project

The project Inspection of Underwater Structures
(IES) concerns the design and implementation of an
advanced low cost system for the inspection of
underwater structures based on a Remotely
Operated Vehicle (ROV). The project started in
1999, has a total duration of 3 years, and is funded
by PROGRAMA PRAXIS XXI - MEDIDA 3.1B,
Portugal. IES is a collaborative project that
involves the Associagdo dos Portos de Douro ¢
Leixdes (APDL)', Faculdade de Engenharia do

" Harbor Authority

Porto and Instituto de Sistemas e Robdtica — Polo
do Porto.

A summary of the main inspection requirements for
the IES project is presented in Table 1, while a
typical operational scenario is depicted in Figure 1.

Main requirements

Inspection objective

Features

Main difficulties

Evaluation of the state
of corrosion of
submerged steel plates

Metal plates are part of
the pier structure.

links between
consecutive plates

Critical corrosion spots:

Evaluation of the state
of conservation of
underwater structures

Fissures on the metal
surface.

Misalignment between
consecutive metatlic
curtains.

Low visibility due to
pollution and marine
growih.

Wave induced motions.

Unavailability of good
models of thruster-wall
interactions,

Sensing small fissures
and corrosion.

Size of the area 1o be
inspected.

Concrete pillars
maintenance

Fissures on concrete
pillars.

Wave-induced motions.

Currents produced by
tide variation and Lega
river mainstream.

Additional requirements

Verifying the state of
the tetra pods that
protect the harbour,

The locations of the
tetra-pods change due
to the action of the sea.

High waves.

Currents.

Operation from a
vessel,

Low visibility due to
pollution and low
luminosity.

Inspection should be
made during loading
and unloading
operations.

State of ship hulls.

Table 1: Inspection requirements

The main innovations of the IES project with
respect to commercially available ROV solutions
are:

e On-board power and computer systems. This

physical configuration minimizes the number of
wires in the tether cable thus minimizing drag
and improving performance.

¢ Two modes of operation: tele-operation and
tele-programming. The tele-operation mode is a
standard feature in ROV systems. The tele-
programming mode enables the operator to
program automated operations, such as
trajectory or path tracking.

e Integrated navigation. The IES navigation
system integrates data provided by an external
acoustic system and by internal sensors for
better control performance and position
accuracy.

¢ PC-based control. Easy to use, COTS
technology, low development and maintenance
costs.

o Advanced control systems. The ROV control
system includes advanced automated operation
modes that relief the operator from tedious
tasks, and do not require extensive training.

e Open system. The project uses standard
software development tools and principles. The
software architecture allows for the easy
integration of code developed by third parties.

Concrete slab

NNNNNNNNANN

P A i e
Metallic platform 1o be inspected

Figure 1: Typical operational scenario

The IES project integrates the following innovative
technologies and systems developed at the
Laboratério de Sistemas e Tecnologias Submarinas
(LSTS) from Porto University:

¢ Acoustic navigation system (see [2,3]).
e Advanced control systems.
e Power and motor control.

Except for the ROV frame, hull and thrusters, all
the other components and systems were designed
and implemented at LSTS. The ROV frame, huli

and thrusters are a customized version of the Deep
Ocean 500 S model from Deep Ocean Engineering
(Figure 2). The main difference with respect to the
standard model is an additional cylinder that houses
electronics and sensors.

i) b

; I.- V) \1__ 0 2
'ﬂ;»ﬁhmt*—[“”
[T L Tl

Figure 2: The IES remotely operated vehicle

3 The Approach

The general problem of vehicle control automation
is not a trivial one. ROV control automation is not
an exception. We envision two levels of
automation: 1) automation of the basic manoeuvres
and, 2) full automation, from planning to
operations.

From the control perspective, the main difficulties
for automating ROV control come from the first
level of automation, that of the elementary
manoeuvres. The problem is that traditional control
techniques, that form the current practice in ROV
control, are not adequate for this purpose. These
techniques are mainly tailored to solve the low-
level control problems. The problem of design for
the second level of automation is not trivial, but it
relies on the services provided by the first level. Let
us look at what is involved in the design of a basic
manoeuvre controller to understand why we need
new techniques.

Formal methods. During manual control the
operator uses some control logic to command the
operation of the ROV. We need to be able to
capture this logic, to express it mathematicaily, and

to check it for consistency and correctness. This is
why we need formal methods from computer
science [4].

Models. The realm of the low-level control
problems is that of continuous time and differential
equations. Here, we enter the realm of logic, and of
discrete event models interacting with differential
equations that model ROV dynamics.

Automation is not mimicking manual operation.
First, it may prove difficult to encode all the control
logic in a compact representation. Second, even if
this is done, there is no assurance that there are no
flaws in the control logic. Third, automation
enables complex quantitative reasoning that can be
used to optimise operations or to implement
complex control routines that ensure safe
operations, even in the presence of disturbances.

Obviously the realm of interactions between
continuous time dynamic models and discrete
events requires the consideration of advanced
control techniques. Let us discuss what is required
from control design.

Logic based control. The actions of each module
follow some control logic. This control logic is
complicated because it not only involves discrete
event behaviour, but also complex continuous
dynamics and interactions with other modules. The
traditional practice of if-then-else programming
is no longer adequate. It is not required to be an
expert programmer to realize that the amalgamation
of if-then-else statements is very difficult to
verify, and often leads to unpredictable behaviour.

Safety and predictability. Two important
requirements for automated operation are
predictability and safety. The controller has to
perform according to what it is expected to do
while respecting safety constraints. Disturbances
play against predictability and safety. The question
is then how to design predictable and safe
controllers. This entails designing not only control
laws, but also regions for safe operation.

In our experience, a lot of control code is designed
and implemented using techniques that are not
particularly adapted to this level of automation. The
problems are: 1) expressiveness and, 2) tool

integration. We need compact representations to
express the models and relations described above,
and we need to interface the code with tools that
facilitate design and verification.

It is now clear that control design at this level
requires: 1) formal models that span the design and
implementation process; 2) a framework where we
can study the overall structure and properties of
control design that are not appropriately addressed
within the constituent modules -control
architecture; 3) a principled approach to design
and implementation; 4) new control techniques.

4 Control Framework

This section describes the key elements of our
approach. For the sake of clarity we opted to skip
the mathematical details that can be found, for
example, in [5].

4.1 Principles and techniques

We organise the operations of the ROV as a
sequence of manoeuvres. First we define a basic set
of "elemental manoeuvres”, from which all the
manoeuvres can be dertved. Once we have found a
minimal set of elemental manoeuvres, we can
verify their design for safety. We then compose the
complex ROV manoeuvres, using the elemental
manoeuvres as building blocks. This enables us to
always design correct manoeuvres, that is
manoeuvres that meet the given specifications
(which may include safety and ensured results),
even in the presence of disturbances. From the
operator's perspective, this means having at his
disposal a set of commands with which a complex
mission can be planned and executed. The set of
commands is designed to comply with the
operational requirements while ensuring proper
termination, or adequate fault handling. For the
purpose of modularity, tele-operation is defined as
an elemental manoeuvre. The other manoeuvres are
tele-programming primitives.

Definition 1 [Elemental manoeuvre]. Prototypical
solution to a class of ROV motion problems that
cannot be obtained from the composition of other
manoeuvres. It is characterized by:

e QObjective.
. Hard and soft constraints,
e Information sets.
o Dynamic model and controliers.

Figure 3 and Table 2 sketches the basic structural
ingredients.

Manoeuvre Prototype

Specification from
Supervisory

Termination

L Imterrl variables
conditions

|

Controller References
Generalion

References to
Regulation Laver

Done Acknowledge

v to Supervisory v Starts Safe

Manoeuvre in
Presence of Error

Figure 3: Manoeuvre prototype

The design of elemental manoeuvres is
incremental. First, each elemental manoeuvre is
developed and verified independently. Then, the
more complex manoeuvres are formed and tested.
For each elemental manoeuvre, we first synthesise
a least restrictive controller — one that provides us
with "maximal sets”, or "windows" of possible
actions. When safety or final objectives are not at
stake, we are free to select one of the controls. This
is convenient, since in controls, precision is costly,
yet the ocean environment cannot be quantified
exactly. To handle safety and performance issues,
we then complement the design with rules or
controllers that incorporate some logic. Our
controllers ensure that, if feasible, the manoeuvre’s
objective is indeed attained. Hence, the control
architecture is fault-tolerant since it uses correct
elemental manoeuvres.

The overall concept of operation is better explained
with recourse to Figure 4. The operator uses the
console to command the execution of manoeuvres.
The ROV computer runs a supervisor that accepts
(or rejects) commands from the console and
controls their execution. Basically, there are three
modes for the supervisor: executing command, idle

and error. By default, and in the absence of any
command sent by the operator, the supervisor is in
the idle mode that instantiates a special manoeuvre
- the safe manoeuvre. Upon receiving a command
from the console, the supervisor either starts its
execution, or does not accept the command.
Command execution either terminates as
programmed, or is aborted when an error occurs. In
this case, the transition to the error mode invokes
error-handling procedures.

Specification
Feature Description
Inputs Type of manoeuvre.
Paramelters of the manoeuvre. Parameters include
acceleration profiles, time-outs, final position, etc.,
User commands accepled during the execution.
Outputs References 1o regulation layer.

Termination and error events..

Internal Variables | Used to evaluate termination conditions.

Termination Specification of the normal and error conditions for
Conditions the termination of a manoeuvre.
Controlier Algorithms for trajectory generation and control.

Table 2: Manoeuvre specification

This control framework is based on recent
developments in distributed hybrid systems.
Informally, a distributed hybrid system is a
collection of dynamic systems — each of which
includes both continuous time activities and
discrete-event features — that interact through the
exchange of data and messages. Figure 5 describes
some of those interactions.

4.2 Architecture

The control architecture addresses the overall
structure and the global properties of control
systems, hence providing a focus for certain aspects
of design and development that are not
appropriately addressed within the constituent
modules (see [6] for a discussion on software
architectures). This structure is formalized in terms

of layers and interfaces [7]. We consider a tri-level
control architecture (Figure 4).

Consale

E/

|

Elementar

Safe manoeuvre manoeuvres

Supervisory Layer
(define active manoeuvre)

Manoeuvre Controller
{one for each

Manoeuvre States +*
elementary manoeuvre)

Individual)
Regulators / m\\ Regulation
I” Ay
- T
Rov ’/’ Y
hardware .-~ Y Rov Hardware
components Y
FANVANANEIVAN
ROV

Figure 4: Concepts of operation

Regulation Layer - the automated vehicles. The
dynamical models of the vehicles are given in terms
of non-linear ordinary differential equations. This
level deals with continuous signals, and interfaces
directly with the vehicle hardware. Control laws are
given as vehicle state or observation feedback
policies for controlling the vehicle dynamics.
Control laws at this level correspond to low level
commands such as course keeping, turning, etc...

Manoeuvre Layer - control and observation
subsystems responsible for safe execution of
manoeuvres - the first level of automation. The
supervisory layer commands the execution of
elemental manoeuvres according to some motion
plan. Interactions with the regulation layer are
mediated by the elemental manoeuvres. Each
elementary manoeuvre sends low-level commands
to the regulation layer and receives events
concerning their completion or failure. Elemental

manoeuvre control is given in terms of hybrid
automata. The current design uses protocols in the
form of finite state machines.

Supervisory Layer — controls and coordinates the
Complex Maneuvers |

execution of manoeuvres.
Teleprogramming
Discrete time 3
| Elementar Maneaver |

o
r

I Conlrollers |
A

Y
| Thrust Allocativn |
A

Y
| Motors Control |

A E—C—

Cantinnous time

Figure 5: Control interactions

4.3 List of manoeuvres

The Manoeuvre class aggregates the common
attributes and methods of all manoeuvres. Specific
manoeuvres inherit all these attributes and methods
and contain additional parameters or methods. A
brief description of all of the elementary
manoeuvres follows:

Hovering. Hover inside some prescribed
boundaries while maintaining ROV orientation,
Examples: inspection of a target with high
precision.

Plane. Stabilize with respect to a vertical or a
horizontal plane with bounded errors. Examples:
inspect a wall while moving in a vertical plane
parallel to it.

Orientation. Change ROV orientation in terms of
its vertical axis. Examples: change ROV
orientation in order to track some visual target.

Trajectory. Follow a prescribed trajectory, with
bounded errors. Examples: inspect a wall in a yo-yo
motion with a specific time parameterisation.

Path. Follow a prescribed path, with bounded
errors. Examples: follow a prescribed path
inspection pattern while allowing the operator to
decide on the speed of the ROV.

TrackTarget. Track a target acquired with the
visual system within bounded error. Examples:
inspection a moving object.

FollowWall. Follow a prescribed wall, with
bounded errors. Examples: inspection of a surface
with unknown shape.

ManualOperation. Teleoperation. Assists the
operator to drive the ROV from the GUI-based
operator’s console. This manoeuvre accepts

operator commands during manoeuvre execution.
The operator commands are filtered through a low-
level control system that stabilizes the motion of
platform. This fly-by-wire capability makes it
possible for a novice operator with no special
training to control the ROV with minimal effort.
This feature is not available in commercial systems.

4.4 Trajectory generation

A trajectory generation module is included in the
manoeuvre layer in order to obtain a good interface
between the latter and the regulation layer (Figure
3). Each manoeuvre object defines desired values
for the system state to complete a specific
objective. These desired values should not be sent
directly to the regulation layer in order to obtain
better responses from the controllers. The role of
the trajectory generation module is to process the
desired values for the system and send reference
values to regulators. The proposed trajectory
generation architecture for the present framework is
based in a model of two degrees of freedom. This
model has two project components: a component
that specifies a full trajectory for the system states
and a component that is able to define the most
suitable controllers to deal with uncertainty.

The two degrees of freedom model uses all the
information available of the system resulting in a
better performance than the one degree of freedom

method, which makes references only for few
system states. The two degree of freedom
architecture [12,14] is depicted in Figure 6.

Pcrturbationsl

Cutput Trajectory Plant
Trajectory Geenration
Pilot Controller ‘_é
+

Figure 6: Two degree of freedom architecture

The model of the IES wvehicle is a system
differentially flat, which enables some good
trajectory generation features.

Definition 2 [Differential flatness][12] 4 system is
said to be differentially flat if it is possible 1o define
variables whose dimension is equal to the number
of the inputs, such that all the system states and its
inputs can be defined from these variables and its
derivatives. Such variables are called flat outputs.
The formulation of this problem is as follows:

z=w(x,u, aW,..., u”))
x,u)=¢(z,2",..,z0)

As said previously, the model of the ROV [13]is a
system differential flat and is given by:

(M

(2)

where x represents the position and the orientation
of the ROV in the inertial frame, v is the velocity of
the vehicle in the body fixed frame and represents
the system input.

M () x+ C (v, x) x+ D, (v,) x+ g, (x) =17,

The flat outputs of this system coincide with its
state. In this way, it is possible to define a trajectory
of the system state enabling the determination of
the inputs that implements the trajectory. The
inputs are obtained by substituting the flat outputs
(or in this case the system state) in the equation of
the model (Equation 2). It is required that the flat
outputs have at least the second order derivatives.
The differentially flat systems allow a suitable way
to generate trajectories for the system because, it

allows the definition of the desired trajectory in the
space of the outputs and then easily both entire
state and the input of the system become defined.

It should be noticed that the trajectory generation
has requisites of real-time execution. This happens
because, in the applications of the IES project, there
is a pilot defining the desire outputs with some rate.
For that reason the trajectory generation must be
computed at the same rate as the inputs are defined.
Despite this requisite, the trajectory generation is
made several orders lower than the controllers’ rate,
allowing the realization of some complex
computations. Due to the necessity of reducing
computational times for trajectory generation an
efficient method will be presented next.

Problem 1 [Point-to-point steering]. Point-to-point
steering problem consists in finding a trajectory
between two points in the state space (x(fg)=x, and

x(t)=xy).

This class of problems is irrelevant if the flat
outputs are the variables that are intended to track
because, for this problem, the initial and final state
for two distinct time instants are defined. If the
inputs and its derivates are also defined for the
instants ¢y and ¢, it is possible to compute the flat
outputs at these instants. This happens because
these variables are a function of the system state
and its inputs and derivatives (Equation 1). After
flat outputs determination at initial and final
instants it is possible to make a parameterization of
these variables using a base of polynomials
functions. The choice of this kind of function is
made to facilitate the computation of derivation of
the parameterized function. The parameterization
results in the following equation:

z(D=)_ 4;8,(0) 3)
S

where ¢ represents a base of functions. A linear

combination of these functions, whose coefficients
are given by matrix 4, allows the determination of
the flat outputs function. To get the values of the
elements of matrix A is necessary to solve an
equations system presented next:

2)=2 48,() z(6) =D 4;0,(4)
= V=2

@
qu)(fo) = ZAU¢I(I)(’O) zi(r)(tl)= Z Ay‘ﬁi’j([) (n)
i i

This equations system has solution if the dimension
of function basis is sufficient, i.e. je [1..2(1+1)m]. It
is possible to overparameterize the flat outputs to
achieve extra degrees of freedom that will allow the
minimization of some cost function of interest.
The trajectory generation problem is reduced to
finding the coefficients of matrix 4. After
determination of matrix 4 1t is necessary to
compute a trajectory for the states and inputs from
the flat outputs parameterization. It is necessary to
compute a sufficient number of points for this
trajectory to achieve a suitable accuracy in the
system response. The choice of the number of
points is a trade off between performance and
calculation time. Increasing the number of points,
better the accuracy is and bigger the computational
time. The response of the system becomes better for
large number of points because suitable input is
applied more frequently in the system, enabling a
more accurate tracking of the defined trajectory.
The computation of states and the inputs of the
system is made from flat outputs parameterization
by solving a non-linear equations system. In ROV’s
model case the states determination is trivial and
the inputs are determined using the Equation 2.

The discussion presented above leads with the
following algorithm:

Algorithm 1 [Point-to-point steering][12] Given
the initial and final states, x(tg)=xp and x(t;)=x,
and the system input and its derivatives at the same
instants, the following steps should be performed:

1. Determination of the flat outputs at initial and
final instants (Equation 1);

2. Parameterization of the flats outputs between
the initial and final instants (Equation 4);

3. Computation of N points in the flat outputs
paramelerization;

4. Determination of the state and input system from
the flat output points.

Figure 7 shows the necessary steps for this
algorithm.

The computation time for this trajectory generation
algorithm is the sum of the time required to
perform the parameterization and the time
necessary to compute the points in the trajectory.
Usually, computation of flat output
parameterization takes less time than the trajectory
(x,u) computation.

Y

Parameterization
{0 plxolo..... L™

Computation Time =
Compuiation of N peints
on the drajectory al 1, +
parameirization
compulation al ty

{\/

[ETTCH)

Figure 7: Point-to-point steering problem

The use of the method described previously allows
a suitable way to generate trajectories for each
manoeuvre.

4.5 Control design

Here we discuss control design [11] for this
architecture. For reasons explained before we will
concentrate this discussion on control synthesis for
the manoeuvre layer. The generic problem of
elemental manoeuvre control synthesis can be
described as follows: given a dynamic system, or a
collection of interacting dynamic systems,
synthesize a controller so that the system(s)
satisfies(y) the manoeuvre specifications. The type
of manoeuvre specification dictates the type of
control formulation. Examples include:

1. The problem of invariance - staying inside some
region [10];

38

. The problem of attaining a given target set while
the trajectories of the system remain inside some
other set;

3. The problem of optimizing some criteria;
4. The problem of stabilizing a system.

Inherent to most of these control formulations is the
problem of reach set computation -- the set of all
positions that the ROV can reach from a given
starting position [9]. In fact, given the reach set, it
1s quite simple to solve most of these problems.

5. Conclusions

This paper reports a framework for the automation
of a ROV. The novelty of our approach stems from
the consideration of systems engineering principles
and of distributed hybrid systems techniques. The
innovations are the introduction of safe elemental
manoeuvres in a three level coordination and
control hierarchy, in order to manage complexity.
We formalize the notion of elemental manoeuvre
and synthesize safe elemental manoeuvres using
techniques from hybrid systems, differential games
and viability theory.

Future work includes implementing a full set of
safe elemental manoeuvres and enriching the
manoeuvre switching logic to accommodate faults
and automated planning.

Acknowledgements

The authors thank Prof. Anthony Healey for his
comments and suggestions. This material is based
upon work funded by the Programa PRAXIS XXI -
Medida 3.1b) (IES project) and by Ministério da
Defesa, Portugal.

References

[1] IEEE (1999). “IEEE standard for application
and management of the systems engineering
process.” IEEE.

[2] A. Matos, A. Martins, N. Cruz, F. Pereira,
“Development and implementation of a low-
cost LBL navigation system for an AUV”,

MTS/IEEE Oceans
September 1999,

[3] N. Cruz,, L. Madureira, A. Matos and F.
Pereira, “A wversatile acoustic beacon for
navigation and remote tracking of multiple
underwater vehicles”, MTS/IEEE Oceans '01,
Honolulu, HI, U.S.A, November 2001.

[4] Jan van Leeuwen editor (1990). "Handbook of
theoretical computer science". Elsevier.

[5] P. Varaiya and T. Simsek and J. Borges de
Sousa (2001). "Communication and control in

hybrid systems". Accepted as a tutorial session
for ACC 2001.

[6] David Garlan. "Research directions in software
architecture”. ACM Computing Surveys (1995).
Volume 27, number 2, pages 257-261.

[7] J. Borges de Sousa and F. Lobo Pereira and E.
Pereira Silva (1995). “A dynamically
configurable control architecture for
autonomous mobile robots”. Proceedings of the
34th IEEE Conference on Decision and
Control.

[8] G. Booch, J. Rumbaugh, 1. Jacobson. “The
Unified Modelling Language User Guide”.
Addison-Wesley (1999).

[9] A. B. Kurzhanskii and P. Varaiya. “Ellipsoidal
techniques for reachability analysis”.
Computation and control. N. Lynch and B.
Krogh. Series "Lecture Notes in Computer
Science". Springer-Verlag", (2000). Pages 202-
214.

[10] Jean-Pierre Aubin,
Birkhauser (1991).

(11] M. Vidyasagar. “Nonlinear Systems Analysis”,
Pretice-Hall, Englewood Cliffs, NJ.

[12] Michiel J. van Nieuwstadt, Richard Murray.
“Approximate trajectory generation for
differentially flat systems with zero dynamics”,
In IEEE Conference on Decision and Control,
New Orleans. (1995).

[13] Thor I. Fossen. “Guidance and Control of
Ocean Vehicles”, John Wiley and Sons.
(1995).

'99, Seattle, U.S.A,

"Viability theory",

[14] Sérgio L. Fraga, J. Borges Sousa, Anouck
Girard, "~ A. Martins. “An Automated
Manoeuvre Control Framework for a Remotely
Operated Vehicle”, In MTS/IEEE Qceans’01,
Honolulu, HI, U.S.A. (2001).

