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Abstract. The implementation of the Golla-Hughes-McTavish (GHM) and Anelastic Displace-
ment Fields (ADF) models in a general finite element (FE) model with viscoelastic damping
is presented and discussed in this paper. Additionally, a direct frequency analysis (DFA) is
also described and employed. A methodology to identify the complex shear modulus of the
viscoelastic materials is described. The identified complex shear modulus of the viscoelastic
material 3M ISD112 is curve-fitted in order to obtain the modeling parameters of the GHM
and ADF models. A sandwich plate with a viscoelastic core and elastic skins is analyzed. Mea-
sured and predicted frequency response functions (FRFs) are compared with the purpose of
assessing the performance of the presented damping models. The analysis allows to asses the
validity of the methodology to determine the frequency dependent complex modulus, the GHM
and ADF parameters identification and the outcomes and drawbacks of the DFA, GHM and
ADF viscoelastic damping modeling strategies.

1 INTRODUCTION

Nowadays, in certain technological areas (e.g., automotive, aeronautics, aerospace, acous-
tics) there is a growing need of lighter and stiffer structural components. However, the weight
reduction, maintaining the rigidity unaffected, might lead to a significant reduction of the in-
herent damping capacity of those flexible structures. Viscoelastic materials can be used as an
effective means of controlling the dynamics of structures, reducing and controlling the struc-
tural vibrations and noise radiation from structures. They can be used in surface mounted or
embedded damping treatments, utilizing passive viscoelastic materials alone, the so-called pas-
sive treatments, or in an unified way with active materials such as piezoelectrics, the so-called
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hybrid treatments. The use of these materials in damping treatments provides high damping
capability over wide temperature and frequency ranges.

Applications with passive treatments alone, have been widely used since the end of the
1950s, as can be found in reference textbooks (e.g., [1-4]). However, hybrid treatments are
a class of treatments usually more expensive and difficult to implement, but with the advantage
of leading to a higher damping performance. Therefore, a considerable research effort has been
undertaken towards their effective use in real life applications. A review of hybrid treatments is
addressed in [5—-8] and some analytical and experimental studies concerning beams, plates and
shells can be found, for example, in [9-18].

In the last decade the technology associated with a more refined design and adequate im-
plementation of viscoelastic-based damping treatments has achieved a relative maturity and is
starting to be frequently applied in practice by the scientific community and its industrial part-
ners. In order to adequately design these viscoelastic damping treatments the viscoelastic mate-
rial properties need to be accurately measured and considered for the underlying mathematical
models. The temperature and frequency dependent material properties of the viscoelastic mate-
rials complicate the mathematical model and make the solution of the problem more difficult to
obtain. Usually, isothermal conditions are assumed and only the frequency dependent constitu-
tive behavior is taken into account. The simplest way of modeling these materials is achieved by
a complex modulus approach (CMA) where the material properties are defined for each discrete
frequency value [19, 20]. The CMA is also associated with the so-called modal strain energy
(MSE) method [21] where the loss factors of each individual mode are determined from the
ratios between the dissipated modal strain energy of the viscoelastic counterpart and the storage
modal strain energy of the global structural system. The MSE method is known to lead to poor
viscoelastic damping estimation of highly damped structural systems. Furthermore, the CMA
is a frequency domain method that is limited to steady state vibrations and single-frequency
harmonic excitations. Thus, to account for the frequency dependent material properties, itera-
tive versions of the MSE have been used successfully for moderate damping values [22]. Time
domain models, relying on internal variables (see [23]), such as the Golla-Hughes-McTavish
(GHM) [24, 25] and anelastic displacement fields (ADF) [26, 27], or others [28, 29], utilizing
additional dissipation variables, have been successfully utilized and yield good damping esti-
mates. Alternatively, the use of fractional calculus (FC) [30, 31] models, based upon the use
of fractional derivatives, has the drawback of generating a "non-standard” finite element (FE)
formulation, with a more complex characteristic solution procedure, but yielding also good
damping estimates. Other relevant contribution for the viscoelastic damping modeling is given
by Adhikari’s work [32] and his references therein. Regarding the temperature effects, stud-
ies taking into account the temperature dependence of the properties and the self-heating of
viscoelastic materials have been performed by Lesieutre and his co-workers [33, 34] which ex-
tended the ADF model for these cases leading, however, to nonlinear differential equations. The
effects of the operating temperature on hybrid damping treatments performance and viscoelastic
damping efficiency were analyzed, for example, in [35-39].

The extensive use of passive or hybrid treatments using viscoelastic materials to reduce vi-
bration and sound radiation from structures has motivated the integration of the aforementioned
viscoelastic damping models into commercial or home-made FE codes, which is a very com-
mon tool for studying complex structures used by the major part of the structural designers.
Time domain models represent better alternatives to CMA-based models allowing the reduction
of the computational burden and the study of the transient response in a more straightforward
manner, even for highly damped structural systems. Among the time domain models, internal
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variables models are more interesting from the computational point of view and easiness of
implementation into FE codes. Thus, the GHM and ADF models are alternative methods, used
to model the damping behavior of viscoelastic materials in FE analysis, which yield a standard
FE formulation (however with the addition of some “non-physical” dissipative variables). In
order to use them, one needs the GHM and ADF characteristic parameters which allow char-
acterizing the complex (frequency dependent) constitutive behavior of the viscoelastic material
being used. To do that, experimental procedures to measure the isotropic constitutive behavior
(usually the shear modulus) and numerical identification procedures of the measured data need
to be developed.

In the open literature works concerning the experimental measurement of the viscoelastic
constitutive behavior by different approaches (test configurations) can be found, for example,
in [1, 4, 40] and the references therein, where viscoelastic material master curves, tables and
empirical and fractional derivative analytical expressions of the complex modulus and shift
factor are presented for several types of viscoelastic materials. As referred by Jones [4], that
information is provided from various sources and is fairly accurate, in general, but it is by no
means the best data which can be obtained. It is, however, the best data available in the public
domain, and better data ("real” data) may be obtained only by additional testing or purchase of
data from a data base (e.g, [41, 42]), often at considerable cost.

This paper addresses the experimental identification of the GHM and ADF parameters to
be used for modeling the viscoelastic damping behavior. The viscoelastic material considered
is this work is the 3M ISD112 [43], which was chosen because of its commercial availability,
although the methodology described below can be applied to any viscoelastic material. As
reported by Trindade and Benjeddou [7] these parameters, in general, are adjusted by a curve-
fitting of the viscoelastic material master curves, in order to minimize the difference between
the measured and estimated data. Lesieutre and Bianchini [26] presented the curve-fitting of
the 3M ISD112 material data, at a temperature of 27 °C, in the frequency range [8 — 8000] Hz.
They concluded that five ADF (with two parameters per ADF) represent exactly the behavior
of the material shear modulus and the loss factor. Friswell, Inman, and Lam [44] presented the
same analysis for the GHM model, with three or four parameters per model. They used the
3M ISD112 material at 20 °C in the frequency-range [10 — 4800] Hz and DYAD601 material at
24°C in the frequency range [2 — 4800] Hz. Their results indicated that the model with four
parameters represented the material data better than that with three parameters. In general,
GHM and ADF models fit well the master curves of materials whose properties have strong
frequency dependence. Nevertheless, the number of parameters needed is somehow related
with the degree of frequency dependence of the material properties and usually increases with
that dependence. That is why Enelund and Lesieutre [45] proposed a combination of the ADF
model with the fractional derivatives model, where the relaxation equation for the anelastic
strain is taken as an in time differential equation of fractional-order, combining the best features
of the ADF model and the FC. It was shown that this fractional-order ADF model can predict
the instantaneous transient response of the material over a wide frequency range using a single
anelastic strain field (only one ADF serie) governed by a fractional-order equation with the
drawback of yielding a “non-standard” FE formulation requiring a more complex characteristic
solution procedure typical of FC.

In this work the implementation of the GHM and ADF models in a FE model is first pre-
sented and discussed. Next, the experimental test rig and methodology used to identify the
complex shear modulus of the viscoelastic material 3M ISD112 is described. An analytical em-
pirical expression for the complex modulus and the shift factor obtained by curve fitting master
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curves of 3M ISD112 is given in [40]. However, the accuracy of these expressions is not clear
and with time manufacturers change the production process, with implications in the properties
of the viscoelastic materials, making old data not so appropriate. Thus, that justifies the new
experimental methodology to estimate new data presented in this work. Then, the curve-fitted
viscoelastic material data is compared with the measured one and the parameters of the GHM
and ADF models are presented and used to represent the frequency dependent viscoelastic stiff-
ness and to model the viscoelastic damping behavior of the structure. The identified parameters
are then utilized in a FE model analysis and validated by comparison of frequency response
functions (FRFs) measured in a sandwich plate with a viscoelastic core and elastic skins.

The main contributions and novelties of this work are related with the fact that both mea-
sured and predicted results are utilized to validate the methodologies to include viscoelastic
damping in FE models. Additionally, a new experimental procedure to determine the viscoelas-
tic material properties is presented and discussed, and the characteristic material parameters
of the GHM and ADF models of the 3M ISD112 are obtained by curve-fitting the measured
shear storage modulus and loss factor of ”actual” 3M ISD112 material. Furthermore, the ex-
perimental data is usually taken by a “manual” procedure from the plot of the nomogram given
by the manufacturer. Moreover, Trindade et al. [22] compared the GHM, ADF and interac-
tive MSE models, however without comparing the predicted results with any measured (real)
or predicted results obtained by a direct frequency analysis (DFA) approach, which is the most
processing time consuming technique, however the most precise. Therefore, the methodologies
are assessed and compared in a more rigorous way.

2 VISCOELASTIC DAMPING MODELING
2.1 Linear Viscoelasticity

Viscoelastic materials are rubber-like polymers possessing stiffness and damping character-
istics which vary strongly with temperature and frequency. This polymers are materials com-
posed of long intertwined and cross-linked molecular chains, each containing thousands or even
millions of atoms. The internal molecular interactions that occur during deformation in general,
and vibration in particular, give rise to macroscopic properties such as stiffness and energy dis-
sipation during cyclic deformation, which in turn characterizes the mechanism of viscoelastic
damping.

It is well known that the viscoelastic constitutive behavior relies on the hypotheses that the
current value of the stress tensor depends upon the complete past history of the components of
the strain tensor. Thus, considering an isotropic viscoelastic material under isothermal condi-
tions, the theory of linear viscoelasticity [46] states that the constitutive relationship (in shear
or extension) for a one-dimensional stress-strain system can be written as

Oe(T)

T

t
o(t) = G(t)e(0) + / G(t—7) dr, (1)
0

where the strain history £(t) is restricted to be zero for ¢t < 0, o(t) is the resultant stress (shear
or extensional) and Gi(t) is a constitutive time varying relaxation function. This gives rise to a
hysteretic or complex modulus description for the vibration of a structure with viscoelastic ma-
terial components.Thus, considering initial conditions equal to zero, i.e., £(0) = 0, the Laplace
transform of Equation (1) yields

5(s) = sG(s)E(s), (2)
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Table 1: GHM and ADF relaxation functions.

Function Author (year)
n 2 2 - Ai
B(s) = 30 a2t > Golla, McTavish and Hughes (1985, 1993)[24, 25]
h(s) = 3o 32 Lesieutre (1992) [48]
= esieutre
° -1 S+ Qz

where sG (s) is a material modulus function which in turn can be represented by the equality
sG(s) = Gy [1 + h(s)] and substituted into (2) yielding

7(s) = Go [1 + h(s)] &(s), 3)

where (G is the relaxed (or static) shear modulus obtained after the material relaxation, i.e.,
Gy = limy_o, G(t). Thus, since Gy is constant, the term G((s) represents the recoverable
(elastic) counterpart of the material stress while Goh(s)é(s) represents the non-recoverable en-
ergy dissipation effects (relaxation). For that reason, h(s) is usually termed as dissipation or
relaxation function.

Many authors have proposed different mathematical representations of the relaxation be-
havior h(s) in the last decades, which in turn leads to different mathematical models of the
viscoelastic damping behavior and different solution methods of the governing equations. The
different relaxation functions are summarized in [7, 24, 32, 47] as a result of a compilation from
several works, where the different models and solution methods of the resultant mathematical
models are thoroughly discussed. Some of the most well known frequently referred in the open
literature are the internal variables GHM and ADF models, which will be considered in this
work and described in the following sections, and the correspondent relaxation functions are
presented in Table 1.

2.2 Complex Modulus Approach

There are practical situations in which structures with viscoelastic materials may be sub-
jected to steady-state oscillatory conditions. Under these conditions, assuming s as pure imag-
inary variable, s = jw, the previously derived stress-strain relationship sG (s) in Equation (2),
referring to the shear constitutive term, might be expressed as a function of the frequency w in
the complex form

G(jw) = G'(w) +jG" (w), )

where G'(w) is the shear storage modulus, which accounts for the recoverable energy, and
G"(w) is the shear loss modulus, which represents the energy dissipation effects [1, 4, 46]. The
loss factor of the viscoelastic materials is defined as

B G/l(w)
n(w) = Gw)’ )
which alternatively allows to write Equation (4) as
G(jw) = G'(w) [1 + jn(w)]. (6)
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For a linear, homogeneous and isotropic viscoelastic material, equivalent representations of
the previous equations hold for the extensional modulus £'(jw) and the relationship

E(jw)

G(jw) = STERTE)h

(7

where v(jw) is the Poisson’s ratio, establishes a relationship between the two. However, for
simplicity, a real frequency independent Poisson’s ratio v(jw) = v is assumed, which turns the
loss factors of the shear and extensional complex moduli equal, i.e., ng(w) = Ne(w) = n(w).

2.3 Finite Element Implementation

2.3.1 Direct Frequency Analysis Response Model

Considering the frequency dependent physical properties of the viscoelastic materials pre-
sented in the previous sections, the general time dependent FE equations of motion of a vis-
coelastically damped general structural elastic system can be written as

Mii(t) + Du(t) + [K¥ + K" (jw)]u(t) = F(t), (8)

where M and D are the global mass and viscous proportional damping matrices, K and
K" (jw) are the elastic and viscoelastic stiffness matrices, and u(t) and F(¢) are the displace-
ments degrees of freedom (DoFs) and applied loads vectors. It’s worthy to mention that two
types of damping models are considered in the previous equation: a frequency dependent hys-
teretic (viscoelastic) damping type, represented by K" (jw), whose terms are complex and fre-
quency dependent, representative of the viscoelastic relaxation behavior; and a viscous propor-
tional damping type, which is described by D, representing other general sources of damping
(e.g., the material damping of the elastic part of the structural system, air-based damping, energy
dissipation in the supports, etc.), which are assumed to be proportional to the velocity.

Using Equation (8) as it is, the frequency dependent matrix definition implies its use and
analysis only in the frequency domain, based in the CMA, where the material properties of the
stiffness matrix of the viscoelastic layers are defined for each discrete frequency value [20, 49].
Thus, the CMA is a frequency domain method where the frequency response model (FRFs) can
be generated in a straightforward manner from the results of many discrete frequency calcula-
tions of the equations of motion, in which the complex stiffness matrix of the viscoelastic layers
is re-calculated at each frequency value of the desired discrete frequency range.

Considering simple harmonic mechanical excitation,

F(t) = Fei, ©)

where F is the vector of applied loads amplitudes, the steady state mechanical harmonic re-
sponse of the system can be written as

u(t) = Uel*', (10)

where U is the vector response of displacement amplitudes. Substituting (9) and (10) into (8)
yields L
[K(jw) + jwD — w*M]U = F, (11)

where K(jw) = K¥ + K" (jw), from which the complex solution vector U can be obtained.
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The FRF (frequency response function) for a load applied in the ith DoF and a displacement
DoF output o, can be obtained by solving (11) for different values of frequency,

[K(jw;) + jwD — wiMJU(jw;) = F,, (12)
where F; denotes a force vector with a non-zero component in the ith DoF and all other elements
equal to zero, and U(jw,) is the resulting complex response vector (displacements) solution at
frequency w;. Thus, the receptance FRF at frequency w;, H,;(jw;), is given by

Uo(zwl)

Hoi(jwl) - I ,

(13)

where Fj is the amplitude of the load input and U, (jw;) is the displacement amplitude extracted
from the oth DoF of the vector U(jw;).

Finally, the FRF can be generated from the results of many discrete frequency calculations of
Equation (12), in which the complex stiffness matrix of the viscoelastic layers is re-calculated
at each frequency value of the discrete frequency range w = wy, ..., wy, ...,wy, as depicted in
Figure 1.

W= Wpy,y.reyWy.nn

Figure 1: Direct frequency analysis (DFA) response model generation diagram.

2.3.2 GHM Damping Model

When general transient responses are required, time domain models are more suitable and
versatile and represent better alternatives to the CMA since they allow the reduction of the
computational burden due to the recalculation of the stiffness matrix for each discrete frequency
value. One alternative is the GHM (Golla-Hughes-McTavish) model [24, 25] which assumes
the material modulus function sG(s) represented in terms of a series of mini-oscillator terms
(Table 1),

n 2 oA
sG(s) = Gy [1 + h(s)] = Go (1 +3y a2 20w ) , (14)

o1 824 20,08 + &7

7
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where (5 is the relaxed modulus and each ith mini-oscillator term is a second order rational
function involving three positive constant parameters ¢;, w; and & ;- These parameters govern the
shape of the modulus function over the complex plane (or over the frequency domain assuming
only the imaginary part of the complex plane), and depending on the nature of the viscoelastic
material modulus function and the range of s (or frequency) over which it is to be modeled,
the number of mini-oscillator terms is defined according to the accuracy of the representation
required.

Considering the FE equations of motion of a viscoelastically damped general structural elas-
tic system in Equation (8), with the shear modulus (note that both shear and extensional stiffness
terms were considered in the viscoelastic stiffness matrix through the extensional and shear
modulus relationship in (7) assuming a frequency independent Poisson’s coefficient) of the
viscoelastic counterpart factored out of the viscoelastic stiffness matrix, yielding K", and as-
suming that the structural system possess only one type of viscoelastic material, Equation (8)
following the hereditary stress-strain law in (1) yields

Mii(t) + Da(t) + K*u(t) + G()K"u(0) + / G- T>1‘<V&$—(¢T)

In a similar way to what has been considered in Section 2.1, transforming Equation (19) to the
Laplace domain yields
(s + sD + KZ) @i(s) + sG(s)K"@a(s) = F(s). (16)

Substituting the material modulus function representation in Equation (14) into (16) yields

dr=F(t). (15

_ n 2490, -
(M + sD + KP) i(s) + GoK" [ 1+ 37 a2 201 i) =F(s). a7
=1 §2 4 2C,ws + w;

Then, introducing a set of n series of dissipation (or internal) variables u?(s) (i = 1,...,n), for

each series, one can assume the relationship

- - s+ 2Aid)is -
(s) —aP(s) = - AC —u(s). (18)
s? + 2¢,wis + w;

Substituting Equation (18) into (17) yields

(M + sD + KZ + KV) 1i(s) + K" 3" & <ﬁ(s) . ﬁ?(s)) — F(s), (19)
i=1
where K0 = GoKV is the relaxed (static) stiffness matrix of the viscoelastic components.
Next, in order to describe the dissipative behavior of the internal DoFs, after some algebra
Equation (18) can be written as
)
~D wi ~
u; (s) = = u(s). (20)
) §2 4 20,08 + &7 (5)
Therefore, considering Equations (19) and (20), after some algebra we get the following aug-
mented coupled system,

(M +sD + K¥ + KV*) ia(s) - K"* 3" 6P (s) = F(s), (21a)
=1
12
<32A—2 + 5 ACZ + 1) a”(s) —1(s) = 0, (21b)
Wy Wi
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where
KVoo _ <1 + Z )KVO

In order to obtain the time-dependent behavior of the augmented system, multiplying Equation
(21b) by &;K"° and since all matrices are independent of s, a linear time domain model is
easily recovered by the inverse Laplace transform of Equations (21), yielding

Mii(t) + Du(t) + (K” + K"*) a(t) - K"° z vl (t) = F(t), (22a)
SLRVOP (1) + 22‘%” P+ 6K () - aK " a() =0.  (22b)
w; i

The augmented coupled system in Equations (22) might also be expressed in compact matrix
form as

Mq(t) + Dg(t) + Kq(t) = F(t), (23)
where
_ M 0 — D 0 — Kee Kep
M = N D = ) K == 5
[ 0 MDD:| {0 DDD:| |:KDE KDD}
q(t) = col [u(t),ap'(t),...,u; (t)], F(t) = col [F(1),0,...,0],
and
v, 2601 24,
Mpp = d1ag< KV0 .,%KVO), Dpp = dlag(aA—lglKvo, .. a C”KV(])
Wl Wy, w1 Wy,
Kpp = diag (K", ... .1 K""), Kgp = [~ K", ..., — &,K""],

Krr =KP + K>, Kpp = KL,

2.3.3 ADF Damping Model

A time domain model based on a variation, or Laplace transformed, formulation of the ADF
(Anelastic Displacement Fields) model, originally proposed by Lesieutre and his co-workers
[26, 27], is proposed in this work. It takes a definition of a complex modulus in the frequency
(or Laplace) domain and utilizes the so-called internal, dissipation or anelastic (after Lesieu-
tre) variables to simplify the equations, although with the drawback of increasing the size of
the problem. Afterward, through an inverse Laplace transform one obtains an amenable and
computationally tractable augmented system of linear ordinary differential equations that can
be solved by standard (linear) numerical procedures. With this procedure the FE model im-
plementation of the ADF model is more straightforward when compared with the Lesieutre’s
original direct time domain formulation based on the methods of irreversible thermodynamics
and a decomposition of the total displacement field in an elastic and anelastic counterpart.

Therefore, the process of deriving the augmented coupled elastic-anelastic (using the original
designation of Lesieutre) is similar to what has been presented for the GHM method, however
utilizing a different definition of the material modulus function, and only some key steps will
be presented here. Thus, as reported by Lesieutre, the frequency dependent viscoelastic shear
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modulus described by the ADF model, represented by a series of functions in the Laplace
domain, has the form [26, 48] (cf. Table 1)

~ n Ai
sG(s) = Go [L + h(s)] :G0<1+28+;), (24)

where again Gy = lim;_., G(t) is the relaxed (or static, low-frequency) shear modulus, §;
is the inverse of the characteristic relaxation time at constant strain and A; the correspondent
relaxation resistance. To take into consideration the relaxation behavior, the entire ADF model
itself may be comprised of several individual fields where n series of ADF are used to describe
the material behavior. Given measured values of the shear modulus in the form of frequency
dependent complex modulus G(jw), the relaxed shear modulus G and the series of material
parameters A; and €2; can be determined using curve fitting or optimization techniques. The
number of series of ADF parameters determines the accuracy of the matching of the measured
data over the frequency range of interest.
Substituting Equation (24) into (16) yields

AiS - ~
Qz) u(s) = F(s). (25)

(s’M + sD + K”) a(s) + GoK" (1 + an

=15+

Then, in a similar way, introducing a set of n series of anelastic (or internal, dissipation) ﬁf‘(s)
(1 = 1,...,n) variables, for each series, one can assume the relationship

S ~
=7 Qz‘u(s). (26)

Substituting Equation (26) into (25), considering the dissipative behavior of the anelastic DoFs

given by from Equation (26) as
Q;
~A L
¥ = a 27

after some algebra one gets the following augmented elastic-anelastic coupled system,

(M + 5D + K” + KV™) fi(s) — K'0 3 Asiif(s) = F(s), (28a)
(Qi +1) i@ (s) — i(s) =0, (28b)

where this time .
KV — (1 Y Ai> K",
=1

The time-dependent behavior of the augmented system, multiplying Equation (28b) by A;K"°,
is recovered by the inverse Laplace transform of Equations (28), yielding

Mii(t) + Du(t) + (K + K<) ti(t) - K" 3" A (1) = (1), (292)
=1
%Kvoﬁf(t) + AKYRA() — AKYOR(t) = 0. (29b)

10
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The augmented coupled system in Equations (29) might be expressed in compact matrix
form as in Equation (23) where for the ADF model one gets

- | M 0 - | D 0 ~ | Keeg Kga
M_{O O}’ D_{O DAA:|’ K_[KAE KAA}’

a(t) = col [a(t), uj(t),...,a,(t)] . F(t) =col[F(t),0,...,0],

where
D — di Ay Vo A, Vo T Vo Vo
aa = 1ag(Q—K K ) Koas _d1ag(A1K ALK )
1 n
Krr =K’ + K", Kga = [-A K, ..., - AK"], Kup = Kj,.

2.3.4 State Space Design and Model Reduction

As can be seen in Equations (22) and (29), the main disadvantage of GHM and ADF models
is that, associated with a FE discretization and in order to account for the frequency dependence
of the viscoelastic material, they lead to large systems, since they add auxiliary DoFs, which
for each GHM or ADF series must be equal to the number of elastic DoFs. However, model
reduction techniques might be utilized in order to reduce the size of the system. As suggested
in [22] the matrices corresponding to the internal DoFs might be reduced and diagonalized
through a projection in a suitable reduced modal base, to reduce the computational cost. The
advantages of this alternative (transformed) representation are that in the case where only some
part of the structure has surface mounted or embedded viscoelastic layers, only some FEs have
viscoelastic components and K" can have several rows and columns of zeros, which in turn
leads to some nill eigenvalues. Thus, through an adequate coordinate transformation based on
the eigenvalues and eigenvectors of K" and elimination of the nil (spurious) eigenvalues the
size of the problem can be substantially smaller. Furthermore truncated complex state space
modal models might also be used in order to reduce the system size even further. Moreover, one
may notice from M that when compared with the GHM model the anelastic DoFs of the ADF
model have no inertia and therefore the global mass matrix M is singular and is not positive-
definite. However, the singularity of the mass matrix can be overcome if, instead of solving
the second-order system (23) of the ADF, a state-space representation with an adequate design
of the state variables is considered. The number of flexible modes is kept the same and the
dissipative modes, which correspond to the internal relaxations of the viscoelastic material, are
overdamped with low observability. The reader is referred to [22, 47, 50, 51] for further details
about state space design and model reduction techniques.

3 EXPERIMENTAL IDENTIFICATION OF VISCOELASTIC MATERIALS
3.1 Underlying Analytical Model

The proposed experimental methodology for the dynamic characterization of the complex
modulus of viscoelastic materials is based on the direct identification of the complex equiva-
lent stiffness K (jw) of a discrete single degree of freedom (SDoF) system [52]. The complex
stiffness is physically materialized by a thin viscoelastic layer which is subjected to cyclic shear
deformation imposed by a dynamic exciter. The dynamic response of the considered SDoF sys-
tem is then used to evaluate the shear sforage modulus and /oss factor variation with frequency
and temperature.
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The receptance FRF of the SDoF system, assuming stationary harmonic motion, is given by

¥ |
X _ , 30
F =~ K(w) —wo2M 39)

H(jw) =

where F and X are the amplitudes of the dynamic force and displacement response and M is the
mass. The complex value stiffness K (jw) of the viscoelastic sample can be directly determined
through the inverse of the receptance, the dynamic stiffness function Z(jw) = H'(jw), as

K(jw) = w*M + Z(jw). (31)

The viscoelastic material sforage modulus G'(w) and loss factor n(w) functions can then be
evaluated from

G'(w) = N (w*M — Re[Z(jw)]) . (32a)

Im [Z(jw)]

" WM + Re Z(jw)]’ (32b)

where h is the thickness of the viscoelastic sample and Ag its shear area.

3.2 Experimental Apparatus

The test rig representing the dynamic SDoF system used to identify the complex shear mod-
ulus of viscoelastic materials is illustrated in Figure 2. The underlying analytical model of the
complex SDoF system previously described comprises a moving mass M, represented by the
upper bar (2), and a complex stiffness K (jw), represented by the thin viscoelastic layer sam-
ple (4) introduced between two rigid blocks, as shown in Figure 3. The upper bar is guided
by two thin lamina springs (3), which provide the restraint of the spurious DoFs, allowing the
viscoelastic specimen to deform mainly in shear due to the relative motion between the moving
bar (2) and the fixed bar (1).

Figure 2: Test rig used to identify the complex shear modulus.

The dynamic excitation of the moving bar is provided by an electrodynamic shaker (Ling Dy-
namic Systems - model 201), using a thin stinger to minimize the rotation and lateral excitation,
driven by a random signal generated by the signal generator of a dynamic signal analyzer (Briiel
& Kjer - model 2035) and amplified at a power amplifier (Ling Dynamic Systems - PA25E).
The applied excitation force is measured using a piezoelectric force transducer (Briiel & Kjer

12
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Figure 3: Detailed view of the viscoelastic specimen.

- model 8200). The acceleration response of the moving mass is measured with a piezoelectric
accelerometer (Briiel & Kjar - model 4371) and the displacement response with a proximity
probe (Philips PR6423). The signal conditioning and the frequency response functions are de-
termined with the aforementioned dynamic signal analyzer.

The test rig and the electrodynamic shaker are rigidly assembled on an inertial block (Figure
4), which is supported by rubber pads in order to minimize the influence of the rigid body modes
of the assembly. Furthermore, the experimental apparatus was introduced in a thermal chamber,
providing near isothermal conditions between 0 and 35 °C, with the temperature range limited
by the shaker admissible range of operating temperature. The analysis at various temperatures
allows the use of the temperature-frequency equivalence principle [4] extending the frequency
range of the characterization and allowing data correlation. The temperature of the viscoelastic
material is evaluated using two thermocouple probes located near the specimen, as depicted in
Figure 3.

8
8
|
N

Figure 4: Experimental apparatus inside the thermal chamber.

3.3 Numerical Analysis of Measured Complex Modulus Data

The receptance and accelerance FRFs of the SDoF dynamic system described in the previous
sections are measured using the transducer response signals (proximity probe, accelerometer
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and force transducer) for different temperatures. Since two different FRFs were measured using
two different transducer responses (displacement and velocity), the corresponding FRFs can be
correlated in order to identify high frequency noise generated by the thin springs, the stinger and
shaker trunnion (highly evidenced by the receptance results), and the rigid body modes effects
at low frequencies (evidenced in the accelerance results). Therefore, using both transducers, the
useful frequency range is enlarged.

Viscoelastic damping is a property exhibited by a wide variety of polymeric materials, rang-
ing from natural or synthetic rubber to industrial plastics, or even cork. The class of polymer
materials is extremely wide and many polymeric compounds, displaying somewhat different
complex modulus properties, available from commercial manufacturers and other sources (see
[1, 4] for manufacturers) can be found. Some commonly available commercially viscoelastic
damping polymers are the ISD110, 112 and 113 series, from 3M™, DYADG601, 606 and 609
series, from Soundcoat®, to name just a few. Here attention is given to the 3M ISD112, which
is the viscoelastic material identified and utilized in the damping treatment of the analyzed case
study. However, as obvious, the present experimental procedure might be used to any other type
of viscoelastic material.

The receptance and accelerance FRFs of a 0.57 mm x 480 mm? 3M ISD112 viscoelastic
material specimen, measured in a bandwidth of [0 — 400] Hz at nine different temperatures
between 2.7 and 33.5 °C are presented in Figure 5. The obtained FRFs, whether using directly
the receptance or the accelerance, are the inputs for the complex modulus description calculated
using Equations (32).

Magnitude (ref. Im/N)
S

[°l Magnitude (ref. 1ms~2/N)

10
_7 \ Temperature
10 ¢
Temperature |
-3
‘ ‘ ‘ — 10 ‘ ‘ ‘ 5
= 180F : : : 180k T : .
A~ T A_180% . . .
0 100 200 300 400 0 100 200 300 400
Frequency [Hz] Frequency [Hz]

Figure 5: Measured receptance and accelerance FRFs at 2.7,5.8,7.1,11.2,14.4, 14.5,18.8,21.5 and 33.5°C.

In order to identify and filter possible random errors due to the high frequency noise, rigid
body modes or other error sources, the identified complex modulus functions are plotted point
by point in a Wicket Plot which is a useful graphical representation to highlight the errors (see [4]
for further details). In this graphical representation the storage modulus calculated from the data
at different temperatures are plotted against the corresponding loss modulus values. Figure 6 (a)
represents the Wicket plot of the identified complex modulus data of the 3M ISD112 specimen.
It stands out the master curve of the complex modulus, being possible to identify erroneous
data sets, and the data lying outside the main sequence is eliminated. After filtering the data,
removing all scattered points, a reliable data set of complex modulus is obtained, as illustrated
in Figure 6 (b), which can be used to characterize the viscoelastic material under analysis.
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Figure 6: Wicket plot of the identified complex modulus functions (spectral filtering).

The set of complex modulus functions, identified at different temperatures, should finally be
correlated to identify the shift factor avz(7") distribution of the material by using the frequency-
temperature equivalence principle. The shift factor relationship might be described by the Ar-

rhenius equation as

1 1

log [a(T)] = T (f - f) , (33)

where 7' is the absolute temperature of each data set, 7} is the reference temperature and 74 is
identified by fitting the experimental data to the model. Using the identified shift factor distribu-
tion, the identified complex modulus functions can be represented in the unified and universal
representation, the so-called reduced-frequency nomogram. This representation is very useful
and broadly applied since it represents simultaneously the frequency and the temperature de-
pendence of the complex modulus of a viscoelastic material by a single pair of curves: one
for the storage modulus and another representing the loss factor distribution. Figure 7 overlaps
the original nomogram of the 3M ISD112 viscoelastic material provided by the manufacturer
[43] with the identified nomogram of the 3M ISD112 specimen under analysis. The identified
nomogram agrees well with the one published by the viscoelastic material manufacturer and is
consistent with other nomograms obtained with other specimens with different geometry using
the same methodology. The reader is referred to the well-known textbooks of Nashif et al.
and Jones [1, 4] for further details about the frequency-temperature equivalence principle and
construction of the nomogram.

4 PARAMETERS CURVE FITTING

From the measured material properties (identified nomogram) of the 3M ISD112, and us-
ing the shift factor relationship previously determined, one can obtain the frequency dependent
complex modulus for different temperature values. In order to use the internal variables vis-
coelastic damping models GHM and ADF defined in Sections 2.3.2 and 2.3.3, the characteristic
model parameters (three and two for each GHM and ADF series, respectively) were determined
using a curve-fitting technique based in the minimization (optimization procedure) of the least
mean square error between the measured and predicted data, using the GHM and ADF defini-
tions of the complex shear modulus in Equations (14) and (24), for a specified frequency range
of interest. The number of series used in the GHM and ADF models determines how well the
models are capable of matching the data over the frequency range of interest.
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Figure 7: Nomogram of 3M ISD112: manufacturer’s (black) and identified (color).

Table 2: Identified GHM and ADF parameters for material 3M ISD112 at 27°C.

Model GHM ADF

3 1 0.1633  4.8278 28045 22.013 0.1789  3.5286 504.20
2 14.548 41494 3.1275 8.7533 4286.5
3 40.043 41601 0.6165 60.324 39313

For each viscoelastic model, one and three series of parameters were used to curve fit the
identified complex modulus of the 3M ISD112 material at 27°C over the frequency range
[10 — 3000] Hz. The fitted curves of both models are presented in Figures 8 and 9 and compared
with the measured data.

As can be verified, the quality of the fit depends on the number of terms (series) retained
in the models. Using more series improves the accuracy of the models material description,
however increasing the size of the problem. The values of the parameters determined in the
fitting process for both GHM and ADF models are presented in Table 2. It’s worthy to mention
that the values of the parameters determined are guaranteed to define the material properties
with accuracy only over the frequency range specified in the fitting process which in this case
is [10 — 3000] Hz. From the analysis of Figures 8 and 9 one can conclude that both models fit
the measured data with a satisfactory accuracy with 3 series of parameters (one serie wouldn’t
be enough).
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Figure 8: Curve fitted GHM curves with 1 and 3 series of parameters at 27°C.

Table 3: Material properties of the viscoelastic sandwich plate specimen.

Material G[GPa] v plkgm™I]
AA 1050A H24 26.5 0.32 2708
3M ISD112 Figure 7 0.49 1140

S VALIDATION OF THE DAMPING MODELS
5.1 Experimental specimen

The aim of this section is to assess and validate the GHM and ADF viscoelastic damping
models. Thus, a comparison of the FRFs of a viscoelastic sandwich plate predicted with the
two GHM and ADF models and by a direct frequency analysis (DFA) approach (as described
in section 2.3.1) and measured results is performed.

To develop the experimental study a sandwich plate specimen with an embedded viscoelas-
tic damping treatment was produced. The viscoelastic material considered is the material 3M
ISD112 [43] which was used to produce the viscoelastic layer applied in the core of the sand-
wich plate. The specimen was produced with aluminum plates (aluminum alloy 1050A H24)
with each skin (plate) with dimensions 200 x 100 x 1 mm. The properties of the viscoelastic
material and aluminium applied in the specimen are presented in Table 3.

The viscoelastic sandwich specimen (Figure 10) was produced by sandwiching a 3M ISD112
viscoelastic layer with dimensions 200 x 100 x 0.127 mm between two identical aluminium
plates. The specimen was produced following the manufacturer instructions and it was found
that the 3M ISD112 can be easily bounded to the metallic substrate at room temperature [43].

5.2 Experimental setup

The purpose of this experimental study was to provide reference data for a comparison anal-
ysis with the adopted viscoelastic models results. Thus, the aim of the experimental study was
the determination of a representative set of FRFs providing a reliable basis for comparison and
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Figure 9: Curve fitted ADF curves with 1 and 3 series of parameters at 27°C.

validation of the numerical models. The experimental specimen was suitably suspended in air
by using a lightweight nylon wire from a rigid frame to approximate free boundary conditions,
which minimize the boundary error effects. A grid with 15 points, as depicted in Figure 10, was
defined for measurement. An electrodynamic shaker (Ling Dynamic Systems - model 201),
suspended from an independent rigid frame, was utilized to generate a random [0 — 800] Hz
excitation applied in point 5 of the specimen. A thin and flexible stinger was used to link the
shaker to the miniature force transducer (Briiel & Kjer - model 8203) attached to the plate
surface, which provided the measurement of the applied dynamic force (Figure 11). The speci-
men response was evaluated by using a laser vibrometer (Polytec - model OFV303) to measure
the velocity of each point of the measuring mesh (Figure 12). The FRFs determination was
performed by a dynamic signal analyzer (Briiel & Kjar - model 2035). The temperature was
evaluated by a thermocouple located near the specimen. Fifteen FRFs (mobility functions) were
determined for the specimen. However, here, for comparison of the damping models, only the
driving point mobility FRF measured in point 5 is considered.

5.3 Assessment and comparison of the results

For comparison of results the driving point mobility FRF measured in point 5 of the mesh
depicted in Figure 10 is utilized. The predicted FRFs were determined using a 4-node facet
type quadrangular shell FE, based on a layerwise theory, developed for the dynamic modelling
of laminated structures. The sandwich plate was modeled with a FE mesh discretization of
32 x 16 elements (the reader is referred to [53] for further details about the FE model uti-
lized). The damping behavior of the viscoelastic sandwiched layer was incorporated by the
three methods previously described: direct frequency analysis (DFA), where the stiffness ma-
trix is re-calculated at each frequency value; the GHM and ADF models utilizing the three series
of parameters identified (Table 2). The measured and predicted FRFs are compared in Figure
13. Results of the natural frequencies and damping ratios for the first 4 modes are presented in
Table 4.
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Figure 10: Measuring mesh and viscoelastic sandwich plate specimen.

Figure 11: Experimental setup (specimen excitation).

From the results it can be observed that the predicted FRFs correlate well with the measured
one. Both natural frequencies and damping ratios are well estimated with the two prediction
methods, GHM and ADF models. It’s worthy to mention that the DFA approach is very time-
consuming and doesn’t provide directly the modal parameters of the viscoelastically damped
structure. In opposition, the internal variables models provide an accurate mathematical model
of the structure allowing, as in this specific case, to determine directly the natural frequencies
and damping ratios from the extracted complex eigenvalues, identifying all the complex modes
which sometime might be difficult to identify from the pos-processing of the FRFs. Last but
not the least, the GHM and ADF models conduct to similar results, however, the size of the

Table 4: Measured and predicted natural frequencies [ Hz] and modal damping ratios [%] of the first 4 modes of
the viscoelastic sandwich plate.

1st mode 2nd mode 3rd mode 4th mode
Measured 235.1 (14.1 - 521.0 (12.1)
Predicted (DFA)  233.9 (13.0 — 518.6 (15.1)
Predicted (GHM) 235.7 (13.7) 268.2 (12.7) 524.3 (16.8) 556.8 (19.3)
Predicted (ADF)  233.8 (14.1) 269.4 (13.3) 524.2 (16.5) 554.5 (18.7)

~— — — —
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Figure 13: Direct mobility FRF of the viscoelastic sandwich plate at 27°C).

problem with the ADF model is smaller and one concluded that the fitting process is easier to
perform with the ADF model.

6 CONCLUSION

This paper has presented FE-based analytical strategies to model the damping behavior of
viscoelastic materials which might be used (surface mounted, constrained or embedded) as
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damping treatments in structures. An experimental procedure to identify the complex shear
modulus of viscoelastic materials was presented and the obtained data was used to fit the internal
variables models GHM and ADF and identify their characteristic parameters for the 3M ISD112
viscoelastic material. Measured and FE-based predicted FRFs based on a direct frequency
analysis (DFA), GHM and ADF models, were compared in order to assess the damping models
and validate the experimental procedure for the material properties identification and the curve
fitting process.

The application of a discrete dynamic system, describing a SDoF analytical model, provides
a reliable identification methodology, since it is based on the direct (in opposition to indirect
measuring approaches based on vibrating beams) characterization of the complex stiffness of a
viscoelastic material sample in shear deformation, providing results similar to those published
by the material manufacturer.

Regarding the internal variables models under analysis here, which were implemented at
the FE model level, the ADF model is known to lead to an augmented model of the damped
structural system with a lower size than the GHM model. To the opinion of the authors the ADF
model represents the best alternative to accurately model the damping behavior since it yields
good trade-off between accuracy and complexity. One major disadvantage in using internal
variables models such as the GHM or ADF is the creation of additional dissipation (or anelastic)
variables increasing the size of the coupled damped FE model. However, an alternative based on
the direct frequency analysis (DFA) using the FE spatial model and re-calculating the complex
viscoelastic stiffness matrix for each discrete frequency value might be used with the outcome
of being simpler to implement and the drawback of being time-consuming and not providing
directly the modal parameters of the damped structural system. All the models have similar
accuracy and yield representative results of viscoelastically damped structural systems.
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