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Abstract – This paper focuses the control problem of a 

nonholonomic autonomous underwater vehicle, moving in the 

tridimensional space. The dynamic of a body in submarine 

environments is strongly nonlinear. This implies that classical 

linear controllers are often inadequate whereby Lyapunov theory 

is here considered. Methods based in this theory are promising 

tools to design controllers and are applied to the case of MARES, 

a small-sized autonomous underwater vehicle. Several controllers 

based only on Lyapunov theory are determined while others 

combine linear and nonlinear control theory in order to perform 

various maneuvers. Aiming to verify the correct performance of 

controllers, simulations and experiments are carried out. 

I. INTRODUCTION 

A. MARES AUV 

MARES, or Modular Autonomous Robot for Environment 

Sampling [1-2], is a 1.5m long AUV (Autonomous 

Underwater Vehicle), designed and built by the Ocean 

Systems Group at the Faculty of Engineering of University of 

Oporto. MARES has a slender body form and is endowed with 

four thrusters that confer it four controllable degrees of 

freedom (DOF). Each thruster may reach forces around 21.5N. 

It can dive up to 100m deep, and unlike similar-sized systems, 

has vertical thrusters to allow for purely vertical motion in the 

water column. Forward velocity may be independently 

defined, from 0 to about 1.5 m/s by regulation of horizontal 

thruster forces. 

Though MARES can have multiple configurations, we will 

only assume the presented in fig. 1. 

 
Fig. 1: MARES AUV ready for an autonomous mission. 

B. Dynamic 

Every body inserted in a fluid is experiences several forces 

during its motion [3-5]. For submerged bodies, these forces are 

essentially: 

- Added mass forces, originated by the acceleration of 

involving particles of fluid during the acceleration of the 

body;  

- Drag forces, due to friction and pressure on the hull and 

vortices created by non null velocity; 

- Froude-Krylov force due to the acceleration of the fluid; 

- Restoring forces due to the weight and to the buoyancy; 

- Propulsion forces exercised by actuators (thrusters). 

The resulting dynamic is highly nonlinear and depends on 

relative velocity and absolute position. In addition, the motion 

in six degrees of freedom turns the dynamic and the control 

problem more complex.  

C. Control 

The existence of referred forces confers to submerged body 

a highly nonlinear behavior during its motion. This fact 

implies that classical linear control may not be adequate for 

the referred dynamic. Though it is used by some authors for 

underwater vehicles, as [3] and [6], the system response tends 

to degrade in a large range of operation or even to turn 

instable. 

In addition, the complexity of the control problem increases 

when the vehicle moves in three dimensions. An interesting 

approach is proposed by [7] for underactuated vehicles path 

following. 

In this paper, we intend to design controllers for the 

nonholonomic vehicle MARES. These should allow 

performing several maneuvers in the tridimensional space.  

II.  BACKGROUND 

A. Kinematic 

In some robotic application it is useful to express different 

vectors in different coordinate systems [8]. For convenience, 

we define two referential. One of them must be fixed to earth 

and considered inertial. The second one is fixed to the vehicle. 

This allows defining vectors of the position and of the velocity 

related to fluid, respectively: 

 (1) 



 
The first three components of each vector are linear 

components and second ones are angular.  is given in the 

earth-fixed referential while  is given in the body-fixed one. 

The fig. 2 illustrates presented concepts. 

Both referential may be related by the rotation matrix 

. A linear vector  expressed in the body-

fixed referential may be expressed in the earth-fixed one, 

through the following relation: 

 (2) 

The rotation matrix is orthonormal, which implies that 

. It is important to refer that this matrix may be 

obtained by decomposition of elementary rotations such that 

 (3) 

 

 
Fig. 2: Representation of vehicle and referential 

B. Model of MARES 

Through motion modeling, we get a general equation of 

MARES dynamic, as follow: 

 
(4) 

where , , , ,   are, respectively, the 

rigid body inertia, the added mass inertia, the Coriolis and 

centripetal terms of rigid body, the Coriolis and centripetal 

terms of added mass and the viscous damping matrices. 

 is the velocity vector,  its time derivative,  the 

position vector,  the restoring forces and moments 

vector,  the actuation matrix and  the 

generated thruster force vector. 

We consider that the fluid acceleration is small in locals 

where missions are performed, whereby Froude-Krylov forces 

are negligible. Remaining forces depend on geometric, mass 

and buoyancy characteristics, as it can be verified in [3], [6] 

and [9]. 

C. Lyapunov direct method 

Lyapunov theory is often used in nonlinear systems as in 

[7]. It allows concluding about the stability of a system and 

designing control laws. Authors recommend the reading of 

[10] and [11] for a more detailed presentation of the Lyapunov 

theory.  

Lyapunov direct method is based on the analysis of energy 

behavior in a system. The major principle is reasoned by the 

following fact: if the total energy of a system is constantly 

dissipated along its operation, or motion, it will stabilize in an 

equilibrium or point, or state. To illustrating this idea, we 

consider an oscillating pendulum with non null potential 

energy. Assuming that there exists friction due to oscillation, 

the amplitude of its motion will reduce gradually until stop in 

the point where the resultant force is zero (equilibrium point 

where the potential energy is lower). 

Before presenting the more useful results from this theory, 

we must define concepts of positive and negative definite: 

- A scalar function  is said to be globally positive 

definite if ,  and globally positive 

semi-definite if , ; 

- A scalar function  is said to be globally negative 

definite if ,  and globally negative 

semi-definite if , . 

A function  is said to be a Lyapunov function of a 

system if it is positive definite, with continuous partial first 

derivatives and, in addition, if its time derivative is negative 

semi-definite ( ) for any trajectory of the 

state . 

Lyapunov theory states through the global stability theorem 

that if “there exists a scalar function  of the state  with 

continuous first derivatives such that  is positive definite, 

 is negative definite and  as , then the 

equilibrium point at the origin is globally asymptotically 

stable” [10]. 

III. CONTROL 

In order to perform some maneuvers, it is necessary an 

adequate control of MARES AUV. Using Lyapunov theory, 

we will determine several controllers. In this section, we start 

by presenting the development of vertical and horizontal 

velocity, prosecuting with position controllers. These last will 

allow that the vehicle remain in a determined vertical position, 

follow an imaginary line or circle and stay immobile in the 

water column. 

The model given in the section II allows obtaining an 

approach to the real behavior of MARES, however it is 

affected by modeling uncertainties and neglected terms. For 

the development of controllers, these deviations are considered 

disturbances during the operation of the vehicle. 

The control of MARES is realized by actuations of 

thrusters, whereby, from expression (4), we may conclude that 

 is the control variable. We assume that we can instantly 

vary the forces of propellers though it is not true in reality. 

This assumption simplifies the analysis and the determination 

of controllers and can be justified by the fact that time 

constants associated to the actuation are much smaller than the 

ones associated to the vehicle motion. Some controllers are 

developed combining nonlinear and linear [12] controllers. 

A. Vertical velocity controller 

In this subsection we will only consider the motion in the 

vertical plane or, in other words, in the -axis direction and in 



the pitch angle (see fig. 3). To simplify the determination of 

the vertical velocity controller, we start by reducing the order 

of the model. This implies that we must eliminate lines and 

columns of matrices of equation (4) whose influences in the  

and pitch motion are negligible. It results on the elimination of 

second, fourth and sixth lines and columns of matrices in (4). 

In the vectors case, only the same lines are eliminated. Note 

that the forward velocity  (after -axis) is considered in this 

case because the model has non negligible cross terms that 

influence the vertical motion, as it can be seen in [9]. 

Neglecting this velocity component would not be critical but it 

would generate a less robust response of the system to 

disturbances due to forward velocity. 

 
Fig. 3: Vertical motion of MARES 

We wish to control the linear and angular velocities  and 

, whereby we define an error vector as follow: 

   

  (5) 

   

where , in this case. 

It is important to refer that the error component after  

( ) is always zero because we are not interested in 

controlling this variable. 

The expression (6) defines the Lyapunov candidate 

function: 

 (6) 

whose time derivative results 

   

  (7) 

After the Lyapunov theory, the stability of the system 

implies that  must be negative definite, which leave to 

impose 

 (8) 

where . 

In order to satisfy (8), knowing that we can not vary the 

error variable  instantaneously, we define a new error 

variable , which we want to leave to zero, such that 

 

 

. 

(9) 

Re-writing the time derivative of the Lyapunov function, we 

get 

. (10) 

Substituting (9) into the simplified equation of (4) and 

manipulating algebraically, we obtain, assuming that 

 is invertible, 

 
(11) 

where, in this case, , , ,  , ,  , 

 and  are matrices and vectors of the 

simplified model. 

In order to guarantee that  is negative definite, we choose 

 as we show in the following expression, considering that we 

can actuate directly in this variable: 

 
(12) 

where  is the generalized inverse of . This expression 

gives the closed loop control law for the vertical velocity.  

Consequently, the time derivative of the Lyapunov function 

in (10) results  

 (13) 

as desired for the asymptotical stability of the system. 

The determination of the value of  depends on actuators 

characteristics, especially on their saturation value. This gain 

is dimensioned in order to not reach actuation saturation 

during long intervals of time, which could degrade the 

response of the system. In addition, it is convenient to define 

error saturations, preventing the non desirable saturation 

reaching. These saturations are determined according to 

maximum obtainable velocities. 

In most of cases, controller gains must be adjusted using 

practical techniques, in particular for nonlinear systems, for 

which it is difficult to compute response characteristics as 

overshoot, rising time or settling time. 

B. Horizontal velocity controller 

As for the previous case, we start by reducing the order of 

the model in (4), reducing the complexity of the controller 

determination. Only motions after ,  and yaw are 

considered, as it is shown in fig. 4. Remaining components are 

neglected because, according to the model [9], their influences 

are relatively small, whereby their inclusion is not justified and 

are considered disturbances. This implies that third, fourth and 

fifth line and columns of (4) are eliminated. In vectors cases, 

only lines are eliminated. 

 
Fig. 4: Horizontal motion of MARES 



As it is illustrated in fig. 4, we are interested in controlling 

the forward velocity  and the angular velocity . Thus, we 

may define the error vector  as the difference between 

the velocity reference  and the relative velocity : 

   

  (14) 

   

Note that the lateral velocity error is always null, since we 

do not want to control it.  

The determination of this controller is similar in every step 

to the vertical velocity controller. The resulting expression of 

the control law is equal to (12). Only matrices and vectors of 

the simplified model are different. 

Computing of the gain is either similar to the previous 

section, where actuation saturations and maximum values of 

velocities are taken into account to define  and error 

saturations values. 

C. Vertical position controller 

In this subsection we will present two different approaches 

to control vertical position (  and ). The first is based on 

Lyapunov theory and on backstepping techniques [11] while 

the second uses the vertical velocity controller deduced in A, 

with an external loop of position.  

1. Controller 1 

In order to simplify the manipulation of the controller 

expression, only motion after ,  and pitch are considered. 

As for the vertical velocity controller, second, fourth and sixth 

lines are eliminated from the expression (4). 

For the design of the controller, it is more interesting to 

define vertical position references in the earth-fixed 

referential. To relate vectors of the simplified model 

(coordinates in ,  and pitch components) in both 

referential, we must define a matrix  such that 

 (15) 

Considering that there is no motion after roll (rotation after , 

), it results: 

  (16) 

 
  

where  represents the result of the selection of 

first and third lines and columns of the rotation matrix in 

section II, assuming that  and  are zero. 

In this case , which allows defining a new matrix that 

relates  with its time derivative, such that 

 (17) 

where  is skew-symmetric, given by 

 (18) 

This relation will be useful in the next controller deducing 

steps. 

We define the error vector in the body-fixed referential as: 

  

(19) 

 

 

 

 

Note that we do not want to control the -component, so its 

error is always null ( ). This leaves to following first 

and second time derivatives of the reference position, 

respectively: 

 (20) 

 (21) 

We now define the Lyapunov candidate function as follow: 

 (22) 

Whose time derivative results 

  
(23) 

  

Knowing that  because that  is skew-symmetric, 

we get: 

 (24) 

Backstepping techniques will be used in order to reach an 

adequate control law for the motion of the vehicle. Recursive 

error variables and Lyapunov candidate functions will be 

determined. 

The asymptotical stability implies that  is negative 

definite, so we impose that: 

  
(25) 

  

where . Note that we consider  because we 

assume that the inertial referential moves with the irrotational 

(no angular velocity) flow , whose acceleration is 

considered null. 

We define a new error variable that we want to leave to 

zero: 

 (26) 

Substituting this last expression into (4), we obtain 

 

(27) 



From this expression, we may conclude that it will not be 

always possible to leave  to zero if the control law is 

deduced directly at this step. For example, if  and 

, it results , which implies no variation in . 

Thus, we define a new error variable that we want to leave 

to zero too: 

 (28) 

where  is constant vector with arbitrarily small 

components, in modulus. It is referred as a design vector by [7] 

and allows defining the steady state error signal.  

The augmented Lyapunov function comes 

 (29) 

and its time derivative results 

  
(30) 

  

Substituting (28) into (27), we get 

 

(31) 

Aiming to turn  negative definite, we choose the control 

variable such that 

 

(32) 

where .  

This allows to re-write (30) as 

 (33) 

Analyzing this last expression, we may verify that  could 

not be always negative definite due to the term , but  can 

have arbitrary small values depending on the steady state error 

that we wish. In other hand, if the instability caused by this 

term leaves the system to diverge,  will increase, in modulus, 

and consequently  will turn negative. 

As for the previous controller gains,  and  must be 

determined considering actuation limits and error saturation 

that either must be established. 

2. Controller 2 

Unlike to the vertical position controller 1, we will deduce a 

controller that uses the velocity controller deduced in A. The 

architecture of the system will result in that shown in fig.5. 

 
Fig. 5: Architecture of vertical position control 

Velocity references (  and ) will be generated 

dynamically and will be applied to the vertical velocity 

controller. The use of this last controller allows virtual 

decoupling of both linear and angular velocities. 

Consider the following figure. We wish that the vehicle 

reaches a depth reference  and a pitch angle . 

 
Fig. 6: Vertical motion in position control 

To determine this controller, we start by defining position 

errors in the vertical plane (see fig.6): 

 (34) 

 (35) 

These errors allow defining of a position controller with 

proportional and integral gains. In reality, this will be 

constituted by two independent controllers of the depth and of 

the angle: 

 (36) 

 (37) 

where , , ,  are proportional and integral 

gains. 

With the determination of this controller, we want to obtain 

an invariant behavior independent of error values. However, 

integral terms in (36) and (37) are directly dependents of 

errors. To illustrate this concept, consider a constant error that 

leaves actuation to saturation during an interval of time. The 

maximum value of the velocity  would be reached and the 

actuation would continue to be saturated. The bigger the error, 

the bigger the integral term due to the elapsed time and to error 

value. This behavior may be attenuated saturating the error, 

activating and reinitializing the integral component only when 

the error is not saturated: 

 (38) 

Controller gains must be determined considering velocities 

saturation values of the vertical velocity controller and error 

saturations.  

D. Line following controller 

The controller that will be determined in this subsection will 

permit the following of an imaginary straight line in space 



defined by two horizontal points  and . With 

previous determined controllers we may assume that this 

motion is independent of the vertical one. Therefore, it implies 

that the vehicle can follow a line and dive simultaneously, for 

example. The architecture of the controller is presented in fig. 

7. 

 
Fig. 7: Architecture of the line following controller 

Note that forward relative velocity is defined independently. 

It will not be generated by the position controller and may be 

modified along the trajectory. 

In order to guarantee a high dynamic response of the system 

for any distance and any angle to the line, it is necessary to 

determine an approach and a proximity controller. The first 

one will be responsible to approach the vehicle to the line 

while the second one will have the function of leave the error 

to zero in steady state. The commutation between them must 

be done according to the distance. The structure of the 

horizontal position controller in fig. 7 is presented in the 

following figure. Hysteresis values are arbitrated.  

 
Fig. 8: Structure of the horizontal position controller 

1. Approach controller 

Imposing a forward velocity reference to the controller, it is 

necessary that its orientation (yaw angle ) allows the 

approach to the line. The minimum distance between the 

vehicle and the line is given by the segment that intersects the 

vehicle and is perpendicular to the line. Thus, the approach to 

the line will be done perpendicularly to the line. 

Therefore, we define the equation of the straight line that we 

wish to follow as a function of the absolute position 

component : 

 (39) 

where  and . 

Assuming that , we define the angle of the 

perpendicular to the line that we wish to follow as 

  
 

  (40) 

  
 

where . 

Thus, the error of the angle of the vehicle during the 

approach to the line is given by  

 (41) 

Presented concepts are shown in fig. 9. 

 
Fig. 9: Approach to the line 

The resulting control law follows: 

 (42) 

where  is the proportional gain computed taking into 

account the saturation of  and the yaw velocity reference 

 saturation in the horizontal velocity controller, which it is 

applied. 

2. Proximity controller 

With this controller, we intend to obtain a null distance to 

the line in steady state. In order to reach this aim, we introduce 

a proportional and an integral component of the distance error, 

which is given by 

  (43) 

   

 
Fig. 10: MARES on the proximity of the line 

In order to impose the following direction (from point 1 to 

point 2), it is also necessary adding a proportional term of the 

angle between the vehicle and the line. To satisfy this, we re-

define the angle error: 

 (44) 



The control law results: 

 (45) 

When there is a commutation to the approach controller, the 

integration must be suspended and reinitialized ( ). 

Gains have to be computed in such a way that the  is 

dominant and  do not overcome , in order to 

have an asymptotical convergence of the error to zero. The 

integral term is directly dependent of time and indirectly 

dependent of the forward velocity, whereby it results . 

In other words, the integral gain must be computed for 

different . Error saturations of the horizontal velocity 

controller must also be taken into account.  

It is interesting that the vehicle could describe the same 

trajectory (relating to the fluid) during the line following, 

independently of the forward velocity . The trajectory 

described by the vehicle in the position  during an 

infinitesimal interval of time may be considered as an arc of 

circumference with curvature . If this function is 

invariant, that is  

 (46) 

with , then the trajectory will be invariant, since the 

initial condition are the same. 

We may write 

 (47) 

where  and  are velocities of rotation after yaw for the 

velocities  and  respectively. 

Control laws for both cases are given by 

 (48) 

 (49) 

Using (47), (48) and (49), we easily conclude that gains 

values are related as follow: 

  (50) 

  

E. Circle following controller 

In this subsection, we intend to design a controller that 

allows following a circumference in the horizontal plane, 

defined by its center  and its radius . Many concepts 

presented here are similar to those presented for the design of 

the previous controller. 

The architecture followed is equal to the presented in fig. 7, 

except in a detail: references applied to the horizontal position 

controller are the radius and the center of the circumference 

instead of line points. Here, we also need two “sub-

controllers”: an approach and a proximity controller. 

1. Approach controller 

We start by defining the error due to the distance to the 

circle: 

 (51) 

The approach to the circle is carried out controlling the yaw 

angle , whose reference value is given by (52). If the vehicle 

is in the interior of the circle, it must be orientated to its 

exterior and vice-versa.  

 

 

  

  (52) 

   

The angle error comes 

 (53) 

and the respective control law is given by: 

 (54) 

When the vehicle reaches a sufficiently small (arbitrated) 

distance to the circle, there is a commutation to the proximity 

controller. 

2. Proximity controller 

The following figure illustrates the circle following 

maneuver. 

 
Fig. 11: MARES on the proximity of the circumference 

The yaw angle reference is given by the following 

expression: 

 

 

 for 

counter clockwise rotation 

 

  (55) 

  for 

clockwise rotation. 

 

The yaw error expression results the same as in (53). 

In order to obtain a null error of the distance in steady state, 

it is necessary to introduce proportional and integral 

components of it. Distance error is defined as we show in the 

next expression: 

 

 

for 

counter clockwise rotation 

 

  (56) 

  for 

clockwise rotation. 

 

We obtain the following control law: 

 (57) 



Gains are determined as it is referred for the line following 

case. It is also possible to achieve same trajectories applying 

expressions deduced in (50). Integral component must be 

reinitialized and maintained equal to zero when the approach 

controller is activated.  

F. Horizontal position controller: go to  

Considering that the flow velocity of the involving fluid  

is sufficiently small compared to that of the MARES, in such a 

way that it can move in all directions, we determine a 

controller that supplies the horizontal velocity controller with a 

reference. The architecture adopted is similar to the one 

presented for the vertical position controller in fig. 7. It will be 

divided into two basic controllers: an approach controller 

similar to those presented in previous subsections and a 

proximity controller that allows the vehicle to stabilize in the 

target, with no motion regarding to an earth-fixed referential. 

1. Approach controller 

In order to guarantee that the system has a good behavior for 

a large range of operation, an approach is performed before the 

maneuver of immobilization. This is achieved at an externally 

defined forward velocity reference , correcting the angle 

between the orientation of the vehicle and the straight formed 

by the reference point  and the vehicle, along the 

trajectory. Thus, it result 

 (58) 

The control law is then given by 

 (59) 

where  and . 

2. Proximity controller 

Taking into account that MARES has only four degrees of 

freedom, in steady-state the vehicle must be parallel to the 

current flow. In fig. 12, we show the vehicle with a given 

reference , in a fluid with non null linear velocity. 

 
Fig. 12: Horizontal motion of MARES with non null current 

The -component of fluid velocity in the vehicle 

referential is given by : 

 (60) 

which expression, for  and , may be approximated 

by 

 (61) 

where we recall that  is the time derivative of the absolute 

position in the inertial referential (earth fixed). 

The error distance vector  referred to the body-

fixed referential is given by the following expression: 

 (62) 

The effect of the longitudinal error  must be reflected 

directly in the forward velocity reference . In other hand, 

the lateral component of the fluid velocity  and lateral 

component of the distance error  must be actuate in the yaw 

velocity reference . Therefore, obtain the following control 

law: 

 (63) 

 (64) 

where , , , , . 

It is important to refer that, for the expression (64), the 

compensation effect of the flow, given by , must be 

dominant relatively to others, guaranteeing that the fluid 

velocity do not induce an excessive lateral force. In other 

words, the yaw angle  of the vehicle must oppose to the flow 

( , with small deviations. So 

proportional and integral gains must be computed considering 

these facts and velocity error saturations of the horizontal 

velocity controller. 

Integration components of (63) and (64) must be 

reinitialized whenever the approach controller is activated. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

In order to test controllers determined, we implement a 

simulation of vehicle. The complete model with six degrees of 

freedom, deduced in [9], given by the nonlinear differential 

equation (4), is simulated through the Matlab Simulink. 

Environment restrictions and limitations are recreated: high 

uncertainty and low frequency due to the horizontal acoustic 

positioning [13] are the more important characteristics. In the 

case of MARES, positioning is done at a frequency of Hz 

and is affected by an uncertainty of  to  meters. Remaining 

state variables, as depth, yaw and pitch angles are read directly 

from relative sensors and are assumed to be precise and not 

affected by noise. 

In some cases, we intend to validate controllers and the 

dynamical model through comparing of results. 

A. Vertical motion 

Aiming to do different positions, we design a mission for 

the vehicle where it dives at constant velocity  at 

 until reach  of depth. At this moment, the position 

must be controlled at the same depth assuming several pitch 

angles. The response of the system is shown in fig. 13-14. 

It can be seen that wave forms have different phases, 

particularly from  to next instants of time. This is due 



to lack of synchronism of time between simulator and platform 

where controllers run. 

In this case, we opt to show only vertical position controller 

2 because this is what presents better performance. Controller 

1 is particularly sensible to actuation saturation and, for fast 

dynamics, gives more poor performances than controller 1. In 

addition, given that it has not integral component of the error, 

it do not reach null error in steady state.  

 
Fig. 13: Experimental and simulation results for depth  

 
Fig. 14: Experimental and simulation results for pitch angle  

These results are satisfactory and allow validating of 

vertical velocity and position controllers. Model may be 

partially validated here, considering that experimental and 

simulated responses are very similar. 

The additional noise in experimental collected data may be 

due to waves and wind that are not considered in the model 

and knowing that the vehicle is near from the surface.  

B. Line following 

In fig.15, the resulting trajectory for a mission where the 

vehicle must follow a line at  is shown. 

As we can see, the trajectory affected by noise, particularly 

in the approach to the line with equation , due to the 

acoustic localization. At the moment we are not in condition to 

verify if all collected points are correct because acoustic may 

fail during the operation. In these instants, estimators compute 

the position of the vehicle. However, it is possible to conclude 

that the general behavior is satisfactory. 

 
Fig. 15: Described trajectory for the line following 

We show the filtered data of the velocity during the 

approach to the line in the next figure. This is obtained by the 

time derivative of the absolute position of the MARES AUV.  

 
Fig. 16: Forward velocity during the line following 

Through simulation, we obtain errors of the distance to the 

line as function of time for distinct velocities. This allows 

comparing trajectories in the approach to the line. 

 
Fig. 17: Comparison between error for different forward velocities 



Though not exactly the same, errors are very close. It allows 

us to conclude that trajectories are very close too. Note that for 

initial instants the error is null because it is not considered 

during the approach to the line. 

C. Circle following 

In Fig. 18, we show the described trajectory for a circle 

following and with radius  and center 

, at constant depth . The simulated flow 

velocity is . 

 
Fig. 18: Trajectory described by MARES for the circle following 

D. Immobilization 

For the demonstration of the immobilization controller, we 

simulate its behavior and consider a vertical position controller 

variant where only the pitch angle  is controlled. This implies 

that the vehicle dives if it has negative  and positive relative 

velocity , as it shown in the next figure of the described 

trajectory. 

 

In steady state, it is possible to verify that the vehicle 

position vary due to the positioning noise. 

V. CONCLUSIONS 

In this paper, we have started with background theory as 

kinematic, modeling and Lyapunov fundamental concepts, 

methods and theorems. Next, we have determined several 

controllers. Due to actuators configuration, we achieve 

decoupled motions of the MARES AUV, through control of 

horizontal and vertical positions and velocities. The 

implementation of these controllers allows performing 

relatively precise maneuvers such as follow an imaginary line 

or circle and immobilizing in a horizontal point. Finally, their 

performances are demonstrated by near from reality 

simulations and experiments, in some cases. 
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Fig. 19: Trajectory described for the horizontal immobilization with simulated 
noise. 

 


