WAVESIM - WATER VEHICLE SIMULATOR

Anténio Santos Anibal Matos

{ansantos, anibal} @fe.up.pt
Ocean Systems Group
Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias
4200-465 Porto, Portugal

Abstract: This article introduces a new framework for the simulation of multiple
water vehicles operating simultaneously. Its main goal is to be used as a testing tool
to help the development and implementation of the vehicles’ on-board software.
This simulator provides real-time realistic dynamic behaviour of underwater and
surface vehicles as well as acoustic navigation by simulating acoustic signal
propagation and providing acoustic transducers on vehicles and pre-located buoys.
Pressure, temperature, condutivity, salinity and sonar sensors emulation is also
provided and water flows can also be defined. There should be no intrusion in
the existing software and a small SDK is available to help building a broker
application that makes the bridge between the software and the simulator, both
possibly running on different network peers. A provided 3D visualization system

may also be used to control and watch the simulation.

Keywords: Simulation, multiple vehicles, acoustic navigation, dynamics

1. INTRODUCTION

No matter what we’re talking about, testing and
debugging is the most time consuming task in
the development process. In what it takes to
ocean technology stuff, this statement is even
more stressed due to sea related difficulties that
arise when setting up the needed apparatus to get
your device properly working and operating on
water. Surface and underwater vehicles construc-
tion is usually very complex. Not only the physical
aspects of the vehicle must be very tight and well
thought-out but also the electronic components
and the software must be designed in order to
safely and successfully accomplish several kinds of
missions. Testing the software usually means tak-
ing the vehicle into water which sometimes takes a
lot of time and effort. So, the possibility of testing
the on-board control and navigation software in
the lab with minimal intrusion is welcomed by the

community. Of course, the simulator should pro-
vide a realistic environment so that the software
can behave as close as possible as it would in a real
scenario. The dynamic properties of the vehicle,
the acoustic navigation and the on-board sensors
are the prevailing factors the on-board software
is depending on. There are few similar applica-
tions in this area. The NPS AUV Workbench
(NPS, 2006) and SubSim (Braiinl, 2006) are prob-
ably the most well-known simulators but their
main goal is different from WaVeSim’s. Mainly,
the possibility of testing the on-board software,
the support for multiple vehicles connected by
network and operating simultaneously and the
support for real-time acoustic navigation are the
features that greatly distinguish WaVeSim from
the others and the major motivation factors to
start this project.

2. WAVESIM

The Ocean Systems Group at the Faculty of En-
gineering in the University of Porto is developing
WaVeSim, a water vehicle simulator written in
C++ which takes into account all those testing
and debugging issues and will hopefully ease the
pain of setting up a camp site for software testing
operations. Those who have properly developed
control and navigation software that communi-
cates with the hardware through its drivers can
easily use this simulator by just developing a
broker which will replace the drivers and will
do all the interaction with WaVeSim through an
ubiquitous medium like the Internet and by using
a clear and specific communication protocol. The
main idea is to run the on-board software in the
vehicle but with the sensors turned off. That is,
the on-board software will not be aware that it
is working with a simulator instead of a real set.
This broker can be easily developed by using a
provided library.

3. MAIN FEATURES

This kind of simulator is not that common in
this area. WaVeSim has some major features that
should appeal to the people working with this
technology. First, it supports simultaneous multi-
ple vehicle simulation. Several surface or under-
water vehicles can be connected and operating
simultaneously and the simulator should provide
realistic behaviour for each vehicle independently.
Second, it provides realistic dynamics and hydro-
dynamics by using a physics engine. The prop-
erties of each vehicle must be provided to the
simulator, like its geometry, mass and inertia, as
well as hydrodynamic coefficients so that every-
thing can be correctly integrated and the vehicle
movement may be as realistic as possible. Third,
it precisely emulates some common sensors like
temperature, pressure, condutivity and sonar sen-
sors. This sensor emulation is done by external
processes so that it may be easy and practical
to hot-swap them. Finally, this simulator is also
able to simulate acoustic navigation by allowing
the positioning of virtual acoustic beacons in the
simulation world and by coupling emulated acous-
tic devices to the simulated vehicles and buoys.
This way, the developed algorithms for acoustic
navigation can easily be tested without setting up
a real acoustic network.

4. GENERAL OVERVIEW

Like most of the newest projects that are being
actively developed, WaVeSim relies on the Inter-
net. The communication between the on-board

software and the simulator is based on a message
protocol which uses UDP over the network for
transportation. WaVeSim accepts client connec-
tions anytime and provides a keep-alive system
to check if some client has disconnected. All the
simulation data is kept in semaphore protected
shared memory areas so that it can be available
to external processes. Among these are the sensor
emulators which update their values based on the
vehicle’s position. Also, the visualisation system
is decoupled from the simulator itself so that
the latter may run using a different visualisation
system or with none at all. An XML file-based
configuration system allows several parameters
to be easily defined. The broker application will
replace the real hardware drivers and will take
over their communication channels with the main
control and navigation software. Then, it will do
all the necessary interaction with WaVeSim and
will translate the vehicle’s data that comes from
the simulator into properly formatted data that
can be sent to the main software like a real device
driver would do.

5. INTERNAL STRUCTURE

WaVeSim’s internal structure is based on threads,
each one with a specific task. There are a few
global data structures which are shared by the
simultaneous running threads, mainly vehicles,
buoys and acoustic signals maps and vectors. Two
shared memory areas are used to store simulation
data. One of them stores general simulation data
like the elapsed time, the simulation state, the
number of clients and some client data like each
client’s type, connection status and keep-alive
information. Also, the configurable parameters are
also stored here like the timestep, the sound speed,
fluid density, water flows and other simulation
world related data. The other shared memory
area stores vehicles and buoys’ data. Besides the
dynamic data like geometry, position, attitude,
angular and linear velocities and motor actuation,
also the output from the several sensor emulators
is stored here. Also, a few other client specific data
is stored here like its ID, name, model, IP address
and port. These areas are protected by POSIX
semaphores to guarantee data consistency when
different processes or threads are performing I/0
operations on them.

5.1 Simulation timer

WaVeSim’s main process has several components
that interact with each other so that a real-time
simulation can be achieved. In the deep core of
the system lies a timer which fires an event at
each pre-defined timestep. The precision of this

Cinfo | :
Sh. Mem g €
”””””” £ |2
N7 >
$ g
,,,,,,,,,,, © | 8!
Onboard ! Clients = 3
Sotwverg - shvem
1’ [
oo
i 8 ! | |Sensor| |sensor
¢ O Emul. Emul.
Client o o S
T . ittt - libwavesim

Fig. 1. WaVeSim general overview

timestep is limited by the timer frequency value
set in the kernel, but most Linux distributions
allow a precision of 4 ms or less. At each timestep
advance, all the vehicles’ dynamic data and the
active acoustic signals’ properties are updated.
When the simulation is stopped, this timer is
unarmed and there no updates at all, eventhough
the clients still may interact with the simulator.
The simulation timestamp is simply the number of
tenths of milisecond since the start of simulation.
This value is computed by simply calculating the
difference between the actual system clock time
and the one from back when the simulation had
started.

5.2 Connection Manager

The connection manager runs as a thread. It opens
a single UDP socket and listens for incoming
messages on it. These messages’ format obey to a
predefined and very clear messaging protocol and
this manager reacts accordingly to each message
type. Also, this manager is used to send any
message to a client by using its IP address and
port.

5.3 Commander

The commander is simply a POSIX message
queue that is used to receive command messages
from the outside. There’s a short set of command
messages available, mainly for starting/stopping
the simulation.

5.4 SendState and KeepAlive

These are two threads that perform two of the
most important tasks in WaVeSim. SendState
periodically cycles through all the clients’ data

structures and sends them to each client individ-
ually. Since WaVeSim uses stateless connections,
KeepAlive keeps track of the connection status of
each client to be sure that when a client closes the
socket on its side it is removed from the simula-
tion. This keep-alive system works by periodically
sending a simple message to each client and mea-
suring the time it takes to receive the reply. If it
takes more than a pre-defined number of seconds,
then the client is considered disconnected and is
removed from the simulation.

5.5 Logger

A simulation shouldn’t be limited to its running
time. In order to get the most of it, it must be
possible to analyse all the elapsed events at a later
time, mainly the vehicles’ movements and the
exchanged acoustic signals. Therefore, a logging
system is also running as a thread, logging the
vehicle’s position, attitude, linear and angular
velocities and motor actuation at a rate defined
by the user. Apart from that, all the sent and
received signals are logged with their frequency
and intensity at the time the event happens.

6. DYNAMICS

The on-board control and navigation software acts
upon the vehicle’s position and attitude in order
to take it to a specific waypoint. The motor actu-
ation forces, buoyancy and drag forces determine
the vehicle’s movement, so for the simulation to
be really useful we need to have a fast and precise
dynamics calculation. WaVeSim uses the Newton
Game Dynamics (NGD) (Jerez, 2006) physics en-
gine to take care of all this stuff. This physics
engine is an integrated solution for real-time sim-
ulation of physics environments. It implements
a deterministic solver for the dynamic equations

based on a timestep advance. It features a quite
extensive API so that it can easily be integrated
with any C/C++ application. NGD works by
creating a world defined by its boundaries and
by adding bodies to it at initial positions. Each
body has its own geometry based on geometric
primitives and has a mass matrix and a trans-
formation matrix. In order to apply forces to it, a
callback function should be provided so that NGD
calls it for each timestep advance. Finally, we need
to provide several vehicle dynamic properties to
ensure that the physics engine gives the results
we expect. In order to have things quite simple,
WaVeSim uses basic geometric primitives for each
client type: surface vehicles are boxes, underwater
vehicles are cilinders and buoys are spheres. For
each client type, WaVeSim allows the definition
of several different models, each one with its own
characteristics. For each model we should define
the following dynamic properties that should be
as close as possible to the ones from the vehicle
we want to simulate (Fossen, 1991):

e Depth, width and height (for surface vehi-

cles)

Radius and length (for underwater vehicles)

Diameter (for buoys)

Mass and added mass

Inertia and added inertia on each axis

Center of mass

Linear drag coefficients (first and second or-

der)

e Angular drag coeflicients (first and second
order)

e Thrusters position and maximum force (not
available on buoys)

For each body, the callback function that applies
forces and torques acts like the following (Fossen,
1991):

(1) Get vehicle’s velocity from NGD and sub-
tract to it the water’s velocity at that point.

(2) Apply buoyancy force (NGD supports it by

defining a water plane and applying the

Archimedes principle).

) Apply gravity force.

4) Apply linear drag (Fy = > a,vlv|*™1).

) Apply angular drag (74 = >, apw|w|"™1).

) Apply the sum of all motor forces on the
local zz axis (horizontal motors) and on the
local zz axis (vertical motors (underwater
vehicles)).

(7) Apply the sum of all motor torques based on
each motor’s location and the vehicle’s center
of mass.

NGD also handles body collisions. The vehicle’s
transformation matrix (with orientation and posi-
tion) is then stored in the vehicles’ shared memory
area.

7. ACOUSTIC NAVIGATION

This simulator is very specific to robotic de-
vices operating in water environments. Thus, since
acoustic navigation is the preferred navigation
method, WaVeSim supports signal propagation
and acoustic transducer emulation on vehicles and
buoys. If a vehicle has to have an acoustic trans-
ducer, that must be declared in its configuration.
If so, it also must be declared its position on
the vehicle. That made, the vehicle can send and
receive acoustic signals. When the on-board soft-
ware fires an acoustic signal request, the simulator
gets the message and adds the signal to a vector of
active signals. Each signal has a frequency, initial
and actual intensity, radius, timestamp and ori-
gin point. For each timestep advance, each active
signal’s intensity and the radius of the signal’s
propagation sphere are updated. The radius is
calculated with

r=c(t —to)

where c is the sound speed in water, ty the signal’s
emission timestamp and ¢ the actual timestamp.
The actual intensity is calculated with (Coates,
2001)

I = Iy — (20log,,(r)) + (0.005r)

The signal is considered dead when its intensity
is below a pre-defined ambient noise level. Also,
by computing the distance between the signal’s
origin point and each vehicle’s acoustic transducer
(if any), the simulator knows when that vehicle
should be notified of an incoming acoustic signal.
To have an even more realistic behaviour of the
virtual acoustic transducers, the user should also
set a signal reception intensity threshold (only
accepts signals with intensity above this value),
a delay time (the time the circuitry takes to reply
to a query signal) and a recharging time (the idle
time after sending a signal).

8. SENSOR EMULATION

Most control and navigation algorithm decisions
are based on the output from several sensors.
While positioning and orientation data is directly
given by NGD, other kind of sensor data must be
generated to fulfill the need of those algorithms.
Usually, underwater vehicles are armed with, pres-
sure, condutivity, temperature and depth sensors,
most of the times grouped in a CTD sensor. So,
WaVeSim allows external sensor emulators to be
running and updating their values in the clients’
shared memory area. As for now, WaVeSim sup-
plies emulators for all those sensors mentioned
above. They compute their output by checking

the vehicle’s position and calling a function to
produce the final value.

8.1 Pressure

The pressure sensor emulator calculates the pres-
sure value based on the vehicle’s depth (z):

P(2) = Py + Piz + Py2?

P, is the usual atmospheric pressure while P;
and P, are provided coefficients that define the
pressure profile.

8.2 Temperature

The temperature sensor emulator tries to capture
the usual underwater temperature profile. So, to
simplify the definition of parameters, temperature
is measured by segments, using the behaviour
in Fig. 2. Therefore, we need to provide the

>

Fig. 2. Underwater temperature standard profile.

temperature at water surface (Tp), depths z; and
zo and the derivative values of the linear function
between z; and z5 and between z5 and the bottom.
However, there’s little interest in always following
this same behaviour at every coordinate. We need
to provide a way to map some temperature spots
which are due to external factors like, for example,
pollution. So, to the temperature value obtained
before, we should add the deviation made by the
spot centered at (x;, y;, ;). Finally we have:

T(z,y,2)=T(z) +

+ 37 Aerlot @) 40 mp o (o-x)’)

where T'(2) is given by
TO 1fZ§Zl
T(z)+£(z—z)ifz<z<z
T(z) = { T+ G (e mm) il <2<z

T
T(z2) + 7(2 —z9) if 2> 29

The coefficients «;, (3; and 7; should be as high as
less spreaded is the spot.

8.3 Condutivity

The condutivity sensor emulator works just like
the temperature one. However, the standard con-
dutivity profile is the inverse to the one of the
temperature, so the values of the derivatives will
be positive.

8.4 Echosounder

The Echosounder allows the vehicle to know its
distance to the bottom. It can be emulated in a
similar way as the pressure sensor emulator, that
is, we can start with a base distance to bottom and
then apply some coefficients for the coordinates on
the zz and yy axis. We have

D(z,y) = Do + D1z + Doy

In order to have a bottom profile, with elevations
or depressions, we may add

Z hie_[af(z—mi)z-l-ﬁiz(y—yi)z]

to the above value. We don’t need the spread over
the zz axis since it is already limited by h;. It must
be mentioned that this gives the distance to the
bottom measured from water surface. To have the
measure from vehicle’s position, it is only needed
to subtract the vehicle’s depth.

8.5 Salinity

The value for the salinity is estimated using rather
complex formulas that take the measures for tem-
perature, condutivity and depth as parameters.
The explanation of that formulas is out of this
article’s scope but can be checked in (Fofonoff and
Millard, 1983).

9. WAVESIMS3D

One of the first requirements when developing
WaVeSim was to establish a complete separation
between the simulator itself and any visualization
system that would possibly be developed. This
allows the simulation to run with any visualization
system or with none at all. This requirement led
to the idea of storing all the simulation data on
shared memory areas. For example, this allows a
web-based visualization through dynamic pages
or with an applet. However, here we introduce
a 3D visualization system that was developed

alongside the simulator. This system was built
using OGRE (Object-Oriented Graphics Render-
ing Engine) (OGRE, 2006), an open-source C++
3D API which, in this case, uses the OpenGL
rendering system. WaVeSim3D shows a main vi-
sualization window with a free camera that can
be controlled with the mouse and keyboard and
from which the user can interact with WaVeSim
through some keyboard shortcuts. The simulation
elapsed time, the number of buoys and the number
of vehicles are also displayed. FramelListeners are
classes that have methods that are called before
and after each frame is rendered. WaVeSim3D
uses one FrameListener to update all the clients’
3D entities frame by frame. These entities are
added/removed to the scene as each client en-
ters/exits the simulation. This class gets each
body’s transformation matrix from WaVeSim’s
clients’ shared memory area, sets the 3D entity’s
orientation by extracting a quaternion from the
3 x 3 rotation sub-matrix and sets the entity’s po-
sition by extracting the translation part from the
transformation matrix. Usually, the axis standard
in 3D APIs is different from the North-East-Down
standard used in the navigation area, so first the
transformation matrix must be transposed. To see
each vehicle’s details, it is possible to click on it
on the main render window. A new render window
will open with a view from a fixed camera on
the front the vehicle. Also, an overlay with the
vehicle’s data is displayed on top. One can check
almost all the properties mentioned in 5. Also, a

Fig. 3. WaVeSim3D

compass image is drawn on each window so the
user can have a precise indication to where each
camera is pointing to.

10. WAVESIM LIBRARY

To allow any external process to access WaVeSim
data or to allow any client to connect to the
simulator, a small SDK is provided to ease the de-
velopment of these components. The API provides
classes to access the shared memory areas and

info about the commander message queue. Also,
the main data structures are also defined in some
include files. To allow an easy development of a
broker application, there’s also a couple of classes
that establish the connection to WaVeSim and
provide some methods for most of the interactions
so that the user shouldn’t deal with the messag-
ing protocol details. The incoming messages from
WaVeSim are dropped in a user named POSIX
message queue and the application is notified of
new messages by an user-defined system signal.

11. CONCLUSION

Despite WaVeSim still being under development
(including the external components like the sensor
emulators and WaVeSim3D), it is already quite
stable and fully operational. In fact, it is already
being used to help the development of the Ocean
Systems Group vehicles’ on-board software. The
use of this simulator by other entities to test their
own control and navigation software will assert
the usefulness of this application and will allow
to extend it in order to support other demanded
features based on gathered user experience.

ACKNOWLEDGEMENTS

This work was supported by the project MUV —
Multiple Underwater Vehicles — funded by FCT
and Programa POSI (POSI/SRI/47351/2002) and
by the project INCORP - Improved Naviga-
tion with Cooperative Robotic Platforms - funded
by FCT and Programa POSC (POSC/EEA-
SRI/59963/2004).

REFERENCES

Braiinl, Thomas (2006). Subsim - an autonomous
submarine simulation system.

URL: http://robotics. ee.uwa.edu.au/
auv/subsim.html.

Coates, R. (2001). The sonar equations. In: The
Sonar Course.

Fofonoff, N. P. and R. C. Millard (1983). Algo-
rithms for computation of fundamental prop-
erties of seawater. UNESCO Technical Papers
in Marine Science, 44.

Fossen, Thor Inge (1991). Nonlinear Modelling
and Control of Underwater Vehicles. PhD
thesis. Norwegian Institute of Technology.

Jerez, Julio (2006). Newton game dynamics.
URL: http://www.newtondynamics.com.

NPS (2006). Nps auv workbench.
URL: http://terra.cs.nps.navy.mil/AUV
Jworkbench/install. htm.

OGRE (2006). Ogre 3d.
URL: http://www.ogre3d.org.

