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Various classes of exotic singularity models have been studied as possible mimic models for the
observed recent acceleration of the Universe. Here we further study one of these classes and, under the
assumption that they are phenomenological toy models for the behavior of an underlying scalar field that
also couples to the electromagnetic sector of the theory, obtain the corresponding behavior of the fine-
structure constant α for particular choices of model parameters that have been previously shown to be in
reasonable agreement with cosmological observations. We then compare this predicted behavior with
available measurements of α, thus constraining this putative coupling to electromagnetism. We find that
values of the coupling that would provide a good fit to spectroscopic measurements of α are in more than
three-sigma tension with local atomic clock bounds. Future measurements by ESPRESSO and ELT-HIRES
will provide a definitive test of these models.

DOI: 10.1103/PhysRevD.89.123512 PACS numbers: 98.80.-k, 98.80.Cq, 98.80.Es

I. INTRODUCTION

The discovery of cosmic acceleration from supernova
observations [1,2] unveiled the presence of an unknown
source of energy that can be modeled in the easiest
approach by a cosmological constant Λ, resulting in the
standard ΛCDM model. Despite the fact that a range of
observational tests appears to be in good agreement with
this model, the physical interpretation of Λ remains
ambiguous. Thus, a range of alternative scenarios gradually
emerged, the most natural of which ascribes dark energy to
the presence of a dynamical scalar field. These alternatives
have to be tested by the local and global cosmological
observations.
One specific class of models aiming to mimic the

observed dark energy behavior is the so-called exotic
singularity models [3,4]. In fact, the emergence of exotic
singularities is related to some physical fields that phe-
nomenologically are mimicked in the form of a specific
parametrization of the evolution of the scale factor. In other
words, exotic singularity models may be seen as a toy-
model parametrization of the evolution of a physical degree
of freedom, such as a dynamical scalar field and its
coupling to gravity and other fields.
The issue of exotic singularities in cosmology was

investigated more intensively soon after the discovery of
cosmic acceleration, and the first example of such a
singularity was a big rip due to the noncanonical scalar
field known as phantom [5]. Then, other options such as a

sudden future singularity (SFS) [6,7], finite scale factor
singularity (FSFS) [3,8], a big separation [3], a w singu-
larity [9], and many others were proposed (for a recent
review, see Ref. [10]). These singularities are weak in the
sense that both particles and extended objects can pass
through them [11,12]. It also emerged that models that
contain these singularities can, with suitable parameter
choices, fit current observations [13–19].
Whenever dynamical scalar fields are present, one natu-

rally expects them to couple to the rest of the model, unless
a yet-unknown symmetry suppresses these couplings. In
particular, a coupling to the electromagnetic sector will lead
to spacetime variations of the fine-structure constant—see
Ref. [20] for a recent review. In fact there is some recent
evidence for such a variation [21], which a dedicated
Very Large Telescope Ultraviolet and Visual Echelle
Spectrograph (VLT UVES) Large Program is aiming to test
[22]. In any case, these spectroscopic measurements can
be used as additional tests of the underlying theories, in
particular if one makes the “minimal” assumption that
the same dynamical degree of freedom is responsible for
the dark energy and the α variations [23,24]. This is the
approach wewill take here, though note that alternatives also
exist, as discussed in Refs. [25,26].
Thus, if one envisages exotic singularity models as toy

model parametrizations for an underlying dynamical scalar
field, one may ask what variations of α will ensue. As
shown in Refs. [25,27], with the above minimal
assumption, this question can be answered without explicit
knowledge of the field dynamics—the evolution of the
dark energy equation of state and density are sufficient.
(Additionally, there will be a parameter describing the
strength of the coupling to electromagnetism, that is, the

*mpdabfz@wmf.univ.szczecin.pl
†atomekd@wmf.univ.szczecin.pl
‡Carlos.Martins@astro.up.pt
§Pauline.Vielzeuf@astro.up.pt

PHYSICAL REVIEW D 89, 123512 (2014)

1550-7998=2014=89(12)=123512(8) 123512-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.123512
http://dx.doi.org/10.1103/PhysRevD.89.123512
http://dx.doi.org/10.1103/PhysRevD.89.123512
http://dx.doi.org/10.1103/PhysRevD.89.123512


evolution of the gauge kinetic function.) Thus, we will
consider some representative exotic singularity models that
were shown (in our recent Ref. [28] and references therein)
to be in reasonable agreement with current background
cosmological data and study the behavior of α therein,
under the assumptions stated above.
The paper is organized as follows. In Sec. II we present a

brief review of the exotic singularity models useful for our
further study. In Sec. III we discuss the physics behind the
variation of the fundamental constants and our specific
assumptions regarding this class of models. The result of
applying these to our study-case exotic singularity models
will be exposed in Sec. IV. Our conclusions are given
in Sec. V.

II. EXOTIC SINGULARITY MODEL
PHENOMENOLOGY

In this section we will briefly review the phenomenology
of some previously studied exotic singularity models that are
in reasonable agreement with cosmological observations.
While several classes of such singularities can be studied, we
will be focusing here on SFS models. We will also briefly
contrast thesewith a related alternative (FSFSmodels),which
turn out not to provide observationally viable α models.
In these models one assumes the standard Einstein–

Friedmann standard field equations for the energy density
and pressure,

ρðtÞ ¼ 3

8πG

�
_a2

a2
þ kc2

a2

�
ð2:1Þ

pðtÞ ¼ −
c2

8πG

�
2
ä
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appended by the continuity equation

_ρðtÞ ¼ −3
_a
a

�
ρðtÞ þ pðtÞ

c2

�
; ð2:3Þ

where a≡ aðtÞ is the scale factor, the dot means
the derivative with respect to physical time t, G is the
gravitational constant, c is the speed of light, and the
curvature index k ¼ 0;�1. For further analysis we will set
k ¼ 0, in agreement with observational results. The main
assumption of these models resides in the scale factor,
which is parametrized differently than for the standard
model and can be expressed as a function of the four
parameters, δ, m, n, ts, namely,

aðtÞ ¼ as

�
δþ ð1 − δÞ
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m
− δ

�
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t
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�
n
�
: ð2:4Þ

The parameter m characterizes the evolution of the
Universe near the initial big bang singularity at t ¼ 0,
the parameter δ gives the standard Friedmann limit δ → 0,
the parameter n characterizes an exotic singularity (an SFS

singularity appears for 1 < n < 2, and an FSFS singularity
appears for 0 < n < 1), the parameter ts tells us the
moment of an exotic singularity to appear during the
evolution, and as ≡ aðtsÞ. The ansatz (2.4) is fully equiv-
alent to the one applied in Ref. [7] but differs from that one
proposed in Ref. [29], which uses an exponential function
of time. From the relation (2.4) one defines the redshift of
an object being at radial distance r1 at the moment t1 with
respect to an observer receiving the signal at t0,

1þ z ¼ aðt0Þ
aðt1Þ

¼
δþ ð1 − δÞðt0tsÞm − δð1 − t0

ts
Þn

δþ ð1 − δÞðt1tsÞm − δð1 − t1
ts
Þn ; ð2:5Þ

as well as the Hubble function

HðtðzÞÞ ¼ 1

ts

mð1 − δÞð ttsÞm−1 þ δnð1 − t
ts
Þn−1

δþ ð1 − δÞð ttsÞm − δð1 − t
ts
Þn ; ð2:6Þ

for which Eq. (2.5) has to be applied.
We consider the scenario in which the Universe contains

two fluid components, namely, nonrelativistic matter and
the scalar field that drives an exotic singularity. These fluids
obey independently their conservation laws. We assume
the standard behavior for the nonrelativistic (dust) matter
component

ρm ¼ Ωmρ0

�
a0
a

�
3

; ð2:7Þ

and the evolution of the other fluid, which we name here
ρΦ, can be determined by taking the difference between
whole energy density, ρ, as given in the Friedmann
equation (2.1) and ρm, i.e.,

ρΦ ¼ ρ − ρm: ð2:8Þ

In fact, it is just the ρΦ component of the Universe that
is responsible for the appearance of an exotic singularity
at t → ts. Using this we can rewrite the Friedmann
equation (2.1) as

ρ ¼ 3H2
0

8πG

�
Ωm

�
a0
a

�
3

þ ΩΦ

�
ð2:9Þ

so that the dark energy density is given by

ΩΦ ¼ 1 − Ωm0

H2
0

H2

�
a0
a

�
3

¼ 1 − Ωm: ð2:10Þ

The barotropic index of the equation of state for the
dark energy given by the canonical scalar field ϕ is
defined as wΦ ¼ pΦ=ρΦ, where pΦ ¼ ð1=2Þ _Φ2 − VðΦÞ and
ρΦ ¼ ð1=2Þ _Φ2 þ VðΦÞ [VðΦÞ is the potential]. In the
phantom regime, which has negative kinetic energy [5],
one has pΦ ¼ −ð1=2Þ _Φ2 − VðΦÞ and ρΦ ¼ −ð1=2Þ _Φ2 þ
VðΦÞ. On the other hand, the effective barotropic index
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of the equation of state is weff ¼ p=ρ. In the case in
which we consider the times when the radiation can be
neglected p ¼ pΦ.
The model parameters used here will be the same as the

ones taken in our previous paper [28]; they are listed in
Table I.
Note that SFS2 and FSFS2 correspond to the dust limit

of these models. Clearly they are amply ruled out, but they

provide pedagogically useful fiducial comparisons for
some of the discussion that follows.
Using these parameters for the redshift function (2.5),

one can check whether our models are consistent with
current observations of the Hubble parameter as a function
of redshift (2.6), and the plots for our choices of SFS and
FSFS parameters given in the Table I are shown in Fig. 1,
with the observational data taken from the recent compi-
lation [30]. These illustrate the point that the background
evolution of the dust models is highly discrepant.

III. VARYING FINE-STRUCTURE CONSTANT

High-resolution spectroscopic observations of absorp-
tion clouds along the line of sight of quasars have provided
indications of spacetime variations of the fine-structure
constant α at the level of a few parts per million, in the
approximate redshift range 1 < z < 4, the most recent one
being that of Ref. [21]. A possible cause for concern is that
these measurements come from archival data, and thus
several efforts have been made to independently confirm
this result through dedicated measurements. A summary
list of some of these new measurements is provided in
Table II; the latest of these efforts is the ongoing Large
Program at the VLT UVES [31]. We will use both the data
in the Table II and those of Ref. [21] as sets of data to
constrain our models. Note that the former has fewer data
points (and a smaller redshift sampling) but smaller
uncertainties, the reverse being true for the latter.
Any dynamical scalar field providing the dark energy is

naturally expected to couple to the rest of the model and in
particular to lead to spacetime variations of fundamental
couplings [35]. The coupling between the scalar field and
the electromagnetic field can be described by

LΦ;F ¼ −
1

4
BFðΦÞFμνFμν; ð3:1Þ

where as usual the gauge kinetic function is such that
BFðΦÞ ¼ α0=αðΦÞ. To a good approximation (at least for
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FIG. 1 (color online). The redshift evolution of the Hubble
function (2.6) for SFS (top) and FSFS (bottom) types of
singularities with the set of parameters shown in Table I, plotted
against the observational data of Ref. [30].

TABLE I. The sets of parameters for the scale factor (2.4) that
are used for SFS and FSFS models. See Ref. [28] and references
therein for further discussion on these choices.

Model m n δ y0

SFS1 2=3 1.9999 −0.43 0.99
SFS2 2=3 1.9999 0 0.99
SFS3 0.749 1.99 −0.45 0.77
FSFS1 0.56 0.8 0.42 0.96
FSFS2 2/3 0.7 0.0 0.79
FSFS3 2/3 0.7 0.24 0.96

TABLE II. Currently specific measurements of α. The columns,
respectively, contain the object along each line of sight, the redshift
of the absorber, the measured variation of fine structure constant α
(inpartspermillion), thenameof the spectrograph, and the reference
reporting the measurement. The second entry corresponds to the
HighAccuracy Radial velocity Planet Searcher and the fourth entry
corresponds to the recent Large Program measurement.

Object z Δα=α Spectrograph References

HE0515 − 4414 1.15 −0.1� 1.8 UVES [32]
HE0515 − 4414 1.15 0.5� 2.4 HARPS/UVES [33]
HE0001 − 2340 1.58 −1.5� 2.6 UVES [34]
HE2217 − 2818 1.69 1.3� 2.6 UVES–LP [22]
Q1101 − 264 1.84 5.7� 2.7 UVES [32]
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the low redshifts of interest in the present work), we may
assume a linearized gauge kinetic function,

BFðΦÞ ¼ 1 − ξκðΦ − Φ0Þ; ð3:2Þ
where κ2 ¼ 8πG=c4 and ξ parametrizes the coupling
between the scalar field and the electromagnetic sector.
It then follows that the evolution of α can be written as

Δα
α

≡ α − α0
α0

¼ B−1
F ðΦÞ − 1 ¼ ξκðΦ − Φ0Þ: ð3:3Þ

If one assumes that the same degree of freedom provides
all of the dark energy and the variation of α, then the dark
energy equation of state can be inferred from the dynamics
of the field, as first discussed in Ref. [24]. Using the fact
that for a canonical scalar field _Φ2 ¼ pΦ þ ρΦ and chang-
ing the derivative with respect to time into the derivative
with respect to logarithm of the scale factor, i.e., that
ð…Þ0 ≡ d=d ln a ¼ H−1d=dt, we have for the dynamics of
the scalar field

wΦ þ 1 ¼
_Φ2

ρΦ
¼ ðκΦ0Þ2

3ΩΦ
; ð3:4Þ

where ΩΦ is the fraction of the Universe’s energy in the
scalar field component,

ΩΦ ¼ ρΦ
ρΦ þ ρm

¼ ρΦa3

ρ0Ωm0 þ ρΦa3
: ð3:5Þ

The equation for the field can easily be integrated with
respect to the scale factor [25,27], and changing variables
using dz=ð1þ zÞ ¼ da=a, we finally find, in terms of the
redshfit,

Δα
α

ðzÞ ¼ ξ

Z
z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ΩΦðẑÞ∣ð1þ wðẑÞÞ∣p dẑ

ð1þ ẑÞ : ð3:6Þ

Notice that the above expression is only valid for
canonical (quintessence-type) scalar fields. On the other
hand, in the phantom regime w < −1 (negative kinetic term
of the scalar field), we instead have [36]

wþ 1 ¼ −
ðκΦ0Þ2
3ΩΦ

; ð3:7Þ

and this now leads to

Δα
α

ðzÞ ¼ −ξ
Z

z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ΩΦðẑÞ∣1þ wðẑÞ∣p dẑ

ð1þ ẑÞ ; ð3:8Þ

the extra minus sign comes from the fact that in the
canonical case one physically expects the field to be rolling
down the potential, while in the phantom case, it should be
nominally climbing up.

In the above formulas ΩΦðzÞ and wðzÞ are the fraction of
the Universe’s energy in the form of dark energy and its
equation of state, respectively. We thus see that knowledge
of these parameters is sufficient (up to a normalization
provided by the coupling ξ) to determine the evolution of α.
Thus, with the above assumptions, we can easily determine
this evolution in the exotic singularity models under
consideration.
Note that in some of these models wðzÞ can cross the

w ¼ −1 phantom divide. Thus, in these models the evo-
lution of α need not be monotonic but may have inflection
points and change sign. On the other hand, this cannot
happen in the dust case. This is one reason for keeping this
model in the analysis, as a simple comparison point.
In particular the above equations apply at redshift z ¼ 0,

for which atomic clock measurements provide a very tight
limit [37] on the current drift rate of α, namely,

�
_α

α

�
0

¼ ð−1.6� 2.3Þ × 10−17 yr−1: ð3:9Þ

TABLE III. Bounds on the coupling ξ, coming from the atomic
clock measurements of Ref. [37], for the different models under
consideration. Also listed is the maximum allowed variation of α,
in the redshift range 0 < z ≤ 5, and the redshift at which it
occurs, when this bound is saturated. For the dust models, the
maximum redshift is z ¼ 5 since the evolution of α is monotonic.

Model ΩΦ0 wΦ0 jξjmax × 106 zjαmax
jΔα=αjmax × 106

SFS1 0.685 −1.06 2.76 1.4 1.47
SFS2 0.685 0.0 0.70 5.0 1.79
SFS3 0.685 −0.92 2.42 2.6 0.80
FSFS1 0.685 −3.49 0.44 0.2 0.08
FSFS2 0.685 0.0 0.70 5.0 1.79
FSFS3 0.685 −3.68 0.43 0.2 0.06

FIG. 2 (color online). The present-day drift rate of the fine-
structure constant α as a function of the coupling ξ, for the three
SFS models under consideration, compared to the one-sigma
experimental bound of Ref. [37].
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This bound was later refined (under plausible theoretical
assumptions) in Ref. [38], but we use the direct (and more
conservative) bound in our analysis. Similarly we do not
use the Oklo bound [39] at z ¼ 0.14; although nominally
quite strong, it is subject to much larger theoretical and
systematic uncertainties than the spectroscopic measure-
ments we are considering. With the assumptions we are
making for this class of models, we therefore have from
(3.6) that [25]

���� _αα
����
0

¼ jξjH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ΩΦ0∣1þ wΦ0∣

p
; ð3:10Þ

where the modulus signs allow for the fact that the models
can be at either side of the phantom divide and the sign of
the coupling in the gauge kinetic function is not a priori
defined. Using the current value of the Hubble constant
[say, the H0 ¼ ð67.4� 1.4Þ km:s−1Mpc−1 Planck value],
one gets to the following conservative (3σ) bound:

jξj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ΩΦ0∣1þ wΦ0∣

p
< 10−6: ð3:11Þ

(Obviously the choice of a different value ofH0—say from
local measurements—has a negligible effect on the above
bound.) Therefore, the different models being considered
will be subject to different bounds on ξ, since they will have
different values of ΩΦ0 and wΦ0. These bounds are
summarized in Table III, together with the maximum
variation of α allowed in each model, up to a redshift
z ¼ 5, when the ξ bound is saturated. The choice of a
maximum redshift of z ¼ 5 is meant to represent the range
over which future measurements may be expected, in
particular from the European Extremely Large Telescope
(E-ELT) [40].
Note that in the case of the FSFS models the extremely

negative present-day equation of state leads to a very tight
bound on the coupling (coming from atomic clock mea-
surements). The result of this is that the allowed variations
of α in these models are extremely small: about 2 orders of

FIG. 3 (color online). The top panel shows the redshift dependence of α for the values of the coupling that saturate the redshift z ¼ 0
constraints; the bottom panels illustrate the range of allowed variations for each of the models, compared to the dedicated measurements
of Table II and the data of Ref. [21], respectively. The thin black rectangle in the redshift range 2 < z < 5 is meant to indicate the
expected sensitivity of future E-ELT measurements [41].
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magnitude smaller than would be needed to explain the
results of Ref. [21] and even difficult to detect at all with the
next generation of observational facilities. For this reason
we will not consider the FSFS class of models any further,
focusing instead on the more promising SFS one. An
illustration of the atomic clocks bound for these SFS
models is also in Fig. 2.
Again we emphasize that, while for the dust (SFS2)

model the evolution of α is monotonic (and therefore the
maximum variation occurs for the highest redshift consid-
ered), this is not the case for SFS1 and SFS3. The reason for
this is the previously mentioned fact that the dark energy
equation of state of these models crosses the phantom
divide at some points, the precise redshift of which depends
on the choice of model parameters. This can be seen in
Fig. 3, which shows the range of allowed variations of α in
these models. The bottom two panels of this figure also
provide (through the thin black rectangle) a simple visual
illustration of the expected sensitivity and redshift span
of E-ELT measurements (through the Extremely Large

Telescope - High Resolution Echelle Spectrometer instru-
ment [41]) as compared to currently available measurements.

IV. RESULTS

We can now compare the SFS models with the spectro-
scopic measurements of the fine-structure constant α
discussed in the previous section, using the standard
chi-square statistic. Figure 4 summarizes the results of
this comparison, for various choices of the data set: we
considered both the dedicated measurements listed in
Table II and the larger archival data set of Webb et al.
[21] separately including the two subsets of the latter
(corresponding to measurements with the Keck and VLT
telescopes). For each model we only explore the range of
couplings allowed by the (conservative) bound coming
from local atomic clock measurements.
For the dust (SFS2) model, where the α evolution is

monotonic, one recovers as expected that the Keck data
(which contain predominantly negative measurements)
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FIG. 4 (color online). Reduced χ2 for the three SFS models compared with spectroscopic measurements of α, in the ranges of the
coupling ξ compatible with local atomic clock bounds. The panels correspond to different data sets: Webb’s Keck data (top left), Webb’s
VLT data (top right), Webb’s full data set (bottom left), and the data in Table II.
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prefer a negative coupling ξ, while the VLT data (and also
those of Table II) prefer a positive coupling. The trend is the
opposite for the SFS1 and SFS3 models, since (as in clear
from Fig. 3) the putative underlying scalar field is in the
phantom regime for at least part of the redshift range under
consideration.
More importantly, one also notices that there is no

minimum of the reduced chi square for this range of
couplings. In other words, the value of coupling that would
provide the best fit to any of these spectroscopic data sets
would be incompatible with the local atomic clock bound at
least at the three sigma level.
A similar analysis can be done considering all the

available fine-structure constant measurements as well as
the Hubble parameter measurements in Ref. [30]; these
results are shown in Fig. 5. Naturally the dust (SFS2) model
provides an extremely poor fit, while the status of the SFS1
and SFS3 models remains as before [as these are in
reasonable agreement with the HðzÞ data]. Thus, with the
chosen values of the cosmological parameters (which we

have not allowed to vary, as they had been found in previous
works to provide the best fits to this class of models) and
under the previously discussed assumptions, we find that
these models do not provide good fits to available spectro-
scopic measurements of the fine-structure constant.

V. CONCLUSIONS

The so-called exotic singularity models have been
recently suggested as possible mimic models for the
observed recent acceleration of the Universe. Here we
have treated them as toy models for the behavior of an
underlying scalar field and, assuming that this also couples
to the electromagnetic sector of the theory (which a scalar
field would naturally do, unless a new symmetry is
postulated to suppress the coupling), calculated the ensuing
behavior of the fine-structure constant α.
We have shown that with the above assumptions this

question can be answered without explicit knowledge of
the dynamics of the putative scalar field; the evolution of
the dark energy equation of state and density are sufficient,
since exotic singularity models assume that the dynamical
effects of the field are phenomenologically encoded in
the behavior of the scale factor aðtÞ, given by Eq. (2.4). We
focused on specific choices of SFS and FSFS model
parameters, previously shown to be in reasonable agree-
ment with cosmological observations, and used available
laboratory and astrophysical tests of the stability of α to
further constrain these models.
Our results highlight the importance of local atomic

clock measurements such as those of Ref. [37], in con-
straining these cosmological models. Specifically, for the
FSFS models we considered, the local constraints on the
coupling of the putative scalar field to the electromagnetic
sector of the theory are so tight that the allowed variations
of α at the redshifts probe by optical/UV measurements
would be too low to be detected, not only with current
spectroscopic facilities but possibly even with future ones.
For the SFS class, the allowed variations are larger, but
nevertheless the values of the coupling ξ that would provide
the best fit to currently available spectroscopic measure-
ments of α are in more than three-sigma tensions with the
local atomic clock bound.
Nevertheless, at the phenomenological level the SFS

models do have one interesting feature: since they can cross
the phantom divide (and often do so more than once, at
redshifts determined by the model parameters themselves),
they will usually lead to a nonmonotonic redshift depend-
ence of α. This is in contrast with most other single-field,
dilaton-type models in which its evolution tends to be
monotonic—again the dust model we included in the
analysis is a simple example of this. Forthcoming more
precise measurements with high-resolution ultrastable
spectrographs such as ESPRESSO and ELT-HIRES will
allow a detailed mapping of the allowed redshift depend-
ence of α and provide a definitive test of these models.
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FIG. 5 (color online). Reduced χ2 for SFS models, using all the
α and HðzÞ data; the bottom panel shows a zoom in on the SFS1
and SFS3 models (neglecting the dust model).
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