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cies strongly affect the constraining power of future data, while if they are sufficiently large
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1 Introduction

Cosmology and particle physics are in the exciting period in which their standard theoretical
models can be precisely tested with a plethora of high-resolution data. However there are
strong hints that neither model is complete, and that possible new physics may be within
the reach of the next generation of probes.

Despite the success of the standard model of particle physics, highlighted by the con-
firmation of the long-sought Higgs particle, there are three firmly established facts that it
can’t yet explain: neutrino masses, dark matter and the size of the baryon asymmetry of the
universe. Crucially, all three have cosmological implications.

Cosmological observations of the universe’s large scale structure and microwave relic
radiation — the Cosmic Microwave Background, CMB — strongly support the predictions
of the so-called Hot Big-Bang model and a late-time accelerated cosmic expansion [1]. The
current cosmological paradigm (known as ΛCDM) is based on three pillars: inflation, dark
matter and dark energy, each of which relies on currently unknown physics.

In particular, the precise nature of dark energy is one of the deepest enigmas of modern
physics. The standard cosmological model recognizes dark energy as the dominant component
of the energy budget of the universe today and identifies it as the one responsible for the
cosmic acceleration. The next generation of astrophysical facilities must strive to search for,
identify and ultimately characterise this mysterious component. The most obvious task to
start identifying dark energy is to ascertain whether this is due to a cosmological constant
(as introduced by Einstein) or to a new dynamical degree of freedom.

It is common to model a dynamical dark energy through a scalar field (see e.g., [2]); a
connected task is therefore to identify theories which lead to the addition of new degrees of
freedom and thus can produce this scalar field. An interesting example is the scalar partner
of the spin-2 graviton, known as the dilaton, hereafter denoted φ, whose existence is predicted
by string theory.

Here we study in detail the cosmological consequences of a particular class of string-
inspired models, the runaway dilaton scenario of Damour, Piazza and Veneziano [3, 4]. The
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conceptual appeal of this scenario stems from the fact that it may provide a way to reconcile
a massless dilaton with experimental data. On the other hand, from the observational point
of view its distinguishing feature is the fact that, with significant dark sector couplings,
these models yield violations of the Equivalence Principle and variations of the fine-structure
constant α that are potentially measurable. With the recent progress in experimental tests
of the former (summarized in [5]) and astrophysical tests of the latter (summarized in [6]),
as well as the availability of high-resolution cosmological datasets, it is now possible to
quantitatively test these models.

This work will complement the analysis presented in [7] by investigating the gain in
sensitivity (with respect to current data constraints) provided by forthcoming facilities, fo-
cusing on the European Extremely Large Telescope (E-ELT): its high-resolution ultra-stable
spectrograph (known as ELT-HIRES) will significantly improve tests of the stability of fun-
damental couplings and will also be sensitive enough to carry out a first measurement of the
redshift drift signal deep in the matter dominated era [8]. We explore the degeneracies that
might arise between both cosmological and different dilaton model coupling parameters by
letting them all free to vary — we note that this was not the case in [7] where cosmological
parameters were held fixed. We want to stress that exploring the whole parameter space is
essential: we will show how degeneracies between parameters can be a strong limitation for
this kind of models.

The paper is organized as follows. In section 2 we present the essential features of the
runaway dilaton model and study their impact on cosmological observables provided by the
E-ELT. The method used to simulate the observables is described in section 3; the analysis
and the results are presented in section 4. Finally, section 5 reports the main conclusions
and a discussion of some future prospects.

2 Runaway dilaton cosmology

The runaway dilaton scenario was first introduced in [3] and further developed in [4]. The
latter also includes some simple cosmological constraints, which we updated in [7] and will
extend further here. In this section we will introduce the features of the model that will be
relevant for our analysis; we refer the reader to the original works for additional details.

The main motivation for this scenario is to reconcile a massless dilaton with experimental
data (which we will further discuss shortly). This is achieved by having the dilaton decouple
while cosmologically attracted towards an infinite bare coupling, with the coupling functions
having a smooth finite limit:

Bi(φ) = ci +O(e−φ) , (2.1)

where the ci are constants. The Einstein frame Lagrangian is [3, 4]:

L =
R

16πG
− (∇φ)2

8πG
− 1

4
BF (φ)F 2 + . . . , (2.2)

where R is the Ricci scalar, F is the electromagnetic tensor and BF is the gauge kinetic
function (which will determine the evolution of α).

From the above one can derive the modified first Friedmann equation:

3H2 = 8πG
∑
i

ρi +H2φ′2 , (2.3)
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the sum here is extended over all the standard components of the universe and includes also
the potential part of the scalar field, while the contribution of the kinetic term is considered
in the last term (in which ′ denotes the derivative with respect to the logarithm of the scale
factor a).

The total energy density and pressure of the field are in effect expressed as a sum over
the kinetic (k) and potential (V) parts of the field:

ρφ = ρk + ρV =
H2φ′2

8πG
+ V (φ) (2.4)

pφ = pk + pV =
H2φ′2

8πG
− V (φ). (2.5)

Therefore the dilaton contributes to the cosmological expansion as an effective quintessence-
like field through its potential (from now on we will assume this contribution to be equivalent
to a cosmological constant) with a correction brought to the Friedmann equation by its kinetic
part. However, as we will now see, this class differs from simple canonical quintessence
models, since the dilaton does couple to the rest of the model.

From the same Lagrangian, we can obtain the equation of motion for the field φ,
which reads:

2

3− φ′2φ
′′ +

(
1− p

ρ

)
φ′ = −

∑
i

αi(φ)
ρi − 3pi

ρ
(2.6)

where ρ and p are, respectively, the total density and pressure obtained summing over the
standard components of the universe and the potential part of the field. The αi are free
functions which characterize the coupling of the field with the different components, i.e.,
baryons, dark matter, and effective dark energy. In what follows we will assume the coupling
to the effective dark energy αV to be constant, while the coupling to baryonic matter is [4]:

αb(φ)

αb,0
= e−(φ(z)−φ0) , (2.7)

where the subscript 0 indicates quantities evaluated at present time. We note that in the
previous work [7] this was denoted αhad.

As in [7] we will consider three different possibilities for the dark matter coupling αm:

• “Dark Coupling”: αm = αV

• “Matter Coupling”: αm(φ) = αb(φ)

• “Field Coupling”: αm(φ) = −φ′

These three phenomenological choices, all motivated by the discussion in [4], are meant
to represent the range of possible behaviours in this class of models. The dark coupling
corresponds to the simplest assumption, namely that the dark sector is characterized by a
single coupling, appliccable to both dark matter and dark energy. Conversely the matter
coupling assumes that there’s a single coupling for dark matter and baryons while dark
energy couples differently. Finally the field coupling corresponds to the approximate matter-
era solution discussed in [4]. In all these cases, the dark matter coupling depends on either
αb,0 or αV , which are therefore the only free parameters of the model considered here.
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As discussed in [7], local measurements of gravitational light deflection [9] and tests of
violations of the weak equivalence principle [5, 10] provide constraints on the coupling of the
field to baryonic matter:

|αb,0| ≤ 10−4 (2.8)

while the constraints on couplings to the dark matter sector are much weaker [5, 11]:

|αm,0| ≤ 1 . (2.9)

However, from eq. (2.3) and assuming a spatially flat universe it is also possible to relate
the field derivative to the deceleration parameter q as:

φ
′2
0 = 1 + q0 −

3

2
Ωm. (2.10)

Thus, using the currently available limits for q0 and Ωm [1, 12] it is possible to obtain a
constraint on the current velocity of the field:

|φ′0| ≤ 0.3. (2.11)

This bound implies that we can approximate the field to be moving slowly at present time
and therefore we can rewrite eq. (2.6) as:

φ′0 = −αbΩb + αmΩc + 4αV ΩV

Ωb + Ωc + 2ΩV
, (2.12)

where Ωb and Ωc are the baryon and cold dark matter densities, and ΩV is the effective dark
energy density generated by the potential part of the field.

As shown in [7], combining this relation with the expression of αm in terms of the other
two couplings we can obtain conservative constraints on the dark energy coupling:

|αV | . 0.15. (2.13)

Eq. (2.12) also provides an initial condition for eq. (2.6). Moreover, the cosmological
observables that we will consider (as shown in the next section) depend only on either the
field derivative φ′ or the field shift φ(z)−φ0, and we can solve eq. (2.6) for φ(z)−φ0 without
loss of generality, setting the initial condition on the shift to zero.

We show the evolution of the runaway dilaton field and of its derivative in the 3 different
coupling choices in figure 1. The curves are generated using the Planck 2015 marginalized val-
ues of the cosmological parameters [1] and assuming the baryonic and dark energy couplings
to be αb,0 = 10−4 and αV = 0.1.

2.1 Effects on cosmological observables

For our baseline analysis we compute 3 main observables:

1. the redshift dependence of the fine structure constant α:

∆α

α
(z) ≡ α(z)− α0

α0
= B−1

F (φ)− 1 =
αb
40

[
1− e−(φ(z)−φ0)

]
. (2.14)

As discussed in [7], the time variation of α is an immediate consequence of the coupling
of the dilaton with the electromagnetic sector of the theory.

– 4 –



J
C
A
P
1
1
(
2
0
1
5
)
0
3
0

0 1 2 3 4 5 6

z

−0.5

0.0

0.5

1.0

1.5
φ

(z
)
−
φ

0

Dark Coupling

Matter Coupling

Field Coupling

ΛCDM

0 1 2 3 4 5 6

z

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

φ
′ (

z
)

Dark Coupling

Matter Coupling

Field Coupling

ΛCDM

Figure 1. Redshift evolution of the dilaton scalar field φ (left panel) and of its derivative φ′ (right
panel) in the Dark (blue solid line), Matter (red dashed line) and Field (green dot-dashed line)
Coupling cases, assuming αb,0 = 10−4 and αV = 0.1. These quantities vanish in the standard ΛCDM
scenario, as shown with the black solid line for reference.

2. the redshift evolution for the commonly used Type Ia Supernovae reduced magnitude
µ(z), relating the Supernovae’s apparent, m, and absolute, M , magnitude to the uni-
verse expansion:

µ(z) ≡ m−M = 5 log10

[
(1 + z)

c

H0

∫ z

0

dz′

E(z′)

]
+ 25 . (2.15)

This can be measured with the E-ELT through Supernovae up to redshifts z ≈ 4 [13]
(as further described below).

3. the change in the spectroscopic velocity of distant sources ∆v due to the so-called
redshift drift phenomenon [14, 15]:

∆v = cH0∆t

[
1− E(z)

1 + z

]
, (2.16)

where ∆t is the time interval between two observations of the same astrophysical source.
This has been shown to be relevant for the investigation of dark energy theories [16–20],
in particular thanks to the wide range of redshift at which it can in principle be detected
(up to z ≈ 5).

Figure 2 shows the evolution of α with redshift for some values of the coupling param-
eters αb,0 and αV , and highlights a strong dependence of the α variation on the amplitudes
of the couplings. Measurements of the fine structure constant are then extremely promising
to set constraints on dilaton scenarios. We note that in this class of models the two different
particle physics parameters determine the evolution on α in different ways: αb,0 provides the
overall normalization, while αV is driving the evolution of the field itself. On the other hand,
these two parameters play different roles in the behaviour of dark energy (where the latter one
has the dominant effect); for this reason, this is a Class II model in the terminology of [21].
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Figure 2. Redshift dependence of the relative variation of α in the Dark Coupling case for several
values of the coupling parameters. A similar behaviour is observed if we consider the Matter and Field
coupling cases, although with different amplitudes. We note that the departures from the standard
model increase for higher values of the couplings. We anticipate that this effect will be probed by
future data (with a sensitivity of e.g., σα ∼ 10−7).

We noted before that the potential of the dilaton affects the expansion of the universe
as an effective cosmological constant. However, eq. (2.3), re-expressed as:

E(z) ≡ H(z)

H0
=

√
Ωm(1 + z)3 + ΩV√

1− φ′2/3
, (2.17)

shows that, given our assumption of a Λ-like effective Dark Energy, deviations from the
standard ΛCDM background behaviour are only generated by the contribution of the field
kinetic energy. Nevertheless, the current constraints on |φ′0| and on the couplings αb,m,V
imply that φ′ is small at low redshifts. This leads to small departures from the standard E(z)
even when the couplings are non-vanishing, which reflects in an evolution of the background
observables very similar to the standard case. In figure 3 we show how the departures from
the ΛCDM predictions brought to the E(z) function by the dilaton are well below 1% at
all redshifts considered. We, therefore, anticipate that the effect of the dilaton cannot be
resolved at high significance with background expansion observables, at least with the data
expected in the upcoming years.1 We note that larger differences may arise if the w = −1
assumption on the effective Dark Energy is relaxed.

Although not investigated in this paper — which focuses primarily on the E-ELT sensi-
tivity — the coupling of the dilaton field with the electrodynamic sector of the theory might
also lead to other observable effects potentially useful to constrain this kind of models. As
it is generically the case for scalar fields coupled with the electromagnetic tensor [22], the
dilaton might lead for example to a non-standard propagation of CMB photons.

1This result disagrees with figure 4 of [7] where the dilaton field brought a significant impact on the redshift
drift signal; however the result shown there was affected by a bug in the calculation in the field derivative φ′(z).
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Figure 3. Relative difference between the E(z) predicted in the runaway dilaton scenario, for differ-
ent choices of the parameters, and the one predicted by ΛCDM. The departures from the standard
expansion are at the sub-percent level at all redshifts and so hard to detect even with future data.

3 Simulated data and analysis

In this paper we focus on future observations from the upcoming European Extremely Large
Telescope (E-ELT), whose first light is expected in 2024. This new generation 39.3 meter
telescope will be equipped with an ultra-stable, high-precision spectrograph (ELT-HIRES,
whose top-level requirements are described in [8]) which, via spectroscopic observations of
absorption systems along the line of sight of bright quasars, will be able to provide measure-
ments of the fine structure constant with a sensitivity of σα = 10−7.

We simulate 3 datasets of ∆α/α measurements provided by E-ELT assuming the obser-
vation of 100 QSO absorption systems uniformly distributed in the redshift range 0.5 < z < 4.
We fix the standard cosmological parameters to the latest CMB Planck 2015 marginalized
values [1] and we consider 3 choices of the dilaton parameters:

• αb,0 = 0 , αV = 0

• αb,0 = 1× 10−5 , αV = 0.05

• αb,0 = 5× 10−5 , αV = 0.1

where the last two cases are generated assuming the Dark Coupling relation between αm
and αV .

The values of these couplings have been chosen to exploit how the constraints change
moving from a ΛCDM cosmology to more and more extreme, but still allowed by current
constraints, departures from the standard paradigm. The first case recovers the ΛCDM model
and will inform us on how well we can reduce the parameters space of the dilaton model if
data are in agreement with the standard model. The last two cases (the non-vanishing αi)
will investigate the sensitivity of future data to the dilaton parameters if, and at which degree,
the data manifest departures from ΛCDM.
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Despite expecting little additional information from background observables (as we dis-
cussed in section 2.1), we simulate and include in our analysis Supernovae and redshift drift
data as expected from E-ELT. This will help in breaking degeneracies between parameters
and provide better constraints on matter-dark energy densities and the Hubble expansion
rate. Furthermore, by including these background observables we will perform a complete
analysis for expected E-ELT cosmological probes and then assess the possibility of constrain-
ing the dilaton model with this facility alone, without having to rely on synergies with other
experiments (with one caveat that we now discuss).

The James Webb Space Telescope (JWST, through NIRcam imaging), should find about
50 type Ia Supernovae and measure their light curves [23], and with E-ELT spectroscopy
provided by HARMONI [24] the redshift and Supernova type can be confirmed. The redshift
range of this high-z sample is expected to be 1 < z < 4. The redshift distribution of these
Supernovae is not easy to extrapolate, since even the most detailed current studies such as
those of the SNLS team [25] only reach out to z ∼ 1. In the absence of a specific redshift
distribution, we will simply assume it to be uniform in the above range.

Given its cutting edge stability and repeatability, the ELT-HIRES is suited to investigate
the redshift drift signal by observing the Lyman α absorption lines of distant QSOs as
discussed in [16], which shows how the E-ELT will be able to detect the redshift drift with
a 4000 hours of integration in a period of ∆t = 20 years. (This time may be significantly
reduced if additional bright targets are found.) Monte Carlo simulations performed in the
context of the COsmic Dynamics Experiment (CODEX) Phase A study [26], predict an error
on the spectroscopic velocity shift ∆v that can be expressed as:

σ∆v = 1.35
2370

S/N

√
30

NQSO

(
5

1 + zQSO

)x
cm s−1, (3.1)

where S/N is the signal to noise ratio, NQSO the number of observed quasars, zQSO their
redshift and the exponent x is 1.7 for z ≤ 4 and 0.9 for higher redshifts.

Using these specifications we produce a redshift drift mock dataset with S/N = 3000
and NQSO = 30 assumed to be uniformly distributed among the following redshift bins
zQSO = [2.0, 2.8, 3.5, 4.2, 5.0]. As for α, we fix the standard cosmological parameters to the
Planck 2015 values.

We analyze the E-ELT data using the publicly available code COSMOMC [27], modified
to generate the theoretical predictions of the reduced magnitude, the redshift drift and the
variation of the fine structure constant in the runaway dilaton model for any value of the
free parameters of the theory. We sample five parameters: the baryon and cold dark matter
densities Ωbh

2 and Ωch
2, the ratio between the sound horizon and the angular diameter

distance at decoupling θs, and the runaway dilaton free parameters αb,0 and αV . We assume
flat priors on all the parameters and we bound the variation of the dilaton couplings using
the currently available constraints described in section 2, i.e. |αb,0| ≤ 10−4 and |αV | ≤
0.4. However, when we report the results of our analysis (e.g., in table 1, 2) we quote the
constraints obtained on the derived cosmological parameters — matter density and Hubble
parameter — and on the dilaton parameters. We do not report individual limits on baryonic
and dark matter densities Ωbh

2 and Ωch
2 as the cosmological probes considered here are not

sensitive to them separately, but rather to the total matter density Ωm = Ωb + Ωc.

The simultaneous variation of cosmological and dilaton parameters allows us to investi-
gate both the degeneracies between them and the internal degeneracy of the dilaton couplings,

– 8 –
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Fiducial Dark Coupling Matter Coupling Field Coupling

Ωm 0.314 0.309± 0.011 0.308± 0.012 0.310± 0.011

αb,0 0.0 (0.0± 2.5)× 10−5 (0.1+1.2
−1.4)× 10−5 (0.0± 3.0)× 10−5

αV 0.0 0.035+0.04
−0.10 0.038+0.05

−0.11 0.009+0.08
−0.10

H0 67.26 67.4+1.4
−1.0 67.4+1.5

−1.0 67.6+1.1
−1.0

φ′0 0 −0.061+0.19
−0.08 −0.062+0.19

−0.09 −0.01+0.15
−0.13

Table 1. Marginalized values and 68% c.l. limits for the analyses of the null case. We report the
fiducial values of the parameters used to simulate the data as a reference in column 1. The following
3 columns separate the results by different theoretical coupling assumptions made in the analysis (see
section 2).

αb and αV ; given the competing effects of these 2 parameters on E-ELT observables, we can
expect a strong impact of this degeneracy on the constraining power of this upcoming facility.
Moreover, the exploration of 3 physical models for the evolution of the dark matter coupling
αm allows us to test whether or not E-ELT will be able to distinguish between different
models of the same runaway dilaton family.

4 Results

Our analysis shows that, depending on the values of the dilaton couplings, there are three
different regimes for which the E-ELT data will have different impacts. We will refer to these
as the null case (vanishing couplings), the weak coupling case (where the couplings, although
non-zero, can’t be statistically distinguished from zero due to degeneracies) and the strong
coupling case (where the non-zero couplings are compatible with currently existing bounds
but can be detected by the E-ELT). We now illustrate each of these cases. We also recall
that, although the simulated datasets are generated assuming Dark Coupling for αm, for
each case we will have three possible scenarios according to the theoretical choice of the dark
matter coupling made in the analysis.

4.1 Null case

For the null case (i.e., input vanishing couplings reproducing a ΛCDM universe), reported
in table 1 we notice that, in spite of the high sensitivity of the E-ELT on α variations, the
constraints that it will provide on the coupling parameters and, consequently, on φ′0 only
improve upon the prior range we assumed following section 2.1 by a factor of a few (see also
figure 4). However, figure 4 highlights how the αV posterior excludes more, at the 2-σ level,
the negative tail. This is a consequence of the fact that the variation of α deviates more from
the ΛCDM expectation when negative αV are considered, as can be seen in figure 2 for the
αV = 0.05 and αV = −0.05 predictions.

To understand this relatively mild improvement provided by E-ELT one needs to further
explore the degeneracy between the coupling parameters. Figure 5 shows the 2-Dimensional
1 and 2-σ contours in the plane αb,0-αV , highlighting how a strong degeneracy arises when a
ΛCDM model is used as fiducial cosmology. This behaviour is connected to the dependence of
the variation of the fine structure constant on the coupling parameters, indeed setting one of
the couplings to zero will reproduce exactly the standard non varying fine structure constant.
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Figure 4. Posterior distributions for the dilaton couplings αb,0 (top left panel) and αV (top right
panel) and for the potential derivative φ′0 (bottom panel) derived from eq. (2.12). These posteriors
are obtained analyzing the null case in the 3 coupling assumptions.

Moreover, both figure 5 and table 1 show that the 3 coupling cases are undistinguishable as
they all reduce to the ΛCDM scenario in the same way.

4.2 Weak coupling case

The degeneracy of these two coupling parameters can be further characterized if we analyze
the case of non-vanishing but small couplings described in section 3. The left panel of figure 6
shows the 1 and 2-σ 2D contours obtained for the fiducial αb,0 = 10−5 and αV = 0.05. In this
case the degeneracy is still present but not completely symmetric as before; negative values
of the couplings (away from the positive fiducial values) can still mimic a variation of α
compatible with the simulated dataset. This behaviour can be easily explained noticing that
the overall sign of the α variation in eq. (2.14) is given by αb,0 and that the same equation
can be approximated for φ(z)− φ0 � 1 as:

∆α

α
(z) ≈ αb,0

40
[φ(z)− φ0] ; (4.1)

the left panel of figure 7 shows that φ(αV ) ≈ −φ(−αV ) and therefore, in the approximation
of small field values

∆α

α
(αV ) ≈ −∆α

α
(−αV )⇒ ∆α

α
(αb,0, αV ) ≈ ∆α

α
(−αb,0,−αV ). (4.2)
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Figure 5. 68% and 95% c.l. contours in the αb,0-αV plane for null case analyses in the 3 coupling
assumptions. The grey dashed lines identify the fiducial values.
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Figure 6. 68% and 95% contours in the αb,0-αV plane for weak (left panel) and strong (right panel)
coupling analyses in the 3 coupling assumptions. The grey dashed lines identify the fiducial values.

The degeneracy between αb,0 and αV is therefore the physical bottleneck preventing the
extremely sensitive E-ELT data from constraining these parameters with high significance;
this means that a future line of investigation, outside the aim of the present paper, relies
on the identification of other observational signatures of the runaway dilaton model able to
break this degeneracy and therefore to significantly tighten the constraints. Improved local
constraints on Weak Equivalence Principle violations will also help, by providing tighter
priors on the couplings.

4.3 Strong coupling case

Last but not least, we show how the αb,0-αV plane changes significantly when we consider
the third set of simulated datasets, αb,0 = 5×10−5 and αV = 0.1. These are compatible with
(but not far from) the current bounds, as we discussed earlier.
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Coupling case. While φ(z) is anti-symmetric with respect to αV = 0, the variation of α preserves this
symmetry only for small values of αV .

Fiducial Dark Coupling Matter Coupling Field Coupling

Ωm 0.314 0.309± 0.011 0.307± 0.011 0.310± 0.011

αb,0 5.0× 10−5 (4.94+0.8
−2.2)× 10−5 (3.48+0.4

−1.0)× 10−5 (6.6± 1.9)× 10−5

αV 0.1 0.116+0.03
−0.06 0.158+0.05

−0.06 0.126+0.02
−0.06

H0 67.26 67.7± 1.0 67.6± 1.0 67.7± 1.0

φ′0 −0.20 −0.204+0.11
−0.05 −0.259+0.09

−0.07 −0.192+0.09
−0.03

Table 2. Marginalized values with their 68% c.l. limits obtained analyzing the strong coupling case.
The columns follow the same notation of table 1. We recall that the strong case data are simulated
assuming Dark Coupling for αm.

For values of αV & 0.05 the approximation of eq. (4.1) breaks down (see also figure 7);
this leads to the behaviour observed in the right panel of figure 6, where the fiducial model
can be recovered only with the right sign of the couplings. This result shows how moving
away from the ΛCDM fiducial model allows to obtain stronger constraints on the parameters.
When the approximation of eq. (4.1) breaks down, the ∆α variation is more sensitive to the
coupling and the parameters can be better determined, as shown in table 2.

Moreover, in this extreme fiducial cosmology, the physical difference between the 3
choices for αm starts to emerge. This effect arises from the fact that while the 3 models
produce similar behaviours of the fine structure constant for values of the parameters close
to the ΛCDM limit (i.e., in the weak coupling limit), the differences between them increase
moving away from it and in the strong case they become distinguishable. In the Field
Coupling case, for instance, eq. (2.6) loses the source term coupled by αm and the net effect
is a smaller amplitude of the field φ (see figure 1); this implies that the Field Coupling
produces smaller variations of the fine structure constant, as can be seen in figure 6. These
differences among the 3 investigated coupling choices lead to the impossibility of correctly
fitting the simulated dataset with any αm assumption. Figure 6 shows that the input model,
which assumes the Dark Coupling mechanism, cannot be reproduced correctly with the Field
Coupling mechanism, but is still partially in agreement with the Matter Coupling case (see
also the degenerate curves shown in figure 8).
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Figure 8. Simulated E-ELT data (black dots and error bars) in the two non-standard fiducial
cosmologies assumed in section 3 (for plotting reasons only a few of the dataset points are shown in
the plot). It is possible to notice how in the most extreme case (right panel), with αb,0 = 5 × 10−5

and αV = 0.1, the theoretical expectations in the 3 coupling cases considered are not able to fit the
data for the same values of the parameters, while the αb,0 = 1 × 10−5 and αV = 0.05 dataset (left
panel) is simultaneously well fitted by all 3 choices of αm.

This however does not translate in an observable bias on the standard cosmological
parameters which could be used in principle, when real data will be available, as a tool to
establish which, if any, of the coupling mechanisms is driving the variation of α. To observe
this kind of bias we need to identify different observational probes which are more connected
to the standard cosmological parameters and can therefore probe the degeneracies of these
with the dilaton couplings.

5 Conclusions

In this paper we investigated the possibility of constraining the string inspired runaway
dilaton model by exploiting the upcoming observational data from some of E-ELT’s suite of
instruments. Specifically, ELT-HIRES will improve the sensitivity of measurements of the fine
structure constant α (and map its possible redshift variation) and measure the redshift drift
of objects following the Hubble flow, while HARMONI will complement other cosmological
datasets by characterizing high-redshift Type Ia Supernovae.

We have shown how the runaway dilaton model predicts a variation of α with an am-
plitude and redshift dependence directly connected to the evolution of the dilaton field φ(z)
and therefore to its couplings to baryonic matter, dark matter and effective dark energy. We
then simulated ∆α measurements as expected from E-ELT to investigate its sensitivity to the
dilaton model parameters, alongside with redshift drift and Supernovae measurements from
the same facility, used primarily to constrain standard background cosmological parameters.

Assuming a ΛCDM fiducial cosmology, we confirmed that the E-ELT measurements will
improve constraints on αV with respect to those currently available (by a factor of order a
few), while constraints on the baryonic coupling αb,0 will not be competitive with the ones
expected from forthcoming local equivalence principle tests; the main reason behind this is
the strong degeneracy between the two parameters that arises in ∆α measurements, which
still plagues the results even if the fiducial model is slightly shifted away from the standard
ΛCDM cosmology. It will be interesting in the future to investigate other observable effects of
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the runaway dilaton model; some of these, like a violation of the CMB temperature-redshift
relation, can also be constrained by ELT-HIRES [8].

On the other hand there is a significant region of the parameters space that is com-
patible with all currently available cosmological and local (laboratory) constraints for which
the E-ELT would be able to detect deviations from the standard model at a good level of
significance, since in this regime the degeneracy between αV and αb,0 is partially broken.

We conclude that E-ELT will be a crucial facility to investigate the runaway dilaton
model, but it can obtain strong constraints on the model’s parameters only when the cosmo-
logical model departs significantly from the standard ΛCDM; broadly speaking, its sensitiv-
ity is optimal for couplings within one order of magnitude of the currently available bounds.
Should this not be the case, other observable effects of the dilaton need to be investigated
as measurements of ∆α alone will not allow significantly improved constraints due to the
parameter degeneracies we have highlighted. In any case, astrophysical tests carried out by
the E-ELT will provide an important complement to local equivalence principle tests.
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