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Abstract. In a previous study, the authors developed the planning of
the water used in the irrigation systems of a given farmland in order to
ensure that the field cultivation is in a good state of preservation. This
planning was modelled and tackled as an optimal control problem: mini-
mize the water flow (control) so that the extent water amount in the soil
(trajectory) fulfils the cultivation water requirements. In this paper, we
characterize the solution of our problem guaranteeing the existence of
the solution and applying the necessary and sufficient conditions of opti-
mality. We validate the numerical results obtained previously, comparing
the analytical and numerical solutions.

1 Introduction

The climate system and the ecosystems are under accelerated change while hu-
man cultures, economic activities and national interactions are undergoing dra-
matic and, sometimes, exponential changes. The rapid increase of the world pop-
ulation leads to a soaring demand of water. Agriculture exerts pressure on the
environment, especially on water. Thus, appropriate water management through-
out the irrigation processes is needed [6].

A model to optimize the water use in the irrigation of a farm field via opti-
mal control (water flow) that takes into account the evapotranspiration, rainfall,
losses by infiltration and runoff was developed in [10]. There the problem is
introduced, and a solution obtained for the “Yearly Planning” problem consid-
ering different weather scenarios with the help of the so called “precipitation
factor” that is multiplied by the rainfall monthly average. In [11], the authors
present the “Initial Planning Problem” for rainfall: this includes an extra term
taking into account the rainfall in the previous time period (this rainfall model
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was statistically proven to be significant) where a comparison between this new
model and the solution knowing the rainfall a priori was shown.

In this paper, we show that the solution of Initial Planning Problem exists
and we characterize it using necessary and sufficient conditions of optimality.
We also compare the results obtained analytically and numerically.

This paper is organized as follows. In section 2 we present a model for the
planning of irrigation based on the hydrologic balance equation. In section 3 we
show the analytical study of the solution. In section 4, we present a numerically
implementation of the problem and we show that the numerical results agree
with the results obtained analytically.

2 A Model for Planning the Irrigation

We consider a simple model for the planning of the water used in the irrigation
of farm fields, based on the hydrlogic balance. This means that, the variation of
water in the soil is given by

ẋ = u+ rfall − evtp− rnoff (1)

where x is the water in the soil, u is the amount of water flow introduced in the
soil via its irrigation system, the rfall is rainfall, the evtp is the evaporation of
the soil and the transpiration of the crop and rnoff are the losses of water due
to the runoff and deep infiltration.

Having in mind the postulate of Horton’s equation, infiltration decreases ex-
ponentially with time [4]. The dynamical equation can be written as

ẋ(t) = l(t)− w(t)x(t) (2)

where l(t) = u(t) + rfall(t)− evtp(t).
From (1) and (2), one may say rnoff = βx, where β is a parameter that

depends on the type of soil.
From now on, we consider the following dynamic equation

ẋ = u+ g(t)− βx, (3)

where g(t) = rfall(t)− evtp(t) and β is the percentage of losses of water due to
the runoff and deep infiltration.

The dynamic equation (3) is solved over the time interval [0, T ] subject to the
initial condition x(0) = x0. The variable of state x is subject to the inequality
constraint x ≥ xmin, where xmin is the hydrological need of the crop (according
to [9]). The control variable u belongs to the interval [0,M ], where M is the
maximum flow of water that comes from tap.
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The optimal control problem (OCP) formulation is then:

min

∫ T

0
u(t)dt

subject to:
ẋ(t) = u+ g(t)− βx a.e. t ∈ [0, T ]

xmin − x ≤ 0 ∀ t ∈ [0, T ]

u(t) ∈ [0,M ] a.e.

x(0) = x0.

(4)

A detailed description of this models is given in [11].

3 Analysis of the Solution

In order to characterize the solution of our problem, we prove the existence of
solution and we apply the necessary and sufficient conditions of optimality.

Throught, the function H represents the pseudo-Hamilton function:

H(t, x, p, u,λ) = p(u+ g(t)− βx) − λu (5)

where p and λ are Lagrangian multipliers.

3.1 Existence of Solution

Existence of solution was introduced by Tonelli (1915) when he proposed the first
theorem of existence of solution for calculus of variations problems. Even today,
Tonelli’s theorem remains the central existence theorem for dynamic problems,
although the hypotheses of the theorem can be relaxed, see, for example, [13].
In this section, we apply the theorem 5.4.4. in [2] to guarantee the existence of
solution for our OCP. Let us verify the conditions of this theorem, see theorem
(in Appendix)):

* The dynamic function and cost function are differentiable in the state and
control variable and the control belongs to the interval [0,M ].

* The condition i) of theorem 5.4.4. is satisfied, since the set

{[u+ g(t)− βx, u + δ] : u ∈ [0,M ] and δ ≥ 0}

is convex. Indeed, this set is the epigraph of a convex function.
* For the condition ii): take σ(t) = β, ρ(t) = 0 and φ(t, p) = |p−1|M+|p||g(t)|.
Then we have

p(u+ g(t)− βx)− u ≤ |p− 1|M + |p||g(t)|+ β|p||x|.

* The set C0 = {x0} is compact, so the condition iii) is satisfied.

The assumptions of the theorem 5.4.4. in [2] are verified and we conclude that
there exists an admissible solution to our OCP.
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3.2 Necessary and Sufficient Conditions of Optimality

In this section, we start by verifying that our problem satisfies the constraint
qualification that allows to write the Maximum Principle (MP) in the normal
form: the multiplier associated to the objective function λ is not zero (see [3]
and [8] for discussion of normal forms of the MP for optimal control problems
with state constraints). We finish this section applying the MP in the normal
form and we verify that MP conditions are also sufficient conditions.

Step 1: Verify the Normality

In Rampazzo and Vinter [8], the MP can be written with λ = 1, if there
exists a continuous feedback u = η(t, ξ) such that

dh(ξ(t))

dt
= ht(t, ξ) + hx(t, ξ) · f(t, ξ, η(t, ξ)) < −γ′ (6)

for some positive γ′, whenever (t, ξ) is close to the graph of the optimal
trajectory, x̄(·), and ξ is near to the state constraint boundary. There should
exist a control (flow of water provided by the irrigation systems) pulling the
state variable away from the state constraint boundary (this guarantees that
the crop survives).
In our problem h(x) = xmin − x and, from (6), we write

dh(ξ(t))

dt
= hx(ξ(t)) · f(t, ξ, , η(t, ξ)) = −(η(t, ξ) +△(t, ξ)) ≤ −γ′, (7)

where △(t, ξ) = g(t)− βξ. For a ξ on a neighbourhood of x̄, we can always
choose η sufficiently large so that the equation (7) is satisfied, as long as
M ≥ βx̄(t)− g(t), a condition we can impose with loss of generality.
Thus the inward pointing condition (7) is satisfied and normality follows.

Step 2: Application of the Maximum Principle

A known form of the normal MP for smooth problems with state constraint
is:
Let (x̄, ū) be a minimizer for (OCP), then there exists an absolutely contin-
uous function p and µ ∈ C∗(0, 1) such that,

−ṗ(t) = Hx(t, x̄(t), q(t), ū(t), 1)

H(t, x̄(t), q(t), ū(t), 1) = maxv∈[0,M ] H(t, x̄(t), q(t), v, 1) a.e.;

supp{µ} ⊂ {t ∈ [0, T ] : h(x̄(t)) = 0}

q(T ) = 0,

(8)

where q(t) is defined as follows,

q(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p(t)−
∫

[0,t)
µ(ds), t ∈ [0, T )

p(T )−
∫

[0,T ]
µ(ds), t = T.
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Applying theses conditions to our problem, we have:

ṗ(t) = βq(t)

q(t)(ū(t)− u(t))− (ū(t)− u(t)) ≥ 0

supp{µ} ⊂ {t ∈ [0, T ] : x̄(t) = xmin}

q(T ) = 0.

Step 3: Application of the First Order Sufficient Conditions

We can apply sufficient conditions to our problem. Sufficiente conditions
given by corollary of theorem 5.4.2 from [2] are validated under assumptions
verified by the data of our problem, i.e., (we refer the reader to see corollary
1 in the appendix):

* The dynamic function and cost function are differentiable in the state and
control variable and the control belongs to the interval [0,M ].

* The conditions (8) of the MP are satisfied.
* For each t the function (x, u) → p(t)(u + g(t) − βx) − u − ψ[0,M ](u) is

concave.

Thus, the necessary conditions of optimality of our problem are also sufficient
conditions.

3.3 Characterization of Solution

Now, we characterize the optimal solution for (OCP) studying the Weierstrass
condition of the MP for ū = 0, ū = M and ū ∈]0,M [.

If ū = 0, we have that for all u(t) ∈ [0,M ],

q(t)u(t)− u(t) ≤ 0 ⇔ q(t) ≤ 1.

If ū = M , we have that for all u(t) ∈ [0,M ],

(q(t)− 1)(M − u) ≥ 0 ⇔ q(t) ≥ 1.

In the remaining case (i.e. ū ∈]0,M [), we have:

q(t)(ū(t)− u(t))− (ū(t)− u(t)) ≥ 0 ⇔

(q(t)− 1)(ū(t)− u(t)) ≥ 0 ⇔ q(t) = 1.

Next we shall use all this information to validate the numerical solution (al-
ready presented in [12]) of our problem.
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4 Numerical Implementation and Results

The numerical simulations of our problem requires its discretization. Its discrete
formulation is as follows:

min δ
N∑

i=1

ui

such that:
xi+1 = xi + δf(ti, xi, ui), a.e. i = 1, . . . , N,

x1 = x0

xi ≥ xmin, i = 1, . . . , N,
ui ∈ [0,M ], a.e. i = 1, . . . , N,

where x = (x1, . . . , xN ) is the trajectory, u = (u1, . . . , uN−1) is the control, f is
the hydrological balance function, xmin is the hydrological need of the crop, x0

is an initial state, δ is the time step discretization, and N = T/δ. In the dynamic
equation, f is defined by

f(ti, xi, ui) = ui + rainfall(ti)− evapotranspiration(ti)− losses(xi), (9)

where the evapotranspiration takes in account the evaporation of the soil and
the transpiration of the crop and the losses are the losses of water due to the
runoff and deep infiltration. The Rainfall model [11] is based on a linear com-
bination of average monthly rainfall from the last 10 years and the amount of
rainfall in the previous month. The evapotranspiration model is described as the
crop coefficient (in our case potatoes) multiplied by the reference value of evapo-
transpiration in Lisbon, given by Pennman-Monteith methodology, (see [5]). The
losses are model as 15% of the water in the soil, based on Horton’s equations. A
more detailed description of these models can be seen in [11].

The state constraint (xi ≥ xmin) translates the fact that the plants needs a
minimum amount flow of water to survive.

We consider a field of potatoes in the region of Lisbon, Portugal. Based on
data from [7] we consider:

xmin = 0.56/12 m3/month T = 12
x0 = 4xmin m3/month β = 15%
M = 1 m3/month.

To obtain the numerical solution for the optimal control problem we have
approximate the problem by a sequence of finite dimensional nonlinear pro-
gramming problems, (see [1]). To implement this optimization problem, we use
fmincon function of MatLab with the algorithm “active set”, by default.

The code produces results that are according to what is expected for this
region [9].

Next, we plot the numerical solution and the expected multipliers.
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Note that the green line represents the hydrological need of the crop.
We can observe that:

q(t) ≤ 1 if ū = 0, q(t) = 1 if ū ∈]0,M [

and since ū is never equal to 1, q is never great than 1, as expected from section
3.3. From here, we can say that although the analytical explicit solution was not
obtained, the numerical solution fulfils the necessary optimality conditions.

Our numerical findings suggest that the trajectory has a “ boundary interval”
[tin, tout], with tin > 0 and tout < 12 (i.e. x̄(t) = xmin for all t ∈ [tin, tout]
and x̄(t) ̸= xmin for t ̸∈ [tin, tout]) and that q is absolutely continuous function
excepted at tout where it exhibits a jump. Taking these information into account
we now get a analytical characterization of the solution and q multiplier.

Step 1: h(x̄(t)) < 0 for t ∈ ]tout, 12].

Since the inequality constraint is not active, then p(t) = q(t). Thus we most
have p(12) = 0 and, since ṗ(t) = βp(t), by the adjoint equation of the MP,
we can conclude that p(t) = q(t) = 0.
Applying the Weierstrass condition of MP, we get ū ≤ u, ∀u ∈ [0,M ]. Thus
ū = 0.
Replacing ū by zero in the dynamics, we have:

˙̄x(t) = g(t)− βx̄(t).

As x̄(tout) = xmin, then x̄(t) = e−β(t−tout)

(∫ t

tout

eβ(s−tout)g(s)ds+ xmin

)
,

for t ∈ ]tout, 12].

Therefore (x̄(t), ū(t)) = (e−β(t−tout)

(∫ t

tout

eβ(s−tout)g(s)ds+ xmin

)
, 0) and

q(t) = 0, for t ∈ ]tout, 12].
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Step 2: h(x̄(t)) = 0 for t ∈ [tin, tout].

As for t ∈ [tin, tout]: h(x̄(t)) = 0, we have x̄(t) = xmin. Therefore:

˙̄x(t) = 0 ⇔ ū(t) = −g(t) + βxmin.

And we may conclude that (x̄(t), ū(t)) = (xmin,−g(t) + βxmin) for t ∈ ]tin,
tout[.
Since ū(t) > 0 for t ∈ ]tin, tout[, then by the MP we also conclude that
q(t) = 1, t ∈ ]tin, tout[.

Step 3: h(x̄(t)) < 0 for t ∈ [0, tin[.

Since h(x̄(t)) < 0, then p(t) = q(t). Again, as p(tin) = 1 and ṗ(t) = βp(t), by
the adjoint equation of the MP, we can conclude that p(t) = q(t) = eβ(t−tin).
On the other hand p(t) = q(t) < 1, then by Weierstrass condition we get
ū ≤ u, ∀u ∈ [0,M ]. Therefore ū = 0.
Consequently, our dynamics is written as:

˙̄x(t) = g(t)− βx̄(t).

Since x̄(0) = x0, then x̄(t) = e−βt
(∫ t

0
g(s)ds+ x0

)
, for t ∈ [0, tin].

Therefore (x̄(t), ū(t)) = (e−βt
∫ t

0
g(s)ds+ x0, 0) and q(t) = eβ(t−tin), for

t ∈ [0, tin].

Briefly,

x̄(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e−βt
(∫ t

0
g(s)ds

)
+ x0 t ∈ [0, tin]

xmin t ∈]tin, tout[

e−βt
(∫ t

tout

g(s)ds+ eβtoutxmin

)
t ∈ [tout, 12],

ū(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 t ∈ [0, tin]

−g(t) + βxmin t ∈]tin, tout[

0 t ∈ [tout, 12]

q(t) =

⎧
⎪⎪⎨

⎪⎪⎩

eβ(t−tin) t ∈ [0, tin]

1 t ∈]tin, tout[

0 t ∈ [tout, 12]

Next, we plot the numerical and analytical solution obtained from our model
for the year 2010.
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From this figure we confirm that the numerical solution agrees with the results
shown in section 3. We notice the analytical and estimated results of trajectory,
control and multipliers coincide.

5 Conclusion

We characterized the optimal solution to the irrigation problem described as the
minimization of the water flow (control) so that the amount flow of water in the
soil (trajectory) fulfils the cultivation water requirements of the crop. We proved
the existence of solution and we verify that the Maximum Principle conditions
are also sufficient conditions. Furthermore, we characterized the solution apply-
ing the necessary conditions of optimality in the form of the Maximum Principle
and we conclude that the multiplier q(t) ≤ 1 when ū = 0 and when ū ∈]0, 1[
then q(t) = 1. We used the information obtained in numerical solution with re-
spect to the time interval where the state constraint is active to get the optimal
solution analytically. Finally, we compare the results obtained analytically and
numerically are compared showing conclude that the numerical solution fulfils
the MP conditions.

Appendix

Auxiliary Results
Here, we present an adaptation of corollary of theorem 5.5.4 and theorem 5.4.2
from [2] to our problem, that can be written as:

(OP ) min

∫ T

0
L(x(t), u(t))dt

subject to:
ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [0, T ]

h(x(t)) ≤ 0 ∀ t ∈ [0, T ]

u(t) ∈ Ω a.e.

x(0) ∈ C0

(10)
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Theorem 1. (Existence) (theorem 5.5.4 in [2]) Consider the (OP ) problem and
assume that f and L are differentiable in the state and control variables, Ω is
convex bounded set, h is lower continuous function in x and C0 is closed and
convex and suppose in addition that:

i) For each x with h(x) ≤ 0, the following set is convex:

{[f(t, x, u), L(x, u) + δ] : u ∈ [0,M ] and δ ≥ 0} .

ii) There exist functions σ(t), ρ(t) and φ(t, p) finite and summable in t (with
σ and ρ nonnegative) such that for all x satisfying h(x) ≤ 0 for all w in Ω
and for all p one has

H(t, x, p, w, 1) ≤ φ(t, p) + |x|(ρ(t) + σ(t))|p|.

iii) The set C0 is compact;

Then, if there is at least one admissible (x, u) for (OP ) giving a finite value
to the cost functional, there is a solution to (OP ).

Corollary 1. (Sufficient condition)(corollary of theorem 5.5.4 in [2]) Consider
the (OP ) problem and assume that f and L are differentiable in the state and
control variables, Ω is convex bounded set, h is lower continuous function in x
and C0 is closed and convex. Let (x, u) be admissible for (OP ), and suppose that
there is an arc p satisfying:

i) For almost all t, the function w → H(t, x(t), p(t), w, 1) attains a maximum
over Ω at w = u(t).

ii) −ṗ(t) = Hx(t, x(t), p(t), u(t), 1) a.e..
iii) q(T ) = 0.
iv) For each t, the function (y, w) → H(t, y, p(t), w, 1) − ψΩ(w) is concave.

(ψΩ(w) is the indicator function.)

Then (x, u) solves (OP ).
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