
Computing Card Probabilities in Texas Hold’em

Luís Filipe Teófilo1,2, Luís Paulo Reis1,3, Henrique Lopes Cardoso1,2

1 LIACC – Artificial Intelligence and Computer Science Lab., University of Porto, Portugal
2 FEUP – Faculty of Engineering, University of Porto – DEI, Portugal

3 EEUM – School of Engineering, University of Minho – DSI, Portugal
luis.teofilo@fe.up.pt, lpreis@dsi.uminho.pt, hlc@fe.up.pt

Abstract— Developing Poker agents that can compete at the level

of a human expert can be a challenging endeavor, since agents’

strategies must be capable of dealing with hidden information,

deception and risk management. A way of addressing this issue

is to model opponents’ behavior in order to estimate their game

plan and make decisions based on such estimations. In this paper,

several hand evaluation and classification techniques are

compared and conclusions on their respective applicability and

scope are drawn. Also, we suggest improvements on current

techniques through Monte Carlo sampling. The current methods

to deal with risk management were found to be pertinent

concerning the agent’s decision-making process; nevertheless

future integration of these methods with opponent modeling

techniques can greatly improve overall Poker agents’

performance.

Keywords: Computer Poker; Poker hand probabilities;

Opponent modeling; Texas Hold’em Poker; Incomplete

information games; Game state abstraction

I. INTRODUCTION

Incomplete information games such as Poker became a
field of interest for the AI research community over the last
decade. This game presents unique challenges when compared
to other strategy games like chess or checkers. In the latter,
players are always aware of the full state of the game. On the
other hand, Poker’s game state includes hidden information,
since each player can only see his/her cards and the community
cards, making Poker a game which is much more difficult to
analyze. Poker is also a stochastic game, i.e., it comprises the
element of chance.

Due to the occurrence of random events (card dealing) and
the existence of hidden information, the implementation of
competitive Poker software agents greatly benefits from
opponent modeling – categorize the opposing players in order
to determine their possible strategies. When an agent identifies
the opponents playing style, it can adapt its strategy to
maximize the overall utility against that opponent. This is
important as the goal of Poker is to score as much as possible
and not to win a particular game (or a particular set of games).

This paper describes several techniques on how a Poker
agent can measure the risk of its actions, with emphasis on the
available information: the pocket cards and the community
cards. An agent can benefit of accurately knowing how strong

its cards are. This allows agents to adapt their decision stream
to better manage their resources.

The rest of the paper is organized as follows. Section 2
describes the game which is the domain of this paper: the
Texas Hold’em variant of Poker. Section 3 describes current
methods and tools to quickly compute the rank of a hand,
which is essential for probabilities calculation. Section 4
describes the current techniques to compute the odds of a 5 to 7
card hand as well as an explanation on how to improve the
efficiency of these techniques. Section 5 describes how to
estimate the value of pocket cards, i.e., when the community
cards are still hidden. Finally, the main conclusions and some
suggestions for future work are drawn in Section 6.

II. BACKGROUND

Poker is a class of card betting games with similar rules.
This work focus on a particular variant of Poker – Texas
Hold’em – which is the most popular set of rules nowadays.
Hold’em rules also have specific characteristics that allow for
new developed approaches to be adapted to other variants with
reduced effort [1].

The game is based upon the concept of players betting that
their current hand 1 is stronger than the hands of their
opponents. All bets throughout the game are placed in the pot
and at the end of the game the player with the highest ranked
hand wins the game and collects the pot. Alternatively, it is
also possible to win the game by inducing opponents to fold
their hands by making bets that they are not willing to match.
Thus since players’ cards (pocket cards) are hidden, it is
possible to win the game with a hand with lower score. This is
done by convincing the opponents that one’s hand is the
strongest one. This particular feature of the game’s rules makes
it even more difficult to develop an agent’s strategy, because
the agent cannot assess if it has made a good decision.

A. Rules

Texas Hold’em Poker is a community card
2 Poker variant.

In each game there is a minimum bet and at the start two cards
are dealt to each player – pocket cards. A dealer player is
assigned and marked with a dealer button. The dealer position

1 Hand – a set of cards of a particular player
2 Community card – visible card that is shared by all players.

This work was financially supported by FCT – Fundação para a Ciência e
a Tecnologia through the Ph.D. Scholarship with reference
SFRH/BD/71598/2010.

CISTI 2013 | 988

rotates clockwise from game to game. The game starts by the
player on the left of the dealer position posting the small blind
(half of the minimum bet) and the player on his left posting the
big blind (minimum bet). The first player to act is the one on
the left of the player posting the big blind.

The game is composed of four rounds: Pre-Flop, Flop, Turn
and River. The participants play subsequently in turns and they
can choose to match the highest bet (Call), increase that bet
(Raise) or forfeit the game and lose the pot (Fold). A player
wins if he/she is the last standing player or if he/she has the
highest ranked card after the last round at the Showdown. This
Poker variant has two sub-variants with a small difference in
their rule set. These are called Limit and No Limit Texas
Hold’em. The difference between them is the existence of a
raise value limit.

B. Ranking hands in Poker

A Poker hand is a set of five cards that expresses the player’s
score. Being Δ the set of all cards in the deck, Φ the set of
pocket cards of a particular player and Ω the set of community

cards so that Φ Ç Ω = Æ. Thus, the score function is defined as
. For a particular player, the hand is the union of

the pocket cards and the community cards (). Thus, the
player’s score is given by the rank function, as follows
(equation 1):

 (1)

The possible hand ranks are (from stronger to weaker):
Straight Flush (sequence of same suit), Four of a Kind (4 cards
with same rank), Full House (Three of a Kind + Pair), Flush (5
cards with same suit), Straight (sequence), Three of a Kind (3
cards with same rank), Two Pair, One Pair (2 cards with same
rank) and Highest Card (not qualifying to other ranks).
Examples of each rank are demonstrated in table I. These ranks
are not equally valued. Each rank has sub-ranks essentially
based on the score of the top cards (e.g.: a pair of aces scores
higher than a pair of queens). In total, there are 7462 possible
sub-ranks in Texas Hold’em Poker.

TABLE I. POKER HAND RANKS WITH EXAMPLES.

Hand Name Example of card set
#distinct sub-

ranks

Straight Flush 8♠ 7♠ 6♠ 5♠ 4♠ 10

Four of a Kind A♣ A♦ A♥ A♠ K♠ 156

Full House Q♣ Q♠ 7♥ 7♠ 7♦ 156

Flush T♥ 8♥ 6♥ 4♥ 2♥ 1277

Straight 4♦ 5♥ 6♦ 7♠ 8♠ 10

Three of a Kind T♣ T♦ T♥ Q♣ 3♦ 858

Two pair 7♣ 7♠ 3♠ 3♥ Q♠ 858

One pair 2♠ 2♣ 8♣ 7♣ 3♥ 2860

High Card A♥ T♥ 6♦ 4♣ 2♣ 1277

Total: 7462

It is important to distinguish the concepts of rank and odds.
The rank is the final score of a hand. This means that at the end
of the game, the player with the better rank will win the pot.
The odds indicate the probability of a certain hand being the
best at the end of the game. It consists of computing several
hand ranks and the average rank of several possible opposing
hands. In other words, they specify how likely it is for a
particular player to win the pot at the Showdown.

C. Opponent Modeling in Texas Hold’em

Since Texas Hold’em Poker is an incomplete information
game, for competent play, an agent should be able to model the
opponents' strategies in order to predict the opponents’ actions
and also to predict the possible outcomes of their own choices.
By predicting the opponents’ actions, the agents will be more
likely to optimize their revenue and their expected utility over
time.

 One good example of opponent modeling are the Sklansky
groups [3]. The Sklansky groups are a card abstraction
technique – grouping different card sets and playing with an
equal strategy for each group. This abstraction clusters all
combinations of pocket cards into eight groups and defines
how frequent each group is for each player type, based on the
concept of aggression factor3 and VP$IP4.

Opponent models can also be automatically computed.
Popular techniques are for instance machine learning [2–4],
reinforcement learning [5] or Bayesian networks [6].

III. HAND RANK COMPUTATION

A poker hand rank evaluator is a software program that
computes the value of the rank function (equation 1), partially
computed by the score function . In Texas Hold’em
Poker this evaluator receives as parameter the set of cards Φ +
Ω, where . The evaluator returns a
natural number representing the relative value of that hand
(typically from 0 to 7461, where 7461 corresponds to the one
of the top scored Straight Flushes).

To compute the probability of success of a given hand –
odds – it is usually necessary to compute several hand ranks
before. For instance, the methodologies described in Sections
IV or V require the computation of hand ranks.

Programming an algorithm to determine the hand’s rank is
a relatively trivial task. This can be done using a naïve
approach, i.e. using an algorithm that intuitively makes sense
and that is humanly readable. Naive hand rank evaluators
usually consist of the following steps:

· Sort the hand by card value (deuce has the lowest value
and ace has the highest);

· Iterate through the hand, collecting information about
ranks and suits of the cards;

· Make specific tests to check, iteratively, if the hand is
of a certain rank, starting at the higher ranks.

One example to illustrate this idea can be found in the code
bellow. This example does not consider the whole set of Texas
Hold’em rules (the sub-ranks referred on section II.B).

Function HandRank(Hand) {

 Sort(Hand);

 If IsStraightFlush(Hand) Return 9;

 If IsIsFourOfAKind(Hand) Return 8;

 If IsFullHouse(Hand) Return 7;

3 Aggression factor – number of calls divided by the number of raises
4 VP$IP – voluntary put money in the pot before the Flop round

CISTI 2013 | 989

 If IsFlush(Hand) Return 6;

 If IsStraight(Hand) Return 5;

 If IsThreeOfAKind(Hand) Return 4;

 If IsTwoPairs(Hand) Return 3;

 If IsOnePair(Hand) Return 2;

 Return 1;

}

The problem with naïve evaluators resides in their
efficiency, which is important because the rank evaluator is
used by a hand odds evaluator several times per computation.
The solution to this problem resides in top-down dynamic
programming algorithms in order to speed up the rank function.
The next subsections will present some developed approaches
to solve this issue.

A. Pokersource Poker-Eval

Poker-Eval is a C implementation of a Poker Hand rank
evaluator [7]. As described at the beginning of this section,
given a hand, this evaluator returns a natural number that
represents the hand score. This evaluator uses a naïve approach
and, to the best of our knowledge, the fastest one.

The main advantages of this evaluator is its architecture
which supports multi Poker variants, multi-platform usage
since there are wrappers for other programming languages and
its low memory usage when compared to look-up table based
approaches. The main issue of this evaluator is its low level
API which makes it harder to use by programmers.

B. Cactus Kev

The Cactus Kev's 5-Card Evaluator [8] is a system to compute

5 card hand rank. The idea behind its algorithm is the

construction of a pre-computed look-up table with every

possible rank. However, since the number of possible 5 card

sequences is , the size of the table would be about 2.5 GB

of memory (considering 8 bytes to store the hand and its rank).

To solve this problem one can group similar hands (same

cards, different order), resulting in hands, turning this

solution feasible (the size of the new look-up table would be

about 20 MB). However, this solution requires sorting the

hand cards before accessing the look-up table, wasting

additional CPU time. To solve this, Cactus uses a 32 bit

integer representation of the cards (Figure 1).

Figure 1. Cactus Kev’s card representation

P (6 bits) represents the value of a card in a form of a
prime number, with the following values Two – 2; Three – 3;
Four – 5; Five – 7; Six – 11; Seven – 13; Eight – 17; Nine – 19;
Ten – 23; Jack – 29; Queen – 31; King – 37; Ace – 41. The
reason behind this decision resides in the fact that the
multiplication of two prime numbers always generates a unique
value. This allows for avoiding the step of sorting the hand
cards, saving CPU time. Therefore, the product of these values
of card values can be used to index the hands.

R (4 bits) represents the rank of the card (Two – 0; Three –
1; Four – 2; …). CDHS represents the card’s suit mask, where

one of the bits is activated (C if the card is Clubs, D if the card
is diamonds …). The B (12 bits) represents the card’s rank
mask, where the first bit is activated when the card is a Two or
the second bit is activated when the card is a Three, and so on.

Three lock-up tables are used in this evaluator: flushes (the
ranks of all flushes and straight flushes hands), unique5 (the
ranks of all hands with cards with different ranks) and values
(the remaining cards). To build the look-up tables, a naïve
evaluator is required.

To find the value of a certain hand, the three tables are
consulted. Assuming the cards of the hand are labeled as C1,
C2, C3, C4 and C5, Cactus first verifies if the hand is a flush:

Index = C1 AND C2 AND C3 AND C4 AND C5 AND 0xF000

For the calculated index, the table can either return the
value of the hand or 0, if the hand is not a flush or a straight
flush. The next step is to verify if the hand belongs to unique5
by calculating the index the following way:

Index = (C1 OR C2 OR C3 OR C4 OR C5) >> 16

Once again, if the value of the table at the calculated index
is 0, we have to look for the result in another table. The final
index (equation 2) uses the described prime number strategy.

(2)

The problem of using this index system is that it would
result in a very large look-up table of size

. The author of this technique solves
this problem by storing the indexes in a binary search tree for
fast hand value retrieval.

The main limitation of this hand evaluator is that it can only
be used to evaluate 5-card hands. This means that to use it in
Texas Hold'em (which needs to evaluate 7-card hands in River
round), the function has to evaluate all possible 21
combinations of 5 cards to determine the hand value.

C. Paul Senzee

Paul Senzee’s hand evaluator is an improved version of
Cactus Kev. However, instead of using a binary search, Senzee
uses a pre-computed perfect hash table.

A perfect hash table guarantees no collisions in the storage
of the hands’ values. Also it allows for acquiring the values in
constant time instead of the complexity of the binary
search. The used hash function was based on [9]. This
approach produced a time improvement factor of about 2.7
times [10].

Another advantage of Paul Senzee’s approach it that there
is a version of the evaluator for 7 cards, which is useful for the
river round (instead of computing 21 ranks).

Paul Senzee's 7 Card Evaluator also uses a pre computed
hand table to quickly determine the integer value of a given 7
card hand. For 7 hand cards lookup, Paul represents each hand
with a 52 bit string, where each bit represents an activated card.

CISTI 2013 | 990

The total number of activated bits is 7, representing a 7 card
hand.

If unlimited memory was available, it would be possible to
index the resulting rank value into an enormous and very
sparse array with 252 entries of about 9 petabytes of memory (9
million gigabytes) assuming two bytes per each entry (short
integer). To solve this problem, Paul Senzee's developed a hash
function that turns the hand value into an index between 0 and
roughly 133 million and, by using the Cactus Kev’s evaluator,
it is possible to produce a 266MB lookup table. The author of
this approach does not provide information about the hash
generation code. The main limitation of the 7 card version of
Paul’s evaluator is that it only supports 7 cards (it does not
support Flop and Turn rounds).

D. TwoPlusTwo Evaluator

TwoPlusTwo evaluator is a lookup table Poker hand
evaluator that uses a table of 32,487,834 entries with a total
size of ~130 MB [11]. The TwoPlusTwo Evaluator is
extremely fast and probably the fastest hand evaluator there is.
This is because the ranks of the hands being stored in a non-
sparse array without redundant values. This means that each
position at the lookup table represents a unique hand (the size

of the table is exactly , the number of possible 7 card

hands). Using this structure, to get the value of a given hand,
only one lookup per card is performed. For instance, the
following function will compute a 7 card hand value, being HR
the lookup table.

Function Rank(Hand) {

 Return HR[HR[HR[HR[HR[HR[HR[53 + Hand[0]] +

Hand[1]] + Hand[2]] + Hand[3]] + Hand[4]] + Hand[5]]

+ Hand[6]] }

To store the hands, the implementation of this evaluator is
based on a state machine. Each entry in the table represents a
state. The next state accumulates in the current state and the
value of the card. In the final state, the value represents the
hand value. This hand evaluator supports 5, 6 or 7 card hands.

E. Hand rank evaluators benchmark

In order to determine the fastest hand rank evaluator, a
benchmark test was performed. The test consisted of ranking a
pre-computed sequence of all possible combinations of 5 card
hands (2,598,960 hands). The tests were performed 1000 times
each on an Intel I7-3940XM CPU. The set of hands was tested
with each described hand rank evaluators and the results are
presented in Table II.

TABLE II. HAND RANK FUNCTION BENCHMARK

Hand rank program
Average elapsed time for 1.000 trials (ms)

Non parallel Parallel (4 cores)

Cactus Kev 807,13 591,22

Pokersource 2.520,44 980,14

Paul Senzee 403,04 195,44

TwoPlusTwo 91,09 37,98

The TwoPlusTwo Evaluator is by far the fastest hand rank
evaluator, performing better in both experiments.

IV. COMPUTING ODDS ON COMPLETE HANDS

Evaluating the odds of a hand consists of measuring the
quality of a given hand in any game stage. This section
describes how to compute the probability of a certain hand
being successful at Showdown (last round where the winner is
decided). By evaluating the hand it is possible to determine the
probability of winning or losing the current game. This
knowledge can be used to inform the agent's decision of either
fold the hand or play it, as well as to assess the probability of
success and the risk that the agent is facing. Computing the
hand odds may consider the following variables: Pocket cards;
Number of opponents; Community cards; Possible community
cards to come; Possible opponents’ cards.

The hand evaluation method typically returns a real number
between 0.0 and 1.0. If it returns the lower limit, this means
that the hand will lose regardless of future events in the game,
unless the player uses deception to bring opponents to forfeit.
Conversely, obtaining the upper limit from the hand evaluation
function means that victory is mathematically assured – the
only way of losing is to unwisely fold the hand.

A. Hand Strength

The hand strength [1] is the probability of the current hand
being the best if the game reaches a showdown with all
remaining players. It consists of enumerating all possible hands
that an opponent can have and checking if the agent's hand is
better than the hands in the enumeration. By counting the
number of times the player’s hand is found to be better, it is
possible to measure the quality of the hand. Using subsection
II.B terminology, the hand strength (HS) for a given number of
opponents n is given by:

The Hand Strength may be used in any round of the game.
However hand strength does not address the possibility of the
hand improving in subsequent rounds of the game, which is
possible because in Texas Hold’em new cards are revealed at
the start of every round (community cards). This issue is
addressed by the Hand Potential Formula [1] which sums up
possible hand strengths in subsequent rounds (described in the
next subsection).

In [12], the authors suggest it is possible to combine the
hand strength algorithm with opponent modeling in order to
calculate the hand strength taking into account the opponents.
To this purpose, the proposed algorithm would use

CISTI 2013 | 991

 where is the set of cards that the opponent

probably hasn’t given that Φ È Ω È Δ, and Φ Ç Ω Ç =
Æ. This approach was successfully tested in Texas Hold’em
heads up5 games.

B. Hand Potential

Hand potential [1], [12] is an algorithm that calculates the
possible evolution of the hand quality throughout the game.
When the game reaches the Flop round there are still two more
deck cards to be revealed. This means that the current hand
rank might improve, since the hand is composed of the set of
five available cards (pocket or community cards) that has the
highest rank among all available cards.

This algorithm is an extension of hand strength, but instead
of only considering the current available cards, it considers the
possible community cards that have not been revealed yet. This
algorithm also considers that the opponents' hands might
improve as well.

Hand potential has two components:

· Positive potential: of all possible games with the
current hand, all scenarios where the agent is behind
but finally wins are calculated.

· Negative potential: of all possible games with the
current hand, all the scenarios where the agent is ahead
but finally loses are calculated.

The components of hand potential can be calculated as
follows (again using subsection II.B terminology):

,

where is 2 when performing computation for the
Flop round and 1 for the Turn round. To better illustrate this
approach, we present the following pseudo-code that represents
the hand potential algorithm.

function HandPotential(ourcards, boardcards){

 int array HP[3][3], HPTotal[3] /* Init to 0 */

 ourrank = Rank(ourcards, boardcards)

 for each case(oppcards) {

 opprank = Rank(oppcards, boardcards)

 if(ourrank>opprank) index = ahead

 else if(ourrank=opprank) index = tied

 else index = behind

 HPTotal[index]++

 for each case(board) {

 ourbest = Rank(ourcards, board)

 oppbest = Rank(oppcards, board)

 if(ourbest>oppbest) HP[index][ahead]++

 else if(ourbest==oppbest) HP[index][tied]++

 else HP[index][behind]++

5 Heads up – Poker game between two players.

 }

 }

 PPot = (HP[behind][ahead] + HP[behind][tied]/2 +

HP[tied][ahed]/2) / HPTotal[behind]+HPTotal[tied]/2)

 NPot = (HP[ahead][behind] + HP[tied][behind]/2 +

HP[ahead][tied]/2)/ (HPTotal[ahead]+HPTotal[tied]/2)

 return (PPot, NPot)

}

The main advantage of this calculation is the consideration
of Texas Hold’em upcoming rounds. This is important because
some games might reach showdown, therefore presenting a
more refined measure than hand strength. This algorithm
presents the same result as Hand Strength in the River round
(because the hand cannot evolve any further). Moreover, this
method cannot be used in Pre Flop rounds, because it is not
possible to calculate the hand strength for a two hand card.
This might be solved by combining this algorithm with Chen
Formula (see Section V). Similarly to the hand strength
algorithm, if the Hand Potential is modified to only iterate over
cards that the opponents might have [12], it is possible to
obtain a better estimate of the winning ratio.

C. Effective Hand Strength

The probability of winning can be calculated by combining
the Hand Strength with the Hand Potential components.

By setting the NPOT to 0, it is possible to determine the
effective hand strength which is the probability of the hand
either being the best or improving to become the best.

 (5)

D. Monte Carlo Effective Hand Strength

The effective hand strength algorithm is heavy in the
number of cycles, especially due to the use of hand potential
algorithm, because we have to generate all possible sequences
of board cards to come. For instance, if we are competing
against 2 players and we are in the Flop round (3 community
cards show), to compute the hand potential we have to generate

permutations,

which is (in most cases) unfeasible. To solve this, we introduce
the usage of Monte Carlo Method. This consists of sampling a
fixed number of random possible board cards. Table III
demonstrates the errors obtained by randomly sampling a
certain number of board cards. Our experiments show that
sampling 100 board cards for each algorithm step produces an
already negligible error.

TABLE III. SAMPLING BOARD CARDS

Number of Samples Number of iterations Error

All samples 0

1000 ~0.001

100 ~0.012

10 ~0.151

CISTI 2013 | 992

V. COMPUTING ODDS ON INCOMPLETE HANDS

The previous section has shown how to compute the odds
of complete hands i.e. when it is possible to compute the hand
rank. In this section the Pre-Flop round of the game is
addressed by showing how to compute odds when all
community cards are hidden.

A. Chen Algorithm

Chen method is a fast naïve algorithm developed by the
professional poker player William Chen [13]. This formula can
determine the relative value of the pocket hand. The main
advantage of this is that it does not need to generate
permutations of card sets. For this reason, this algorithm is
much faster than all others based on Hand Strength.

Function Chen(card1, card2)

 score = Max(Score(card1), Score(card2))

 if(card1.suit == card2.suit)

 score = score + 2

 switch(Abs(card1.Rank – card2.Rank))

 case 0: score = score * 2

 case 1: score = score + 1

 case 2: score = score – 1

 case 3: score = score – 2

 case 4: score = score – 4

 default: score = score – 5

 return score

The algorithm is composed of two functions. The Score
function returns a real number that scores a card. (Ace – 10,
King – 8, Queen – 7, Jack – 6 and Value / 2 for others). The
Chen Formula function returns an integer which represents the
value of the hand. Thus, the maximum value of the returned
value is 20 for a double Ace hand. In order to maintain
consistency among odds evaluation methods, we introduce
output normalization. The normalized Chen formula is:

B. Computing the strength of two hand cards

One possible approach to calculate the hand probabilities
for incomplete hands is to combine the effective hand strength
formula with Monte Carlo sampling. This process consists of
constructing a pre-computed table by simulating enough games
(with [14]) for each possible pocket hand and computing the
average number of wins and losses for that hand. The agents
used in this simulation used a random fixed mixed strategy
with equal probabilities for call, raise or fold. After obtaining
the simulation values, the game’s isomorphisms were discarded
(e.g. 4♣, 3♠ should have the same value as 4♥, 3♦) by
calculating their average value. Finally all hands were sorted
and saved in a pre-computed table. The use of a pre-computed
table is justified since computing the hand relative values takes
a long time. Moreover, the size of the produced table is short:

 entrances.

VI. CONCLUSIONS

There is still work to be done in order to create an agent
which can play Poker at the level of the best human players.
This research has shown how an agent can assess the quality of
its hand so as to aid its decision-making process during the
game. This is a rather important feature when developing a
competitive artificial agent, since it is impossible to play well
without estimating how strong the agent's hand is. There are
five main hand odds evaluators to calculate the winning ratio,
which take into account the current game state. All of them
provide relevant information for each game round. Also,
modifications to hand potential and hand strength algorithms
have been suggested in order to integrate opponent modeling
into these methodologies. With respect to hand rank evaluators,
some of them proved to be very fast, which is a crucial feature,
since they are executed many times throughout a game. The
fastest evaluator was TwoPlusTwo, achieving the smallest
elapsed time in a simple experiment. In future work,
researchers should focus on combining these evaluators further
with opponent modeling techniques.

REFERENCES

[1] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron, “The challenge
of poker,” Artificial Intelligence, vol. 134, no. 1–2, pp. 201–240, 2002.

[2] L. F. Teófilo and L. P. Reis, “HoldemML: A framework to generate No
Limit Hold’em Poker agents from human player strategies,” in 6th
Iberian Conference on Information Systems and Technologies (CISTI
2011), 2011, pp. 755–760.

[3] L. F. Teófilo and L. P. Reis, “Building a No Limit Texas Hold’em Poker
Playing Agent based on Game Logs using Supervised Learning,” in
Proceedings 2nd International Conference on Autonomous and
Intelligent Systems, 2011, pp. 73–83.

[4] G. Nicolai and R. J. Hilderman, No-Limit Texas Hold’em Poker agents
created with evolutionary neural networks. Ieee, 2009, pp. 125–131.

[5] L. F. Teófilo, N. Passos, L. P. Reis, and H. L. Cardoso, “Adapting
Strategies to Opponent Models in Incomplete Information Games: A
Reinforcement Learning Approach for Poker,” in Autonomous and
Intelligent Systems - Third International Conference (AIS2012), 2012,
pp. 220–227.

[6] R. J. S. Baker, P. I. Cowling, T. W. G. Randall, and P. Jiang, Can
opponent models aid poker player evolution? Ieee, 2008, pp. 23–30.

[7] “Pokersource Poker-Eval.” [Online]. Available:
http://pokersource.sourceforge.net/.

[8] C. Kev, “Cactus Kev’s Poker Hand Evaluator.” [Online]. Available:
http://www.suffecool.net/poker/evaluator.html.

[9] E. A. Fox, L. S. Heath, Q. F. Chen, and A. M. Daoud, “Practical
minimal perfect hash functions for large databases,” Commun. ACM,
vol. 35, no. 1, pp. 105–121, 1992.

[10] Senzee5, “PAUL SENZEE ON SOFTWARE, GAME
DEVELOPMENT, TECHNOLOGY AND LIFE,” 2006. [Online].
Available: http://www.paulsenzee.com/2006/06/some-perfect-hash.html.

[11] “Coding the Whell: Poker Hand Evaluator Roundup,” 2008. [Online].
Available: http://www.codingthewheel.com/archives/poker-hand-
evaluator-roundup.

[12] D. Félix and L. P. Reis, “An Experimental Approach to Online
Opponent Modeling in Texas Hold’em Poker,” in SBIA ’08 Proceedings
of the 19th Brazilian Symposium on Artificial Intelligence: Advances in
Artificial Intelligenc, 2008, pp. 83 – 92.

[13] B. Chen and J. Ankenman, The Mathematics of Poker, 1st editio.
Conjelco, 2006.

[14] L. F. Teófilo, R. Rossetti, L. P. Reis, and H. L. Cardoso, “Simulation
and Performance Assessment of Poker Agents,” in Springer LNCS 7838
(MABS 2012), 2013, pp. 69–84.

CISTI 2013 | 993

