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Abstract:

The main purpose of necessary conditions of optimality (NCO) is, given an optimization
problem, to select a set of candidates to minimizer. However, for some optimization problems
with constraints — in particular for optimal control problems —, it may happen that the NCO
are unable to provide any useful information; that is, the set of candidates to minimizers that
satisfy certain NCO coincides with the set of all admissible solutions. When this happens,
we say that the degeneracy phenomenon occurs. To avoid this phenomenon, stronger forms
of NCO are developed. These stronger forms can be applied when the problem satisfies
additional hypotheses, known as constraint qualifications. In the case of optimal control
problems with state constraints that have higher index (i.e. the first derivative of the state
constraint with respect to time does not depend on the control), most constraint qualifications
described in literature are not adequate. We note that control problems with higher index state
constraints arise frequently in practice. An example, explored here, is a common mechanical
systems for which there is a constraint on the position (an obstacle in the path, for example)
and the control acts as a second derivative of the position (a force or acceleration) which
is a typical case arising in the area of mobile robotics. So, there is a need to develop new
constraint qualifications, involving higher derivatives of the state constraint. In this paper,
we make an overview of recent constraint qualifications that allow strengthened forms of the
NCO for optimal control with higher index state-constraints.

Keywords: optimal control; maximum principle; degeneracy phenomenon; higher order
state constraints.

1. INTRODUCTION

Necessary Conditions of Optimality (NCO) play an
important role in the characterization of and search for
solutions to Optimization Problems. They enable us to
identify a small set of candidates to local minimizers
among the overall set of admissible solutions. The
simplest and best known example is the well known
Fermat’s rule

f&(j) =0,
that provides a necessary condition of optimality for
unconstrained and differentiable problems. (f, de-
notes the derivative of f with respect to z)

In order to reduce further the set of candidates to
minimizers, we can use a well-known stronger form
of NCO

f2(Z) = 0 and H (Z) is positive semi-definite.



(Here, f is twice differentiable and H is the Hessian
matrix whose elements are the second partial deriva-
tives of f).

In constrained optimization problems it may happen
that even when there are admissible solutions leading
to different costs, the set of candidates to minimizers
that satisfy certain NCO coincides with the set of all
admissible solutions. When this is the case we say that
the NCO is degenerate.

Strong forms of NCO are developed to avoid this
phenomenon. In next section, we study the degeneracy
in optimal control problems with state constraints and
we introduce some strong forms of NCO for this kind
of problems.

We start by introducing an optimal control in Mayer
form, in which the initial state is fixed and the trajec-
tory is subject to inequality constraints.

Consider the following optimal control problem:

(P) Minimize g(z(1))

subject to
z(t) = f(x(t),u(t)) aetel0,1]
x(0) = xo
u(t) € Q(¢t) a.e. t €[0,1]
h(x(t)) <0 vt € [0,1],

for which the functions ¢ : R" — IR, f : R" X
R™ — IR", h : R® — IR, an initial state zg € IR"
and a multifunction Q : [0,1] = IR™ are given.
The set of control functions for (P), denoted U, is the
set of measurable functions u : [0,1] — IR™ such
that u(t) € Q(¢) ae. t € [0,1]. A state trajectory
is an absolutely continuous function which satisfies
the differential equation in the constraints for some
control function u. The domain of the above opti-
mization problem is the set of admissible processes,
namely pairs (z, ) comprising a control function u
and a corresponding state trajectory x which satisfy
the constraints of (P). We shall seek strong local mini-
mizers, that is, admissible processes (Z, %) such that
g9(Z(1)) < g(x(1)) for admissible processes (x,u)
satisfying max;co,1] |2(t) —Z(t)| < ¢ for some § > 0.

It is well-known that the necessary conditions of opti-
mality for optimal control problems may appear in the
form of Maximum Principle (MP). Here, we introduce
a nonsmooth version of the MP, a version that allows
the data be non-differentiable.

We assume that the problem (P) satisfies the following
set of hypothesis:

There exists a 8’ > 0, such that

Hl © — f(xz,u) is Lipschitz continuous with a
Lipschitz constant K f, for all u € (¢);
H2 f(x,Q(t)) is a compact set for all z € T + §'B;

H3 g is locally Lipschitz continuous;
H4 Gris aBorel set;
H5 = — h(z) is continuously differentiable;

Define the Hamiltonian
H(z(t), p(t), u(t)) = p(t) - fz(t), u(t)).

The MP for problem (P) (see (Vinter, 2000)) asserts
the existence of an absolutely continuous function
p : [0,1] — IR"™, a nonnegative measure p €
C*([0,1];IR) and a scalar A > 0 such that

[0, 1]} + A >0, ey
—p(t) € cody (q(t) - f(2(2),u(t))) ae.t, (2)
q(1) € Adg(x(1)) 3)

supp{u} C {t € [0,1] : h(z(t)) =0}, (4)

and for almost every ¢ € [0, 1], @(t) maximizes over
Q(t)

wes q(t) - f(@ (), u) (5)
where
o0+ [ hala(s)nulds) te (0.1
q(t) = .

p(0)+ [ haals)ulds) = 1.

[0,1]

Remark 1.1. co S denotes the convex hull of a set .S
and dg(Z(1)) is the limiting subdiferential of g.( See
next section)

2. PRELIMINARES

Definition 2.1. The convex hull of a set C', denoted by
co C, is the smallest convex set that contains C.

Definition 2.2. The limiting normal cone of a closed
set C C IR" at T € C, denoted by N¢(Z), is the set

Nec(z) = { n € R"™ : Isequences {M;} € R™,
x; — T, n; — nsuch that z; € C
and n; - (y — ;) < Milly — ;)
forally e R",i=1,2,...}.

Definition 2.3. Take a lower semicontinuous function
g : IR" — IR and a point x € dom g. The limiting
subdifferential of g at x, written dg(z), is the set

dg(z) ={nelR":(n,~1) € Nepi g(f»g(ff))}“

where epi g = {(z,a) € R""' : a > g(x)} denotes
the epigraph of a function g.



If ¢ is continuously differentiable, then dg(Z(1)) =
92(Z(1)).

We define also the hybrid partial subdifferential of h
in the x-variable 07 h(t, x) to be the following

97 h(t,x) := cof{ £ : there exist (t;, z;) — (t,2) s.t.
h(ti7$¢) > 0, h(ti,l‘i) — h(t,.’lﬁ),
and Vxh(tl,xz) - 5}

See (Vinter, 2000) for a review of Nonsmooth Analy-
sis and related concepts using a similar notation.

3. DEGENERACY IN OPTIMAL CONTROL
PROBLEMS

The main purpose of MP consists in selecting a set of
candidates to minimizer. However, it can happen that
the set of candidates is equal to the set of admissible
processes. In this case, the MP does not give any
useful information about the minimizers.

If the trajectory starts on the boundary of the admissi-
ble region, i.e. h(xg) = 0, then the set of multipliers,
degenerate multipliers

A=0,4=0t=0,p = —ha(z0) (6)

satisfies the (MP) for all admissible processes (x, u).
(Here, 6{0} denotes the Dirac unit measure concen-
trated at t = 0.) In this case, the necessary conditions
of optimality are said to degenerate.

There is a growing literature where the MP is strength-
ened with additional conditions, typically a stronger
form of the nontriviality condition. In (Ferreira and
Vinter, 1994), (Ferreira et al., 1999) and (Rampazzo
and Vinter, 2000), the nontriviality condition is re-
placed by

1{(0,1]} + A > 0. )

Remark 3.1. We are assuming that the optimal control
problem is like (P), where the final state is free.

This last condition eliminates degenerate multipliers
like the ones in (6) and therefore guarantees that de-
generacy does not occur. However these strengthened
forms of the MP have to be satisfied for all local
minimizers, to guarantee that the MP is still a neces-
sary condition. So, additional hypotheses, known as
Constraint Qualifications, are needed to identify the
problems under which we can strengthen the MP.

An overview of the recent results in this area is done
in (Lopes and Fontes, 2007), where we can see that
Constraint Qualification are typically of two types:

CQ1 3a(t) € Q(t) such that for a.e. t € [0, €)
ha(zo) - [f (o0, u(t)) — f(zo,u(t)] < —0

Loosely speaking, CQ1 is the requirement that there
exists a control function pulling the state away from
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Fig. 1. CQI- type constraint qualification.
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Fig. 2. CQ2- type constraint qualification.

the boundary of the state constraint set faster than
the optimal control. Constraint qualifications of this
type can be found in (Ferreira and Vinter, 1994;
Ferreira et al., 1999).

CQ2 3Ju(t) € Q(t) such that for all ¢ € [0, €)

ho(xo) - f(zo,u(t)) < —6

This CQ2 requires the existence of a control func-
tions pushing the state away from the state con-
straint boundary at the initial time. Constraint qual-
ifications of this type can be found, for example,
in (Rampazzo and Vinter, 2000; Arutyunov and
Aseev, 1997).

There are, however, some problems with interest in
practice for which the constraint qualification CQ1
and CQ2 are useless to select a set of problems in
which the Maximum Principle can be fortified. These
problems are known as optimal control problems with
higher index of the state constraint.
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Fig. 3. A higher index constrained system.

4. HIGHER INDEX STATE CONSTRAINED
PROBLEMS

We define the index of a state constraint as a measure
of how many times we have to differentiate the state
constraint to have an explicit dependence on the con-
trol.

Definition 4.1. (Index of the State Constraint)

Let .
WOG(0) = (5 ) At
dt
The state constraint is said to have index k, if k is a
non-negative integer such that

ﬁh(j)(z) =0, j=
%L

2R

8uh (z) # 0.

If %h(j )(z) = 0 forall j > 0, the state constraint is
said to have index £ = 0o .

‘We note that control problems with higher index state
constraints arise frequently in mechanical systems,
when there is a constraint on the position (an obstacle
in the path, for example) and the control acts as a sec-
ond derivative of the position (a force or acceleration).
This is illustrated in the following example:

Example 4.1. Consider a second order linear system
modelling a mass (1/b) moving along a line by action
of a force (u) and in which the position (x1) is con-
strained to a certain half-space (< d/c¢y). (see Figure
3).

i) =g o|s0+ 5] ®

[e1,0)z(t) —d < 0.
We note that the quantity

R (@(8)) = ha(()) - [f (2(1), u(t)] = [0, er]a(t)

does not depend explicitly on the control. Therefore,
the index is greater than one.

If the index is greater than one, then CQ1 and CQ?2 are
useless to identify problems in which the Maximum
Principle can be fortified.

Assume that £ > 1. By definition of index of the State
Constraint, CQl1 is never satisfied.

Now, suppose that CQ?2 is satisfied. By definition of
index, we have

ha(@o) - f(@o, U(t)) = ha(wo) - f(wo,u(t)) < =6
foreach t € [0, €).

On the other hand, by continuity of h,(-) and f(-,u),
we conclude that there exists 7/ sufficient near of 0
and 7/ < 7 such that for each ¢ € [0, 7]

he (Z(1)) - f(2(H)U(t)) < =0,

Therefore

rV(z(t) < =6’ ©)

for each t € [0, 7'].

That means that the initial part of the optimal trajec-
tory leaves the boundary for a period of time.

We can conclude that, if the problem has index greater
than one, CQ?2 is satisfied only for a particular kind of
problems.

As we do not know in advance the behavior of the
minimizer trajectory, we would have to assume that all
admissible trajectories satisfy inequality (9). However,
for this kind of problems, the nontriviality condition
can be directly replaced by (7) as is shown in (Ferreira
and Vinter, 1994). Therefore, the constraint qualifica-
tion CQ2 looses its interest for higher index problems.

In order to remedy this problem, new constraint quali-
fications dependent on the index of the state constraint
were developed. In next section, we make an overview
of recent results in this area.

5. AN OVERVIEW OF NONDEGENERATE
NECESSARY CONDITIONS OF OPTIMALITY
APPLIED TO OPTIMAL CONTROL PROBLEMS
WITH HIGHER INDEX STATE CONSTRAINTS

In this section, we are assuming that the problems have
index k. New Constraints Qualifications dependent
of k were developed in (Fontes, 2005), (Lopes and
Fontes, 2008a) and (Lopes and Fontes, 2008b).

In (Fontes, 2005), linear optimal control problems like
(PL) were considered:

(PL) Minimize /L(m(t), u(t))dt + W(z(1))
subject to ’

%(t) = Az(t) + Bu(t) a.e.t € [0,1]

2(0) = xg
u(t) € Q(t) a.e.t € [0,1]
CTx(t) < d Vit e [0, 1

Note that, for this particular case, the state constraint
is said to have index k if k is a non-negative integer
such that



'AIB =0,
cTA¥B #£0.

j=0,1,.. k-1

The constraint qualification that guarantees the nonde-
generacy is the following:

CQ’'(Fon05) 35 > 0,e > 0 and a control & € €(¢)
such that

T AFB(u(t)
forallt € [0, €).

—a(t)) < -4

A generalization of this result allowing nonlinear op-

timal control problems can be found in (Lopes and

Fontes, 2008a). In this case, the constraint qualifica-

tion is

CQ’ (LopFon08a) 36 > 0,¢ > 0 and a control
@ € (t) such that

h{ (x0) - [f (w0, alt)) — f (o, ult))] < =6
forall ¢t € [0, €).

Remark 5.1. Note that, for linear problems like (PL)
CQ’(LopFon08a) reduces to CQ’(Fon05).

However, these Constraint Qualifications involve the
minimizing % which we do not know in advance, and
consequently the conditions are, in general not easily
verifiable, except in special cases, such as problems
in the Calculus of Variations (see (Lopes and Fontes,
2003) and (Ferreira and Vinter, 1994)).

In (Lopes and Fontes, 2008b), the nondegenerate NCO
are valid under a constraint qualification that no longer
involves the minimizing .

CQ’ (LopFon08b) 35 > 0,¢ > 0 and a control
@ € Q(t) such that
W) (@o) - f(wo, () < —0.
forall ¢t € [0,¢).

All theses Constraint Qualifications allow to strengthen
the MP with the inequality (7).

For technical reasons, they assume that an initial part
of the optimal trajectory does not enter and leave the
boundary of the state constraint an infinite number of
times. That is, the initial part of the optimal trajectory
either stays on the boundary of the state constraint for
some time or leaves the boundary immediately.

Assumption 1: Either

(A)  Jre(0,1) such that h(Z(t)) = 0 forall ¢t € [0, 7]
or

(B)  Jr¢(0,1) such that 2(Z(t)) < 0 forall t € (0,7].

The proof of these results is based on transformation
of the initial problem on a problem with the following
new state constraint
- (k) o
h(t, z) = max{h(x), h'" (z)} Tft =0
h(x) ift > 0.

As the new state constraint satisfy the following Con-
straint Qualification:

CQ If h(0,29) = 0, then there exist positive con-
stants €,e1, 0, and a control @ € §2(t) such that for
ae. t €[0,¢)

C-Lf(t wo, a(t)) — f(t, wo,u(t))] < =6
forall ¢ € 97 h(s,x), s € [0,¢), x € {zo} + €1B,

then applying the main theorem in (Ferreira et al.,
1999) the results holds.
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