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Abstract

Real-time control skills are ordinarily tacit | their possessors

cannot explicitly communicate them. But given su�cient sam-

pling of a trained expert's input{output behaviour, machine

learning programs have been found capable of constructing rules

which, when run as programs, deliver behaviours similar to those

of the original exemplars. These `clones' are in e�ect symbolic

representations of subcognitive behaviours.

After validation on simple pole-balancing tasks, the princi-

ples have been successfully generalized in 
ight-simulator exper-

iments, both by Sammut and others at UNSW, and by Camacho

at the Turing Institute. A 
ight plan switches control through

a sequence of logically concurrent sets of reactive behaviours.

Each set can be thought of as a committee of subpilots who are

respectively specialized for rudder, elevators, rollers, thrust, etc.

The chairman (the 
ight plan) knows only the mission sequence,

and how to recognize the onset of each stage.

This treatment is essentially that of the `blackboard model',

augmented by machine learning to extract subpilot behaviours

(seventy-two behaviours in Camacho's auto-pilot for a simulated

F-16 combat plane). A `clean-up' e�ect, �rst noted in the pole-

balancing phase of this enquiry, results in auto-pilots which 
y

the F-16 under tighter control than the human from whom the

behavioural records were sampled.
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Table 15.1. Criteria of strong and weak AI

Strong Weak

Feasibility Human-level intelligence Human-level intelligence

of goals will be achieved in will be implemented only

machines within in some unimaginable

foreseeable time. future, or perhaps never.

Forms of All thought can be Most thought is

implemen- mechanized as sequential intuitive, not

tation logical reasoning from introspectable,

axiomatic descriptions non-logical, associative,

of the world. The approximate and

`physical symbol system `fuzzy': best modelled

hypothesis': all agents, by brain-like

including intelligent, ultra-parallel networks.

are best implemented

symbolically.

Personnel Vintage AI professionals, Members of other

e.g. Turing, Simon, professions, particularly

Newell, McCarthy, in linguistics,

Feigenbaum, Nilsson, and neurobiology, physics,

their followers. and philosophy.

1. INTRODUCTION

The labels `strong AI' and `weak AI' have sometimes been used

to di�erentiate two schools. Criteria are summarized in Table

15.1.

The taxonomy in Table 15.1 lays emphasis on the `physical

symbol system hypothesis' of Newell and Simon (1976). Their

intended interpretation restricts symbol systems to those which

can transparently support communication with human users.

Thus the lists of numerical weights in which neural nets express

themselves constitute `symbols' of a sort, but not in the sense

intended by the above authors. This restriction has persuaded

some practitioners that the physical symbol system hypothe-
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sis excludes intuitive processes from AI's domain of discourse.

Such separatism is unsafe, since much knowledge-based thought

seems irredeemably intuitive and sub-articulate (for a recent

commentary see French, 1990). For its subcognitive processes,

there is no direct evidence that the brain employs a symbolic

regime. Hence those who accept subarticulate expertise as a

proper AI concern may wonder whether for this purpose they

should abandon symbolic representations as untrue to nature.

The present chapter advocates a di�erent position, namely that

a conceptually transparent symbolic style o�ers a way of improv-

ing on nature. By representing intuitive processes symbolically,

inductive inference can do something which is both non-brainlike

and also highly useful, catering to the client who says: `My in-

house experts may be `intuitive'. But I want an expert system

to formulate its reasons more explicitly than that.'

2. KNOWLEDGE AND THOUGHT

In industrial knowledge systems the implementer has to distin-

guish between thought as something to be communicated and

thought as problem solving. Choice of representation remains

a developer's option. In implementing intuition, he or she may

decide that it is something over which to draw a veil. The veil

may be woven of neural nets, or of hand-crafted spaghetti-code,

or of something else. But suppose that the developer has to

supply the customer also with means to draw the veil aside, for

purposes of interrogation about goals, plans, evidence, justi�-

cation, and the like. At the price of being less true to nature,

he or she might then be better o� not to have veiled it in the

�rst place. Like cognitive and brain scientists, knowledge engi-

neers also study the structure of expertise. Unlike cognitive and

brain scientists, they do this (or should do) for the purpose not

of emulating but of transcending the brain's limitations. First

among these is the relative inarticulacy of what both cognitive

scientists and knowledge engineers call `procedural knowledge',

thus distinguishing it from `declarative'.

387



REAL-TIME SKILLS

2.1. Declarative knowledge

It is characteristic of the retrieval and use of declarative knowl-

edge that it is ordinarily done in conscious awareness. From a

wealth of neurobiological observations concerning the e�ects of

brain lesions on memory, L. R. Squire (1987, chapter 11) distin-

guishes declarative memory from procedural as `memory that is

directly accessible to conscious recollection'. By contrast, the

hall-mark of a highly trained expert brain is that it does much

of its work intuitively. `Dialogue elicitation' of rules for building

expert systems may therefore be frustrated whenever a given

expertise involves strategies stored in procedural memory. Inac-

cessibility to consciousness of even parts of a targeted expertise

can then cause serious problems for large knowledge engineering

projects, such as Japan's ambitious `Fifth Generation' (Michie,

1988). Di�erentiation of the two forms is thus desirable.

Declarative knowledge comprises whatever lends itself to log-

ical formulation: goals, descriptions, constraints, possibilities,

hypotheses. The declarative category also includes facts. When

these relate directly or indirectly to events in the agent's own ex-

perience, their place of storage is referred to as `episodic' mem-

ory. Another subdivision of declarative knowledge is held to

reside in `semantic' memory, which Squire de�nes as follows:

Semantic memory refers to knowledge of the world. This system

represents organised information such as facts, concepts, and vocab-

ulary. The content of semantic memory is explicitly known and avail-

able for recall. Unlike episodic memory, however, semantic memory

has no necessary temporal landmarks. It does not refer to particu-

lar events in a person's past. A simple illustration of this di�erence

is that one may recall the di�erence between episodic and semantic

memory, or one may recall the encounter when the di�erence was

�rst explained.

A school founded by John McCarthy (1959) aims to extend

formal logic to serve as a vehicle for mechanizing declarative

knowledge (see a recent collection edited by Ginsberg, 1987).

We will say little further about the project, beyond expressing

respect for such work. Its philosophical importance is matched

388



D. MICHIE AND R. CAMACHO

only by its di�culty. Our theme is closer to the name and nature

of expert systems. These are not so much to do with giving

computers knowledge of the world, as with equipping them with

useful know-how. In face of the di�culties which confront the

McCarthy project, there is something to be said for separately

studying the mechanization of procedural knowledge and only

later integrating the two levels.

2.2. Nature of procedural knowledge

In Anderson's (1990) text on cognition, skilled procedures are

pictured as arising in part by derivation from pre-existing mental

descriptions. No direct evidence is o�ered. Knowledge engineers

concerned with real-time skills have been led by practical expe-

rience in a rather di�erent direction. The empirical picture is

one of inductive compilation from sensorimotor data gathered

in the course of trial and error. In this picture the role of higher-

level knowledge is not to participate directly, but to steer the

learning process, setting and adjusting the frame within which

skill-bearing rules are constructed.

The �nal phase of skill-learning, described by Anderson and

others as `automatization', does not ordinarily support intro-

spective report by the expert performer, hence the `knowledge-

acquisition bottleneck' of applied AI. Procedural knowledge, as

we have seen, limits itself to the `how to' of skilled tasks, whether

physical as in making a chair, or more abstract as in prediction of

sterling rates against the dollar or the diagnosis of acute abdomi-

nal pain. A common synonym for such knowledge is know-how,

and its manifestation in observable behaviour is called `skill'.

One di�culty is that observed task-performance does not nec-

essarily reveal whether a given expert's behaviour really exem-

pli�es a skill in the procedural sense or whether he or she is

using declarative-semantic memory to form action-plans on the


y. Squire's earlier-cited de�nition supplies a test, namely the

ability to give a verbal account of the way in which each decision

was made, possible only for declarative memory. A second crite-

rion is the frequency of the recognize{act cycle: this may simply

be too fast for `what-if' inferential planning to be feasible.

For those concerned to recover procedural rules, as in build-
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ing expert systems, lack of verbal access (on which Anderson

also remarks) is a problem. Yet there is widespread faith among

knowledge engineers that special methods of `dialogue elicita-

tion' can be found which will permit the construction of rule-

based systems on the scale of such inductively built systems

as the GASOIL (Slocombe et al., 1986) and BMT programs of

Table 15.2.

Is rule induction from expert-supplied data nevertheless in

some sense a second-best option for building systems on the

BMT scale? On the contrary. Experts can rapidly and e�ec-

tively communicate their skills (as in the BMT case) solely via

illustrative responses to selected cases. Does he or she thereby

omit something indispensable? Certainly the practitioner's ex-

plicit and communicable awareness is basic to expertise in some

task domains. But other domains, which lack this property,

can be found not only among a rather wide variety of industrial

tasks, but even in such purely `mental' forms of expertise as

playing a strong game of checkers (see below).

As a paradigm of procedural knowledge, Feigenbaum and

McCorduck (1983, p.55) give the example of tying one's shoes.

It is interesting that once this skill has reached the stage known

as automatization it can continue una�ected by destruction of

the individual's brain mechanisms for acquiring and handling

important forms of declarative knowledge. Damasio describes a

patient named Boswell. The following summary is from Patricia

Smith Churchland (personal communication).

In addition to losing the hippocampal structures, he has massive

damage to frontal cortex. He can identify a house, or a car, but

he cannot identify his house or his car; he cannot remember that he

was married, that he has children, and so forth. He seems to have no

retrograde episodic memory, as well as no anterograde episodic, ...

Boswell can still play a �ne game of checkers, though when asked he

says it is bingo. He cannot learn new faces and does not remember

`pre-morbid' faces such as that of his wife and his children... Boswell

can play checkers, tie his shoes, carry on a conversation, etc.

Of considerable interest is the survival of Boswell's check-

ers skills. Evidently what we shall later term `fast' skills are
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Table 15.2. Of the world's three largest expert systems the two lat-

est (GASOIL and BMT) were not constructed from rules obtained in

dialogue fashion, but by automated induction from expert-supplied

data. In each case the induction engineer trained the system in the

desired skill in the style that the master of a craft trains an appren-

tice, by a structured sequence of selected examples. Rates of code

production are typically in excess of 100 lines of installed Fortran,

C, Pascal, etc., per programmer day. The methodology allows vali-

dation to be placed on a user-transparent basis (Michie 1989), and

maintenance costs are in many cases trivialized. Tabulation is from

Slocombe et al. (1986) with 1990 data on BMT added. The BMT

program is described on p.10 of Pragmatica, vol. 1 (ed. J.E. Hayes

Michie), Glasgow, UK: Turing Institute Press.

APPLICATION NO. OF DEVELOP. MAINTENANCE INDUCTIVE

RULES MAN-YRS MAN-YRS/YR TOOLS

medical

MYCIN diagnosis 400 100 N/A N/A

VAX

XCON computer 8,000 180 30 N/A

con�guration

hydrocarbon

separation ExpertEase

GASOIL system 2,800 1 0.1 and

con�guration Extran 7

con�guration

of 1st Class

BMT �re-protection >30,000 9 2.0 and

equipment in RuleMaster

buildings
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not the only ones for which procedural knowledge may domi-

nate over declarative. In contrast to chess skill, checkers was

already known not to lend itself to the planning approach and

to be essentially `intuitive'. When A.L. Samuel was engaged in

his classic studies of machine learning using the game of check-

ers, he had numerous sessions with leading checkers masters di-

rected towards dialogue acquisition of their rules and principles.

Samuel reported (personal communication) that he had never

had such frustrating experiences in his life. In terms of rela-

tionship to what the masters actually did, the verbal material

which he elicited contained almost nothing which he could use

or interpret. In similar vein, Feigenbaum and McCorduck (loc.

cit., p.82) describe this type of expert response in the following

terms: `That's true, but if you see enough patient/rocks/chip-

designs/instrument readings, you see that it is not true after all.'

They conclude `At this point, knowledge threatens to become

ten thousand special cases.'

The message from clinical studies is that skilled performance

of even sophisticated tasks can still be manifested, and learned,

when the brain is so damaged that knowledge of new happen-

ings cannot be retained and previously stored facts and relations

(declarative-semanticmemory) are seriously disrupted. Another

circumstance under which the mediation of declarative mem-

ory is at least equally disabled can be observed in the normal

brain by imposing a su�ciently restrictive constraint on the time

available for the recognize{act cycle, as in touch-typing. This

skill does not depend on the storage and retrieval of declarative

knowledge, and can be acquired and executed in its virtually

complete absence. Recall that when copy-typing at speed the

typist does not need to understand the words as he or she reads

them. Indeed, after a speed test little or nothing of the text's

content can be recalled. Moreover, educated onlookers are sur-

prised, although they should not be, by the outcome of a request

to the typist (supposing that he or she has been using a type-

writer with unlabelled keys) to label the keyboard correctly with

the proper alphanumeric symbols. Lacking a declarative model,

the touch-typist is ordinarily unable to do so (see, for example,

Posner, 1973), other than by deliberately typing a symbol and
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observing where the �nger went!

Simon (in press) has recently re-emphasized that simple recog-

nition of a familiar object takes at least 500 milliseconds. Opera-

tions involving reference to a semantic model of the task domain

require retrieval from long-term memory of relatively complex

knowledge-structures and an associated apparatus for inferring,

storing, and utilizing intermediate results. Such elaborate trans-

actions are to be found only in the `slow lane'. Here seconds,

minutes, or even hours are required to incubate a decision. The

bare bones of an explicit rationale for a slow-lane decision, when

it comes, can usually be elicited from the expert by verbal re-

port. Not so in the fast lane, to which the present discussion

is con�ned. `Fast' skills cannot be accessed by `dialogue elici-

tation' methods. How then are expert systems to be built for

these skills? A solution is to record behavioural traces from

the expert subject. Inductive inference then reconstructs from

recorded decision-data rule-based models of the brain's hidden

strategies. As reported in this review, machine execution of

data-derived models has been found to generate performance

exceeding in reliability the trained subject's own.

2.3. Postulates of skill acquisition

Experimental work which will now be described was animated

by a point of view about brains, summarized below as a list

of postulates. Declarative knowledge is abbreviated to `D' and

procedural to `P'. P designates only procedural knowledge which

has already reached the automatized stage.

1. human agents are able verbally to report their own D;

2. human agents cannot verbally report their P;

3. D can be augmented by being told, and also by deduction;

4. P is built by learning, whether by imitation or by trial and

error;

5. P can be executed independent of D, but not vice versa;

6. decision-taking via P is fast relative to use of D;

7. su�ciently fast control skills depend on P alone;
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8. even for some slow skills P is su�cient for expert perfor-

mance; rule-induction can extract an explicit form of P

from behavioural traces.

Experiments on dynamical control have yielded illustrations

of the listed postulates, culminating in a test of 9 above, namely

induction of rules from silent brains. But a comment is �rst

requisite on the undoubted existence of expert systems (EXCON

was mentioned earlier) whose rule-bases have, with whatever

di�culty, been constructed by dialogue acquisition.

Many observers have noted that experts seek to escape from

the requirement of rule-formulation (which they �nd unconge-

nial) by supplying `rules' of such low-level form that they con-

stitute no more than concocted sample cases, i.e. specimen

decision-data. The phenomenon has been described by Sterling

and Shapiro (1986) in their description of the construction of a

credit evaluation expert system. The �nance specialists contin-

ually gravitated towards concrete instances rather than general

rules. This has indeed been a universal �nding in knowledge

engineering, in line with the known facts concerning procedural

memory and its mode of access.

But what if knowledge engineers in search of improvements

on raw formulations were consciously or unconsciously to apply

their own powers of inductive inference to such sample cases?

They could then themselves create the kind of high-level rule

structures that they had hoped to elicit. The result would of

course be testimony more to their own powers of inductive gen-

eralization than evidence that experts can introspect their own

rules. In a recent aerospace application two knowledge engineers

were able, by deliberately exploiting this style of `rule-conjecture

and test', to construct a rule-based solution with no more than

a black-box simulator of the task domain to provide corrective

feed-back. No set of rules pre-existed, either in an expert's brain

or anywhere else.

3. AN EXPERIMENT IN RULE-BASED CONTROL

The role of the systems developer postulated above requires only

a reactive oracle. This source need not be an expert. Indeed, it
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need not be human. As will be described it could be a simulator

on which the developers can play `what-if' games with their

latest conjectured rules (what if we modify the rules like this?

... what would result from that adjustment? ... etc.). In an R

& D contract for a US space consortium Sammut and Michie

(1991) were given access to just such an interactive oracle.

When building a controller for a physical process, traditional

control theory requires a mathematical model to predict the

behaviour of the process. Many processes are either too compli-

cated to model accurately or insu�cient information is available

about the process environment. Space-craft attitude control is

an example of the latter. The client was interested in the devel-

opment by machine learning of a rule-structured controller. A

check was desirable as to whether dynamical control tasks can be

satisfactorily handled by production rules at all, whether these

are captured by learning algorithms or developed in some other

way.

If the attitude of a satellite in low Earth orbit is to be kept

stable by means of thrusters, the control system must inter-

act with many unknowns. For example, although very thin,

the Earth's atmosphere can extend many hundreds of kilome-

ters into space. At di�erent times, the solar wind can cause the

atmosphere's density to change, thus altering the drag and aero-

dynamic torques on the vehicle. These are factors which earth-

bound designers cannot predict and even after three decades of

space 
ight, attitude control is still a major problem.

The client required a trial of rule-based control, using a com-

puter simulation of an orbiting space-craft under `black box'

conditions. By this is meant that knowledge of the simulation's

structure and parameters was unavailable to the developers and

hence to the controller. Constraints and assumptions included

minimal human supervision. Only one ground station was to

be used for control. The ground crew therefore have only a 16-

minute window in each 90-minute orbit during which they can

communicate with the space-craft. A premium was thus placed

on the controller's aptness for generating intelligible reports.

The client's `black box' simulated three-axis rigid body atti-

tude control with three non-linear coupled second order di�eren-
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tial equations, and was supplied as Fortran object code. The use

of pseudo-random generators introduced various time-varying

disturbances, not only concerned with aerodynamic e�ects of

solar wind variations and of atmospheric density and altitude

changes, but also e�ects of propellant expenditure, payload re-

distribution, solar array articulation, extension and retraction of

the gravity gradient boom and the motion of robotic and other

on-board manufacturing appliances. Due to such unpredictabil-

ities and to the possibility of a failure while out of communica-

tion with the ground, interest in a rule-based back-up controller

centred on robustness, simplicity, and conceptual transparency.

The BOXES adaptive rule-based control algorithm (Michie

and Chambers, 1968; Chambers and Michie, 1969) was recently

the subject of new work by Sammut (1988) who also reviewed

trials of other algorithms for learning rule-based solutions to the

`pole and cart' problem. A rigid pole is hinged to a cart which is

free to move along a track of �xed length. The learning system

attempts to keep the pole balanced, and the cart within the

limits of the track, by applying to the cart a force of constant

magnitude but variable sign, either right or left (`bang-bang'

control). The pole and cart system is characterized by four

state variables which make up a four-dimensional space. By

dividing each dimension into intervals, the state space is �lled

by four-dimensional `boxes'. With each box (i.e. local region of

state-space, or `situation' in the terminology of situation-action

rules) is associated a setting which indicates that for any point

within the given box the cart should be pushed either to the left

or to the right. Essentially this representation was tested on the

client's simulated spacecraft.

3.1. The black box

The task was to drive the system from its initial state to the

speci�ed �nal state and maintain that state. Included in the

black box was a fourth order Runge{Kutta numerical algorithm

which integrated the dynamics of the equations of motion. The

time step had a �xed value of 10 seconds. The black box kept

track of time and randomly injected various time-dependent dis-

turbances as earlier described.
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The state variables:

Attitudes: yaw (x), roll (y), pitch (z)

Body rates: !

x

, !

y

, !

z

.

Initial values of the state variables:

x = y = z = 10 deg

!

x

= !

y

= !

z

= 0.025 deg/sec

The desired state:

x = y = z = 0 � 3 deg

!

x

=!

y

= !

z

= 0.005 deg/sec

Failure conditions:

x or y or z exceeds � 30 deg

!

x

or !

y

or !

z

or exceeds � 0.05 deg/sec

A 
ag is turned on if any of these go out of bounds.

Available control inputs:

Torque: T

x

, T

y

, T

z

.

Torque was applied by the �ring of thrusters which were

aligned to the body axes. Although other attitude control de-

vices (momentum exchange systems) will be used on the satel-

lite in addition to thrusters, this work only addressed the use of

thrusters. The following are minimum and maximum torques

which can be applied by the thrusters:

T

x

(Min) = T

y

(Min) = T

z

(Min) = 0 ft-lbf

T

x

(Max) = � 0.5 ft=lbf; T

y

(Max) = T

z

(Max) = � 1.5 ft=lbf.

3.2. The rules

The �rst trial was made by directly adapting a set of BOXES-

derived rules from the pole-and-cart domain to a sequential logic

suggested by hand-derived rules due to Makarovic (1987, 1991).

In each recognize{act cycle rule-matching follows a certain pri-

ority order, cycling through the state variables until an action

is selected. For each in turn the rule �rst checks that the �rst

derivative does not exceed certain bounds. If it does, then a
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force is applied to oppose it. If it does not, then with respect

to the same variable check its magnitude. If it exceeds given

bounds then a force is applied accordingly.

In the case of the pole and cart, there was a clear priority to

the order in which dimensions were checked. It was critical that

the angular velocity and the angle of the pole were considered

before the cart variables, since neglect of the pole leads to failure

much more rapidly than neglecting to keep the cart away from

the ends of the track. If this principle is applicable to the case

of the space-craft then it is necessary to determine which of the

state variables changes most rapidly. This was done, yielding

rules expressible in `if-then-else' form, thus:

if !

z

< -0.002 then apply a T

z

of +1.5

else if !

z

> 0.002 then apply a T

z

of -1.5

else if z < -2 then apply a T

z

of +1.5

else if z > 2 then apply a T

z

of -1.5

else if !

y

< -0.002 then apply a T

y

of +1.5

. . . and so on ...

Note the use of `bang-bang' control, i.e. the torquers were set

either fully positive or fully negative just as in the pole-balancing

experiments. With a space vehicle there are three dimensions,

not one, to which a control motor (torquer) can apply a posi-

tive or negative thrust, corresponding to the yaw, roll, and pitch

dimensions of rotation respectively. The thresholds for the vari-

ables were determined by choosing an arbitrary value slightly

within the bounds given for the desired values of the variables.

This control strategy proved to be successful but slow, requir-

ing 8700 seconds to bring the vehicle within desired bounds, and

it also consumed 11.2 units of propellant. The question arose

whether the control of each dimension could be decoupled. The

cited rule only allows one thruster to be �red at any one time. If

each axis of the craft were considered separately then all three

thrusters could be �red simultaneously. This modi�cation re-

sulted in rules which brought the vehicle under control very

quickly, requiring only 4090 seconds. But propellant consump-

tion, although improved, was still too high, using 7.68 units
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Table 15.3. A decision array for control of the yaw dimension.

Yaw too-

positive T

x

=4 0 -T

x

=4 -T

x

=2 -T

x

Yaw OK T

x

=2 0 0 0 -T

x

=2

Yaw too-

negative T

x

T

x

=2 T

x

=4 0 -T

x

=4

Yaw-rate Yaw-rate Yaw-rate Yaw-rate Yaw-rate

too-neg. negative OK positive too-pos.

before the vehicle became stable. Therefore a partial retreat

was made from pure `bang-bang', with a view to replacing it

with �ner control of the thrusters.

The resulting strategy is best understood by a decision ar-

ray. For example, yaw control can be displayed as in Table 15.3

and the resulting performance as in Figure 15.1. Each of the

15 boxes corresponds to one control rule. Thus the box in the

top left hand corner states that if the yaw is positive (i.e. above

the bounds on the desirable yaw) and the yaw rate !

x

is well

below the bounds of desirability then apply a quarter of the full

torque in the positive direction. Thresholds were set for an-

gles at �2 deg and for angular velocities they were �0.002 and

�0.003. The decision arrays for roll and pitch dimensions were

of the same form. The resulting control behaviour was highly

satisfactory. The pitch dimension was the slowest of the three

to be brought within the desirability zone.

The client's engineers stated that both in speed of recovery

and in propellant expenditure results were close to calculated

optima. Since however it appeared that the satellite had greater

inertia in the z-axis (pitch) than in the other two the thrust of

the z-torquer was increased. This brought the vehicle under con-

trol in 5290 seconds, somewhat more slowly than the previous
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Figure 15.1. Plot over time of vehicle's yaw behaviour (see text)

controller. But it only required 1.7 units of propellant, a sub-

stantial saving. Also calculations and simulations by the client's

engineers made the result appear slightly better than optimal.

This doubtless arose from minor approximations and/or distri-

butional assumptions made in their numerical work. Time did

not permit the point to be elucidated. But the broad conclu-

sion was seen as extremely encouraging. An industrial-strength

problem had shown that the simplicity, robustness, and con-

ceptual transparency of rule-based control does not have to be

purchased at the cost of signi�cant degradation of performance.

4. EXPERIMENTS WITH SKILL-GRAFTING

Supported by the freedom interactively to test each conjectured

modi�cation on the simulator, Sammut and Michie found their

own powers of inductive conjecture adequate. But tasks of

higher complexity, such as remote control of pilotless aircraft,

would demand a less primitive approach. Present ideas are ori-

ented towards the industry's use of interactive simulators for

training pilots. A simulator-trained performer cannot tell you

his or her strategy, but can demonstrate it. What is demon-

strated can be automatically recorded. What is recorded can be

inductively analysed by computer. With psychology-trained col-
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leagues, Michael Bain, Jean Hayes-Michie, and Chris Robertson,

one of us (D.M.) engaged in an investigation into the use of the

rule-induction algorithm C4.5 (see Quinlan, 1987) to uncover

e�ective control rules from such behavioural records. Experi-

mental subjects were trained on an interactive simulation of a

task illustrated in Figure 15.2. Control was exercised through a

joystick of a pole-and-cart simulation which refreshed the screen

approximately 20 times per second. New results together with

earlier �ndings with this experimental system (Chambers and

Michie 1969) lead to conclusions as follows (details are available

in Michie, Bain, and Hayes-Michie 1990).

4.1. Conclusions from pole-balancing

First conclusion: role of problem representation. Chambers and

Michie used two regimes of training, identical except for the

graphical animation seen by the subject. In one variant the

picture was as shown. In the other the subject saw only a display

of four separate horizontal lines, along each of which a pointer

wandered to and fro. The subjects in this second variant were

kept in ignorance of the nature of the simulated physical system.

Unknown to them, the pointers actually represented the current

status of four state variables, namely position of cart, velocity of

cart, angle of pole, and angular velocity of pole. Our hypothesis

was that when the system is run fast, leaving only time for

use and up-dating of procedural memory, then there will be

no di�erence in the learning curves of subjects using the two

di�erent representations. Although not explicitly reported in

their paper, an indication of this was observed by Chambers and

Michie. In recent work a rate was additionally used su�ciently

slow for subjects to report the task as having a major `planning'

component. This slow-trained group learned more slowly, at

least in the initial stages. In the new work trials have not yet

been made of the lines-and-pointers representation.

Second conclusion: induction of rules from behaviour. Ma-

chine learning by imitation of a trained human was �rst shown

for the inverted pendulum by Donaldson (1960) and partially

reproduced under bang-bang conditions by Widrow and Smith

(1964). Our concern was to test the ability of modern induction
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Figure 15.2. Diagram of the pole and cart task

algorithms to extract from the behavioural record the kinds of

rules believed to accumulate in procedural memory during skill-

learning. Results have been positive. A task was investigated

where the object was to cross the centre of the track as often

as possible in an allotted time-span without dropping the pole

or crashing the cart. When induction-extracted rules were in-

stalled in the computer as an `auto-pilot', performance on the

task was similar to that of the trained human who had gen-

erated the original behavioural trace, but more dependable, as

described below.

Third conclusion: the clean-up e�ect. Rules induced from a

behavioural record can be assessed in two di�erent ways. Pre-

dictive mode tests the ability of a rule-set correctly to predict

other behaviour sampled from the same source. Performance

mode tests the ability of the rules to substitute for the human

source in executing the skilled task.

Induced rule-sets performed satisfactorily in the second mode

while consistently showing high prediction error, often exceed-

ing 20 per cent. One of the team, Mr. Michael Bain, pointed

out that when watching a machine-generated rule-set's perfor-

mance on the screen one is struck by an appearance of super-

human precision and stability. A trained human skill, although

controlled by an equally precise and stable set of production

rules, is obliged to execute via an error-prone sensorimotor sys-

tem. Inconsistency and moments of inattention would then be

stripped away by the averaging e�ect implicit in inductive gen-

eralization, thus restoring to the experimenters a cleaned-up
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Table 15.4. Clean-up e�ect shown by induced control rules over a

5-minute test period. x = position, � = angle: `dot' denotes �rst

derivatives. These results are typical, and have been many times

con�rmed in test runs with the same, and with other, subjects.

x _x �

_

�

Trained human (ranges) 2.79 4.85 0.562 5.021

Induced rule (ranges) 0.46 1.83 0.134 2.276

Range di�erences 2.33 3.02 0.428 2.745

`Clean-up' 83% 62% 76% 55%

version of the original production rules. When tested in predic-

tive mode, such a rule-set can do no better than the cumulative

sum of human perceptual and execution errors allow. But in

performance mode one would expect a super-reliable stereotype

of the behaviour of the human exemplar. Direct con�rmation of

this idea was obtained by calculating the magnitude of the pole

and cart's excursions during a control session along each of the

four dimensions of the state space. Observed ranges tabulated

in Table 15.4 were obtained from a behavioural trace recorded

from Mr. Bain's own trained performance.

The �ndings suggest that `skill-grafting' from behavioural

traces may be possible for more demanding tasks, such as those

encountered in aircraft 
ight control. The key idea is that if

we could look inside the head of the ground-based pilot of a re-

motely controlled aircraft, or of the on-board pilot of a di�cult

vehicle such as a helicopter, we might see a neural encoding of

a fully su�cient skill, but degraded in real-time execution by

sensorimotor delays and errors. Recovery of a logically equiva-

403



REAL-TIME SKILLS

lent rule structure and its transplantation to an error-free device

(i.e. to a control computer) then o�ers a source of enhanced and

more reliable performance. In advanced rotorcraft control there

is a current need for libraries of individual autopilot manouevres

(`circle at 50 feet', `
y slowly sideways for one minute', etc.)

which the pilot could activate in di�cult weather or other con-

ditions, so as to free his attention for some main task in hand,

visual search of water surface, target acquisition, etc.

4.2. Learning to fly

Sammut and colleagues have recently been able to reproduce

the `skill-grafting' phenomenon in the complex task of 
ying a

simulated aircraft (Sammut, Hurst, Kedzier, and Michie, 1992).

Using a 
ight simulator developed by Silicon Graphics, three

subjects trained themselves by repeatedly piloting a simulated

Cessna through the successive stages of a de�ned 
ight plan,

consisting of the following manouevres:

1. Take o� and 
y to an altitude of 2000 feet.

2. Level out and 
y to a distance of 32 000 feet from the

starting point.

3. Turn right to a compass heading of approximately 330

�

.

4. At a North/South distance of 42 000 feet, turn left to head

back towards the runway.

5. Line up on the runway.

6. Descend to the runway, keeping in line.

7. Land on the runway.

Taking `events' as being signalled by the occurrence of con-

trol actions, then up to 1000 events were recorded per 
ight.

Each of three trained subjects performed 30 
ights, so that the

complete data comprised about 90 000 events. For each event

the control action was recorded, together with values of state

variables measured at a moment selected 1{3 seconds earlier.

The `o�set' makes approximate allowance for the pilot's delay

in responding to complex stimuli. To give a rough impression

of the data, the following are names of recorded variables:

boolean variables: on-ground, g-limit, wing-stall;
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twist, elevation, azimuth, roll-speed,integer variables:

climb-speed, fuel, thrust, 
aps;

real variables: E/W distance, altitude, N/S distance,

rollers, elevator.

The simulation program was modi�ed to log the subjects'

actions during 
ight. Log �les from trained subjects were used

to create the input to an inductive rule-learning program. The

learning program was Quinlan's (1987) C4.5. Its output took

the form of separate decision trees for each of the four di�erent

control actions, further sub-divided into the seven stages listed

above. For example, to quote from the original paper,

The critical rule at take-o� is the elevator rule:

elevation > 4: level-pitch

elevation � 4

airspeed � 0: level-pitch

airspeed > 0: pitch-up-5

This states that as thrust is applied and the elevation is

level, pull back on the stick until the elevation increases to

4

�

. Because of the delay, the �nal elevation usually reaches

11

�

which is close to the values usually obtained by the pilot.

`pitch-up-5' indicates a large elevator action, whereas `pitch-

up-1' would indicate a gentle elevator action. The other

signi�cant control at this stage is 
aps:

elevation � 6: full-
aps

elevation > 6: no-
aps

Once the aircraft has reached an elevation angle of 6

�

, the 
aps

are raised.

The 28 decision trees were automatically converted to C-code

routines, arranged as a suite of seven 
ight control modules, each

responsible for all aspects of a given stage. A new module was
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invoked as soon as a pre-programmed precondition was satis�ed

for the onset of the next stage. Within each module, four sets

of if{then rules separately supervized the four separate control

actions.

An autopilot was generated in this fashion from each of the

trained subjects. Tests were made by running the simulator in

autopilot mode, substituting as autopilot code one or another

of the three inductively synthesized program suites. The en-

tire 
ight plan was executed with conspicuous competence, but

with individual mannerisms characteristic of the 
ying styles of

the individual human data source. Indications of the `clean-up

e�ect' (see earlier) were also evident, particularly during the

approach stage.

4.3. Learning to fly straight

What is the signi�cance of the foregoing experiment? Primarily

that a suitable decomposition of the problem allows the skill-

grafting methodology to be scaled up. Inductive skill-grafting

evidently is not just applicable to pole-balancing but also to

more complex domains such as 
ight control.

The same workers also reported indications of the `clean-up'

e�ect earlier found in the pole-balancing experiments, but these

indications were of a preliminary nature only. We now report

a more detailed examination of this phenomenon independently

conducted by Camacho (1992) using a more challenging 
ight

control task. He used a computer simulation (ACM public-

domain software down-loaded onto a Sun Sparcstation 2) of the

F-16 combat aircraft. Using Quinlan's C4.5 (see Quinlan, 1987)

decision-tree induction package Camacho not only found that

clean-up was operating, but was also able to show that in his

experimental context it played a very large, almost dominating,

role.

Camacho followed a similar methodology to that of Sammut

et al., details being as follows.

Flight plan stages:

1. Take o�.
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2. Climb to 1500 feet.

3. Reduce climbing angle and thrust attaining level 
ight at

2 kilo-feet.

4. Fly parallel to the runway's long axis for a distance of 200

kilo-feet.

5. Turn left 270

�

.

6. Turn right to line up with the runway.

7. As soon as distance to runway is less than 70 kilo-feet,

start descent to runway keeping in line.

8. Land on the runway.

Variables sampled.

real: magnitude of airspeed (knots) (Geoparallel system)

real: y coordinate of airspeed (knots) (Geoparallel system)

integer: x position (ft) (Geoparallel system)

integer: y position (ft) (Geoparallel system)

integer: altitude (ft)

real: climb rate (ft/h)

real: g-force vector in acft system (only z coordinate)

real: roll rate (rad/sec)

real: pitch rate (rad/sec)

real: yaw rate (rad/sec)

real: heading (rad) /* Euler angles for acft */

real: pitch (rad) /* Euler angles for acft */

real: roll (rad) /* Euler angles for acft */

real: angle of attack (rad)

real: angle of sideslip (rad)

real: elevators setting (radl)

real: ailerons setting (rad)

real: rudder setting (rad)

real: elevator trim setting (NOT used)

real: 
aps setting (rad)

real: speedBrake setting (rad)

integer: throttle

boolean: gear handle

boolean: brakes
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Figure 15.3. The `clean-up' e�ect. Plotted lines show distances trav-

elled in the horizontal plane from take-o� by human pilot (light lines)

and the autopilot (heavy line) using the ACM 
ight simulator of the

F-16 combat plane (see text): the y axis represents deviations in the

horizontal plane from straight 
ight.

boolean: afterBurner

Control commands used were: elevators, rollers, rudder, 
aps,

speed brake angle, throttle, gear handle (boolean), brakes (boolean),

after burner (boolean). Thus for each of the 
ight plan's eight

stages nine separate decision trees were synthesized.

From each of typically twenty missions, successive `state-

vectors' were sampled and written to �le, making about 213

000 `state-records' in all. As a post-processing operation, be-

tween 1100 and 1600 `events' were then machine-selected from

each of these, making about 25 000 `events-records'. As in Sam-

mut et al., only those state vectors were selected which precede

by a �xed interval in the �le the subsequent record of a control

action. The set of events so constructed formed the `training

set' for inductive synthesis of a complete autopilot of the form:


ight plan plus 72 decision trees.

The earlier-mentioned clean-up e�ect became evident when
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Figure 15.4. Further measurements of the `clean-up' e�ect, see pre-

vious �gure. The six thin-line plots represent the �rst six missions

of a total of 20 
own by the human pilot (R. Camacho) to form the

training set of about 25 000 events. The general appearance of the re-

maining 14 was very similar when plotted in the same way (see text):

x represents distance travelled in the horizontal plane from take-o�;

the y axis represents deviations in the horizontal plane from straight


ight.
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autopilots synthesized according to the above formulation were

substituted for human control. The magnitude of this gain in

steadiness of control can be appreciated by a study of Figures

15.3 and 15.4, which relate only to one dimension, namely con-

trol of horizontal deviation from 
ight plan during the �rst four

stages (straight-line 
ight on a constant bearing).

This has so far been the main result of an investigation still

in its early stages. It should be emphasized that on the other

criteria there are local stages of the total mission where improve-

ment is needed. In particular, probably because the human pi-

lot himself (R. C.) has not yet adequately mastered stage eight,

the autopilot induced from these records has not either. Self-

training, as well as autotraining, is currently continuing. Since

the foregoing was written, both human and clone have become

able routinely to land the simulated F{16 without mishap.

4.4. A Blackboard-like Model for Coordination Among Agents

In both of the 
ight control implementations reviewed above,

there is a two-level hierarchy of control: a high level `chairman'

(the 
ight plan) and a set of low-level `agents' (decision trees).

So far the only role played by the chairman is to monitor the

stage of 
ight and switch the subset of active agents according

to context (stage of 
ight). Each low-level agent has a very

specialized task of deciding upon one control in one given stage.

All active low-level agents have the same view of the situation

(inspect all the state variables) including access to the decision

values of their peer agents. Despite the two-level design of the

current controller there is no supervized coordination of the low-

level agents. How then is the work done?

There is a strong similarity between the community of low-

level agents and the AI paradigm of the blackboard (see Nii,

1986, for review). Each agent behaves like a blackboard's `knowl-

edge source' responsible for a specialized problem solving activ-

ity (decide one of the controls in one particular stage of 
ight).

The blackboard (shared memory) role is played by the variables

of the aircraft depicting the overall situation. Since all vari-

ables are visible to every agent the agents have the same view

of the situation and, most importantly, have information about
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their peer agents by watching their corresponding decision val-

ues in the `blackboard'. This latter facility is responsible for

the coordination among low-level agents. As an example, if the

rudder agent decides to change its value (moving the physical

rudder) the change will be noted on the `blackboard' and the

roller agent, seeing it, may compensate the banking e�ect of

the physical movement of the rudder. For achieving this co-

ordination e�ect the decision values of the other agents must

also be used as attributes during the learning phase. The chair-

man represents explicit knowledge that is easily articulated and

therefore can be hand-crafted. The specialist agents, on the

other hand, implement low-level real-time control skills that, in

a human, are not performed at a conscious level and therefore

cannot be articulated. To create this kind of knowledge, each

agent is separately derived by inductive learning from recorded

human performance of the skilled task | a step which is an

extension of previous blackboard models. The current imple-

mentation of the low-level agents may be e�ective if some small

variations to `normal conditions' appear (mild wind). But if

the wind is abnormally strong (serious exception to normal 
y-

ing conditions) then an understanding of the situation is needed

and possibly a reformulation of some current goal, like make a

slight change in the bearing to accommodate the wind compo-

nent in the �nal velocity. Therefore to improve the skills of the

chairman and to incorporate planning capabilities, a deep model

(possibly qualitative, as suggested by Sammut (1992)) will be

needed and the capability of reasoning from �rst principles us-

ing it. In a way similar to the human counterpart the computer

high-level agent should be silent most of the time, just moni-

toring the overall situation and making small corrections from

time to time. It should be fully activated only when the sit-

uation requires considerable replanning and deep reasoning for

dealing with exceptions for which the low-level agents have no

decision.

There is obviously a strong case for implementation of the

chairman in a logic programming language. Sammut (1992) has

suggested that the low-level agents should also be coded in a �rst

order language and constitute a library of primitive actions that
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the high-level planner could use, setting values for parameters

and de�ning goals.

4.5. Conclusions from autopilot induction

Models extracted as above from decision-data by rule learning

are purely heuristic in form. They incorporate no explicit ref-

erences to time or causality. Yet as reviewed earlier, real-time

human problem-solving involves co-operation between two sep-

arate kinds of mental process driven from two separate mem-

ory systems, updated by separate kinds of learning. The di-

chotomy is recognized in AI under the labels `heuristic' and

`causal'. These roughly correspond to the neuropsychologist's

procedural/declarative distinction. The balance in practice is

set by the time-constraints imposed by di�erent tasks. A fast

situation{action cycle allows time only for executing heuristics

and virtually none for reasoning about causes.

As the autopilot experiments demonstrate, complex skills can

be built entirely from heuristics. Bears can learn to ride bicy-

cles, and humans can 
y combat planes through mission phases

which allow no time for analysis. Under such circumstances,

everything goes by pattern-invocation. The formal identity be-

tween pattern classi�cation and control then stands out clearly.

This identity has recently been discussed (Michie, 1991) in con-

nection with a de�nition of learning which says:

a learning system uses sample data (the training set) to generate

an up-dated basis for improved classi�cation of subsequent data

from the same source.

The above-cited discussion continues:

Notice that the de�nition, although phrased strictly in terms of

classi�cation, logically extends to acquisition of improved perfor-

mance on tasks which do not look at all like classi�cation. Iterative

situation{action tasks come to mind such as riding a bicycle, solv-

ing an equation, or parsing a sentence. The extension becomes

obvious when for the decision classes we choose names which refer

to partitions of the space of situations as `suitable for action A',

`suitable for action B', etc.
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Why should one want, in addition to �nding a machine-

e�cient representation of the above mapping, to construct an

operationally redundant

superstructure to capture causal relations and to support `what-

if' planning? Answers suggest themselves as soon as one moves

to the more demanding de�nition which animates the charac-

teristically AI approach to learning:

a learning system uses sample data to generate an up-dated ba-

sis for improved classi�cation of subsequent data from the same

source and expresses the new basis in intelligible symbolic form.

The requirement for social communication of the `improved

basis' now forces the issue. If synthetic autopilots are to show

`understanding' of 
ight situations and their own responses,

then however necessary heuristic models may continue to be

for the sub-structures of skill, insightful performance and ex-

planation at higher and more strategic levels demands causal

modelling of a sophisticated kind. It is towards this di�cult ob-

jective that much work of the kind here reviewed is now turning

(see Bratko, 1991).

5. SUMMING UP

In the debate between symbolic and neural-net representations,

the two sides have tended to overlook the possibility that di�er-

ent parts of the brain, specialized to address di�erent purposes,

employ di�erent representations. Speci�cally such di�ering pur-

poses can be broadly grouped under two contrasted main heads:

(1) `run-time' thinking;

(2) communication of the process and its outcome.

For (1), there is no obvious biological reason to expect sym-

bolic representations to have evolved, in the sense in which

`symbolic' is here used. Indeed there is little evidence that

such structures are employed in the brain's real-time problem-

solving, some of which is critically supported by varieties of

visual and spatial reasoning associated with the brain's right

cerebral cortex, and by subcognitive procedures. But the so-

cial dissemination of knowledge and thought listed under (2) is
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of such predominant importance in our species that elaborate

symbolic mechanisms have emerged to support the execution

of this function. The evolutionary processes have partly been

biological and partly cultural. Eccles (in Popper and Eccles,

1987) paints a picture of divergent specialization between the

two hemispheres of the brain according to which the `minor'

(usually the right) hemisphere plays roles central to run-time

problem-solving, involving pattern-handling and spatial and so-

cial orientation. Yet this hemisphere almost wholly lacks ca-

pabilities of symbolic reasoning, notably those associated with

language and logic. The dominant (usually left) hemisphere, by

contrast, not only 
uently handles the decipherment of linguistic

and logical expressions, but is also the clearing-house for reports

on subgoal attainment during problem-solving. Eccles argues

that, although `consciousness' is also manifested by the right

hemisphere in the sense of a di�use awareness, the focussed and

organized forms of goal-oriented awareness which we associate

with `self' are functions of the left brain. More recently the pos-

sibility has been aired in neurobiological circles (see Benjamin

Libet's observations and associated discussion in Behavioural

and Brain Science, 1988-89) that the seat of consciousness acts

more as a news room than as a planning headquarters, putting

a coherent retrospective gloss on the consequences of decision.

The decisions themselves, in this model, emanate from activi-

ties localized elsewhere. An elaboration of this view has recently

been developed by Dennett (1992). Whatever the neural nature

of functions (1) and (2) above, modern brain science sees them

as operationally and topographically distinct. In such a view,

the mechanisms of (2) face a serious problem. Modules special-

ized to symbolic reporting must interface with dissimilar, even

alien, architectures if explanations of the `self's problem-solving

decisions are to be generated. When required to support the

more intuitive �eld of real-time skills, the brain's explanation

module tends to fail, or resorts, when pressed by the dialogue-

elicitation specialist, to confabulation.

Are we, as engineers of cognition, obliged to burden intelli-

gent artifacts with similar problems? On the contrary, to do so

would seem the height of folly. Moreover, from such work as has
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here been reviewed, an alternative strategy is available. We can

treat expert sub{cognition as a `black box' from which articulate

models can be extracted. The product: symbolic models of sub-

symbolic behaviour, or, more concretely, machine-executable yet

articulate skills from `silent' brains.
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