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ABSTRACT: For a sustainable future, efficient solar energy harvesting and storage is required. 

Solar hydrogen production from photoelectrochemical water splitting is a promising technology 

and, in particular, cuprous oxide photocathodes are interesting photoelectrodes due to their high 

efficiency and low cost. However, chemical instability inhibits practical application of such 

devices. This work reports a novel strategy for protecting cuprous oxide from photocorrosion, 

wherein a thin SnO2 overlayer enables increased stability over previous reports utilizing TiO2 

protective layers. Performance and stability are influenced by the film thickness, post-deposition 

steam treatment, and the nature of the heterojunction interface. Stability over 57 h of sustained 

photoelectrochemical water reduction, maintaining 90 % of initial photocurrent, is achieved.   

KEYWORDS: water splitting, cuprous oxide, tin dioxide, stability, protective layer. 

  



1. Introduction 

Renewables inevitably will become the main power sources providing clean and local energy at a 

competitive price. The Sun is by far the largest power source available, illuminating the surface 

of the Earth with a power of 97 PW, the energy received in one day is more than humans 

consume in one year [1,2]. But given the intermittent nature of solar energy, efficient storage 

devices need to be employed in order to transform solar energy in a viable and autonomous 

energy source. Chemical fuels, in particular hydrogen, represent a promising way to store solar 

energy [3-5]. Hydrogen can be stored and later easily and efficiently converted to electricity 

using fuel cells [6]. Since the first report on solar water splitting [7], much research effort has 

been invested in developing efficient and stable photoelectrochemical (PEC) devices [8-13]. 

One of the most promising candidates for PEC water splitting is cuprous oxide, Cu2O, due to its 

good electrical conductivity and close to optimum bandgap of 2 eV [14-16]. Although composed 

of naturally abundant elements, the greatest challenge is its poor stability in aqueous solutions as 

the reduction and oxidation of monovalent copper potentials lie between the water redox 

potentials [17,18]. Since unprotected Cu2O is highly unstable, different strategies have been 

investigated to protect this material [19-22]. Paracchino et al. reported a multilayer configuration 

consisting of a p-n junction between p-type Cu2O and n-type Al:ZnO (AZO) covered by a thin 

TiO2 layer to prevent direct contact of the junction with the aqueous environment [17]. This 

configuration yielded stable photocurrents for 1 hour, upon which would decrease rapidly to near 

zero values. More recently, Tilley et al. were able to extend the stability of this photocathode by 

using an amorphous RuO2 layer as a catalyst replacement for Pt [9]. This way, not only was it 

possible to sustain high photocurrents with ~ 100 % Faradaic efficiency but also to extend the 

photocathode stability up to 4 h under continuous illumination. Furthermore, in a subsequent 



report by the same authors, a simple steam treatment applied to the photocathode presented a 

ground-breaking stability enhancement, it preserved 90 % of initial photocurrent under chopped 

AM 1.5 illumination over 25 h (biased at 0 VRHE in pH 5 electrolyte) [23].  

These works proved that through improvement of the protective layers, major stability 

enhancements could be achieved. To be efficient, the protective layer needs to exhibit several 

characteristics, such as favorable energy band alignment with the Cu2O, good electrochemical 

reaction rate and no corrosive side reactions should occur at potentials in the bandgap [17].  

In theory, TiO2 fulfills the necessary requirements for a good protective layer but, as observed by 

Paracchino et al., the deposition of a TiO2 on Cu2O without any intermediate layer yields very 

low photocurrents and is highly unstable [17]. This indicates that TiO2 does not by itself fully 

prevent the photocorrosion of the photocathode. Given the low photocurrent inherent to this 

Cu2O/TiO2 configuration, poor charge separation at the semiconductor interface must be 

promoting recombination and side reactions like Cu2O reduction [18].  

The usage of AZO provides a better interface (as evidenced by its use in heterojunction solar 

cells) with good charge extraction through the p-n junction between the p-type Cu2O and n-type 

AZO. When annealed at 400 °C, a TiO2 thin film shows excellent stabilities over days [24]. 

However, heating the Cu2O/AZO junction over 200 °C decreases dramatically the 

photoelectrochemical performance [12]. A breakthrough is necessary to achieve much higher 

stabilities before Cu2O photocathodes can be viable for commercial application.  

The next step to enhance the stability of Cu2O photocathodes is to implement protective layers 

different from the conventional TiO2. Among semiconductors available that could conformably 

deposited by atomic layer deposition (ALD), tin dioxide (SnO2) gathers all the necessary 

requirements. SnO2 is a wide band gap (3.6 eV) semiconductor with a low n-type resistivity, high 



transparency, earth abundant and easily applicable over large surfaces [25-28]. SnO2 has been 

used as protective layer in other occasions [28,29] but until now was not explored as a stand-

alone protective layer for semiconductor photoelectrodes.  

Here we present a simple and scalable technique for the deposition of SnO2 for improved 

stability of Cu2O photocathodes for solar water splitting. Photocurrents over -4 mA·cm-2 were 

achieved along with a seven-fold stability improvement over previous reports. Furthermore, 

different treatments and thickness were tested to further improve the stability of this composite 

Cu2O/SnO2/RuO2 photocathode and the interface between materials is discussed. Stable operation 

under continuous illumination for 57 h, with 10 % efficiency drop used as reference, was 

achieved. The proposed approach has the potential to tackle the stability issue of other nonstable 

photoelectrodes and thus can make a significant contribution in the field of photoelectrochemical 

energy conversion. 

2. Experimental Details 

2.1 Electrodeposition of Cuprous Oxide 

Samples were prepared on TEC-15 F:SnO2 (FTO, NSG glass) that was previously cleaned by 

sonication in soapy water (15 min), acetone (15 min), ethanol (15 min) and distilled (DI) water 

(15 min), in that order. The substrates were then dried under a stream of compressed air gas to 

remove any liquid and a 10 nm chromium adhesion layer was deposited by sputtering followed 

by a 150 nm layer of gold. These thin layers serve as better interface for the semiconductor 

deposition and form a desirable ohmic contact to Cu2O.  

Galvanostatic electrodeposition was used for depositing Cu2O because of its effectiveness, 

simplicity and low cost. An uncoated gold contact area was left for attaching the electrical 



contacts – Figure S1. The plating bath composition and deposition conditions were optimized 

previously [20] and a constant current density of -0.1 mA·cm-2 for 105 min was applied using a 

two-electrode configuration and platinum mesh as counter electrode, corresponding to 500 nm of 

semiconductor film. This thickness was confirmed by cross-sectional SEM analysis, as can be 

seen in Figure 1a.  

2.2 Overlayer Deposition 

Since Cu2O suffers from severe photocorrosion in aqueous environments it was protected by n-

type semiconductor overlayers deposited by atomic layer deposition (ALD) using a thermal ALD 

system (Savannah 100, Cambridge Nanotech). Prior to deposition, samples were cleaned with DI 

water and a small portion of the sample was covered with Kapton® tape to preserve the gold 

contact uncovered. Two different configurations were tested: Cu2O/ZnO/SnO2/RuO2 and 

Cu2O/SnO2/RuO2. The deposition parameters of ZnO are described in previous reports (single 

pulse was used in this work) [9,17]. SnO2 was deposited at 110 °C using 

tetrakis(dimethylamino)tin(IV) (TDMASn, ABCR). The ALD procedure was adapted from 

previous reports on tin oxide [30]. The deposition was done in pulse mode under ultra pure 

nitrogen flow rate at 20 sccm. One single cycle of SnO2 was made: close, 0.5 s TDMASn pulse, 

10 s delay, open, 17 s delay, close, 0.015 s O3 pulse, 10 s delay, open, 17 s delay. The growth 

rate was determined using spectroscopic ellipsometry (Sopra GES 5E) on samples grown on Si 

wafers. The range of photo energies used in the study was between 1.5 and 5.5 eV and the 

obtained spectra were fitted using Tauc Lorentz dispersion law (WinELI software) to extract the 

thickness. The growth per cycle of SnO2 was estimated at 0.1 nm·cycle-1.  

2.3 Catalyst deposition 



For lowering the hydrogen evolution overpotential, a catalyst is required. Ruthenium oxide 

(RuO2) has been proven a good Pt substitute with greater stability [9]. RuO2 was 

photoelectrochemically deposited from a 1.3 mM solution of KRuO4 at a constant current density 

of -28.3 μA·cm-2 for 15 minutes under simulated one sun illumination. A light source was a 

450 W Xe-lamp (Osram, ozone-free) equipped with an IR/UV filter (KG3 filter, 3 mm, Schott), 

calibrated with a silicon diode in order to simulate AM 1.5 illumination at 1-sun intensity across 

the range 300-800 nm.  

2.4 Thin Film Characterization 

A high-resolution scanning electron microscope (Xeiss Merlin) with a through-the-lens detector 

for secondary electrons was used to evaluate the morphology of the samples using an 

accelerating voltage of 3 kV (surface) and 5 kV (cross section). The cross section images were 

taken on freshly cleaved samples. The crystallinity was evaluated with a Bruker D8 Discover 

diffractometer, using monochromatic Cu Kα1 radiation (1.540598 Å) at a scan rate of 

0.06 deg·min-1 with step width of 0.02°, and the Bragg reflections matched with the American 

Mineralogist Crystal Structure Database. Raman spectra were made using a 532 nm wavelength 

laser beam and were acquired with a Labram HR800 model of Jobin-Yvon Horiba spectrometer 

equipped with a microscope for collection of backscattered Raman signals. Phonon modes were 

compared with literature. 

2.5 Photoelectrochemical measurements 

The photoelectrode response of the photocathodes was measured in a standard three-electrode 

configuration using a Pt mesh as the counter electrode and an Ag/AgCl/Sat. KCl for reference 

electrode, connected to an Ivium Potentiostat/Galvanostat. The measurements were made in an 

electrolyte solution of 0.5 M Na2SO4 buffered with 0.1 M KH2PO4 to obtain pH = 5.  



The photoresponse was measured under chopped irradiation using the light source described 

above. The scan rate for the linear sweep voltammetry was 10 mV·s-1 in the negative direction. 

The electrolyte was previously sparged in nitrogen and sparging was maintained during 

measurements to remove oxygen bubbles formed during the tests. In the long stability tests 

sparging was stopped to avoid electrolyte evaporation. 

IPCE measurements were performed under light from a 300 W xenon lamp with integrated 

parabolic reflector (Cermax PE 300 BUV) passing through a monochromator (Bausch & Lomb, 

bandwidth 10 nm FWHM). Comparison with a calibrated Si photodiode allowed the calculation 

of the IPCE. 

3. Results and Discussion 

From the SEM image of the cross section of the photocathode (Figure 1a) it is possible to 

observe that the SnO2 overlayer is 50 nm thick and the deposition is homogeneous and dense, as 

expected from the ALD technique. A dense overlayer is crucial for protection as it provides 

better isolation from the electrolyte. The Cu2O/SnO2 configuration with RuOx surface catalyst 

shows a plateau photocurrent close to -4.5 mA·cm-2 at 0 VRHE with an onset at +0.34 VRHE 

(Figure 1b), corresponding to more than twice the photocurrent reported for a TiO2 overlayer on 

top of Cu2O [17].  

The stability was assessed under 1 sun illumination during 30 h (Figure 1c). The noisy 

photocurrent during measurement results from the hydrogen evolution at the photocathode and 

temporary hydrogen bubbles accumulating on the photoelectrode surface (Figure 1c onset). After 

30 h biased at 0 VRHE, 90 % of the photoelectrode initial photocurrent is preserved (Figure 1b). 

This new protective overlayer is a major improvement over previous reported results with no 

need for an interfacial layer. To confirm the stability of the developed photocathode, the surface 



of the Cu2O/SnO2 samples was studied in SEM images taken at different stages of the stability 

test. Figure 2 shows images acquired after three different durations of stability testing, no 

significant morphologic differences can be observed besides a slight smoothing of the RuOx 

surface after 27 h.  

The current-potential characteristics and stability curves of Cu2O photocathodes coated with 

different SnO2 overlayer thicknesses (20 nm, 50 nm and 100 nm) were compared (Figure S2). 

The samples with the 20 nm of SnO2 show a current density decrease after the stability test of 

ca. 20 % and a later onset potential, whereas higher thicknesses present a higher current density 

and a much higher stability preserving 80 % of its initial plateau current after 45 h. These results 

show that SnO2 can be optimized to improve stability by depositing thicker layers without losing 

performance.  

The incident photon-to-current efficiency (IPCE) of the most stable photocathode (with 100 nm 

SnO2) was determined, as shown in Figure S3. In the visible region between 380 and 480 nm the 

IPCE exceeded 40 %. Above 480 nm the IPCE values drop quickly. This behavior is in 

accordance with the band structure of Cu2O. The lowest fundamental absorption transition in 

Cu2O is �  (2.0 eV), at the *-point of the Brillouin zone, corresponding to 620 nm, which is 

parity forbidden [31]. The integration of the IPCE spectrum yielded 3.8 mA·cm-2, the same value 

obtained with the photoelectrode under simulated 1 sun illumination. 

The SnO2 layer was investigated to understand the stability improvements. The degree of 

crystallization was examined through XRD and Raman spectroscopy (Figure S4) and no clear 

indication of a SnO2 crystalline phases in the protective layer was observed. The multilayered 

structure of the photocathode makes it difficult to isolate the Bragg diffraction peaks of the 



different materials and we hypothesize that all SnO2 Bragg peaks identified in Figure S4a 

correspond actually to the FTO substrate. A grazing angle XRD (Figure S4b) was performed to 

eliminate the contribution from subjacent layers and also shows no sign of crystallinity, in 

agreement with the Raman results (Figure S4c). XRD results showed no signs of decomposition 

of the Cu2O after the 30 h stability test, when compared to previous reports on unprotected 

samples where decomposition was observed by XRD [17]. 

Cross section images of the SnO2 thin layer (Figure S5a) display a dense and crack-free coating, 

as expected from the ALD deposition. Although the thickness of the SnO2 is very homogeneous 

a small variation is observed from the Cu2O grain tips to the grain boundaries, typical in ALD 

deposition on a microcrystalline surface [23,32]. In fact, larger thicknesses at the grain 

boundaries and more constant thicknesses elsewhere are observed (Figure S5b). Previous reports 

show that a thickness variation, even small, does not offer optimum conditions for the 

electrodeposition of catalysts [23]. An easy way to reduce the thickness variation is by a simple 

low temperature steam treatment, as previously reported [23]. Three different temperatures were 

tested (100 ºC, 125 ºC and 150 ºC) and their performances compared by current-potential 

characteristics and stability tests as shown in Figure 3. No significant changes in plateau 

photocurrent or onset were observed, as expected, since the sample did not suffer any major 

morphological or structural changes. At 100 ºC there were no significant changes in stability 

attributed to the unaltered surface at such low temperature treatment. Nevertheless, as the steam 

temperature increases, the stability shows significant improvements and a maximum stability of 

90 % of its initial plateau current after 57 h biased at 0 VRHE was observed, with no loss in peak 

photocurrent or fill factor. This is a major improvement over previous reports with TiO2 

protective layer [9,17,18,23]. 



Predicted potential-pH phase diagrams shown in Figure S6 reveal the thermodynamic behaviors 

of Ti and Sn oxides under water reduction conditions. Both TiO2 and SnO2 are the predicted 

stable phases at 0 VRHE in pH 5 solutions, providing little insight into the reason for the observed 

stability enhancement of SnO2. For both overlayer materials, post-deposition steam treatments 

led to significantly improved stabilities, treatments which are believed to decrease the density of 

defects such as cracks and pinholes and thereby better protect the underling layers from 

corrosion [23]. It is therefore likely that the superior quality of ALD deposited and steam 

annealed SnO2 contributed to the stability reported here. Also, better electron mobility than TiO2 

could explain less recombination and side reactions, offering better stability [28]. Further 

analysis of the degradation mechanisms of both device types is the topic of ongoing work. 

Nevertheless, we confirmed that the observed photocurrents corresponded to unity Faradaic 

yields for H2 evolution, as measured by gas chromatography and presented in Figure S7. 

Another aspect that can be improved in the Cu2O/SnO2 configuration is the interface between the 

active semiconductor, Cu2O, and the protective layer, SnO2 [17,33]. ZnO is known to provide a 

good interface between Cu2O and TiO2 probably providing a more hydroxylated surface for TiO2 

to grow on and forming a local electrostatic field at the Cu2O/ZnO p–n junction assisting in 

extracting photogenerated electrons [17,18]. The significant improvements that a ZnO thin film 

implemented below the TiO2 overlayer motivated us to test the same approach in the SnO2 

system. A single ALD pulse cycle of ZnO was applied between the two semiconductor layers 

and the samples were characterized as shown in Figure 4. The performance of the 

Cu2O/ZnO/SnO2/RuO2 configuration was better with an onset at +0.55 VRHE and a plateau 

photocurrent around -4.4 mA·cm-2 at 0 VRHE (Figure 4a) showing that a single cycle of ZnO is 

enough to improve the interface with the protective layer. This enhanced onset over previous 



reports on composite Cu2O photocathodes with RuO2 catalyst is the same as observed with Pt 

catalyst [9.23.34]. 

When Cu2O is exposed to atmosphere, a thin layer of CuO is spontaneously formed since it is the 

stable phase of copper oxide at room temperature and pressure. Deposition of ZnO onto an 

oxidized Cu2O interface can reduce the CuO layer without affecting the Cu2O underneath, thus 

enhancing the open-circuit voltage of devices comprised of such heterojunctions [35,36]. The 

effect of a single ZnO pulse cycle reported here, a positive shift in photocurrent onset potential 

of over 200 mV, corresponds to a significant improvement of junction photovoltage achieved 

without the need for the thicker Al-doped ZnO layers employed in previous reports.  

The stability test of the device featuring a ZnO interlayer is shown in Figure 4b. The initial 

photocurrent is higher than the Cu2O/SnO2/RuO2 device, but degradation of the current is more 

pronounced. This behavior is presently under further study, but an initial hypothesis is that the 

SnO2 overlayer is not as conformal when deposited onto ZnO, as compared to directly onto the 

Cu2O, therefore making the device more susceptible to corrosion. 

4. Conclusions 

In this study it was discovered that ALD deposited SnO2 is a promising candidate overlayer for 

stabilizing photocathodes for hydrogen evolution. The performance and stability were influenced 

by the film thickness, post-deposition steam treatment, and the nature of the heterojunction 

interface. The optimized device exhibited great stability, maintaining 90 % of its initial 

photocurrent after 57 h of sustained photoelectrochemical water reduction. Further study will 

include identification of the mechanism of slow degradation, optimization of the heterojunctions 

for improved performance, and exploration of photocathode operation in acidic or alkaline 

solutions, which are desirable for complete devices. To the best of our knowledge, this study 



represents the first demonstration of SnO2 as a photocathode protection layer [37], and these 

findings should be widely applicable for use on other photoelectrode devices. 
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Figure 1. (a) Cross-sectional SEM image of a photocathode showing the respective layer 

thicknesses. (b) Current-potential characteristics of a composite Cu2O/SnO2/RuO2 photocathode 

under chopped simulated sunlight illumination, acquired after 2 h activation and after 30 h 

0.0 0.1 0.2 0.3 0.4 0.5

-4

-3

-2

-1

0

1

 After 2 h activation
 After 30 h  stability

 

 

J 
/ m

A
cm

-2

E / V vs RHE

b 

0 5 10 15 20 25

-4

-3

-2

-1

0

7.90 7.95 8.00 8.05 8.10
-3.95

-3.90

-3.85

-3.80

-3.75

-3.70

 

 

J 
/ m

A
cm

-2

t / h

 

 

J 
/ m

A
cm

-2

t / h

c 



stability measurement (depicted in (c)). (c) Chronoamperometric stability measurement under 

0 VRHE bias and continuous illumination. The inset shows small fluctuations in the measured 

current due to gas bubble evolution, trapping (loss of surface area), and eventual escape (surface 

area recovered). 

 

 

 



Figure 2. SEM top view of a photocathode with photo-assisted electrodeposited RuO2 catalyst 

(a) as deposited, (b) after 3 h and (c) 27 h under illumination at 0 VRHE bias. 

 

 

Figure 3. (a) Current-potential characteristics of composite Cu2O/SnO2/RuO2 photocathode 

samples with different steam treatment conditions: without treatment and with 3 h steam 

treatment at temperatures of 100, 125 and 150 ºC. (b) Corresponding stability measurements 

under continuous illumination while biased at 0 VRHE. All measurements were carried out in 

pH 5.0 phosphate–sulfate electrolyte. 
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Figure 4. Photoelectrochemical characteristics of composite photocathodes. (a) Current-potential 

comparison between the performance of a photocathode with (Cu2O/ZnO/SnO2/RuO2) and 

without (Cu2O/SnO2/RuO2) ZnO layer. (b) Chronoamperometric stability measurements under 

continuous illumination while biased at 0 VRHE. All measurements were carried out in pH 5.0 

phosphate–sulfate electrolyte. 
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Highlights 

 

x Report a new protective overlayer for Cu2O with enhanced chemical stability that should 

be broadly applicable to other photocathode materials 

 

x Optimized photocathodes were stable over 57 h of continuous illumination (twice as 

much as previous reported works), an important advance among Cu2O-based devices 

 

x Studied influence of an interlayer of ZnO between Cu2O and the protective layer and 

achieved improved onset potential 

 

x Applied a steam treatment, previously reported for TiO2, and here demonstrated that can 

be used for other materials with similar improvements 

 
 

 


