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Abstract

In this paper we present an optimization of the
Optimum-Path Forest classifier training procedure,
which is based on a theoretical relationship between
minimum spanning forest and optimum-path forest for
a specific path-cost function. Experiments on public
datasets have shown that the proposed approach can
obtain similar accuracy to the traditional one but with
faster data training.

1. Introduction

Pattern recognition techniques attempt to learn a
function that maps the input data to some label based
on the samples’ behavior. Such learning process is the
most time-consuming phase of several pattern recogni-
tion techniques, since it can be composed by a training
step followed by parameters’ optimization, which may
require a retraining procure. The problem gets worst
in interactive classification tools, in which the user is
asked to label samples that will be used for training. The
remaining image is then classified and the results can be
refined by another samples’ manual labeling. This situ-
ation may be unacceptable for high resolution images.

In the last decade, several pattern recognition tech-
niques have been proposed and widely used in several
applications. Among them, we may cite Support Vec-
tor Machines (SVM) [3], Artificial Neural Networks
(ANN) and Self-Organizing Maps (SOM) [5], and also
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Bayesian classifiers. The main problem of such tech-
niques is the high computational burden for training.
Although SVM have achieved high recognition rates
for several applications, when the training set becomes
large, its learning may be impracticable for real time
applications with fast feedback responses.

Recently, a novel pattern recognition technique
called Optimum Path Forest (OPF) was proposed in or-
der to overcome such challenges. Papa et al. [7] showed
that OPF obtained similar effectiveness to SVM, but
that is faster in the training phase. The OPF models the
problem of pattern recognition as a graph partition into
optimum-path trees (OPTs), which are rooted by key
samples (prototypes) that try to compete among them-
selves in order to conquer the remaining samples. Such
prototype nodes can be found by computing a Minimum
Spanning Tree (MST) over the training set and marking
the connected nodes from different labels.

Further, Papa et al. [6] proposed an optimization of
the OPF classification algorithm, which lead such ap-
proach to be faster than the original one, and with sim-
ilar recognition rates. In this paper, we present an op-
timization of the OPF training step based on a theoreti-
cal relationship between the optimum-path forest gener-
ated by OPF and the Minimum Spanning Forest (MSF),
which is essentially a MST generated by OPF in the
training phase with the edges between prototypes. Such
contribution is very interesting in the context of OPF-
based research, mainly in applications involving large
datasets. The remainder of this paper is organized as
follows. Sections 2 and 3 present the OPF background
and the proposed training step optimization algorithm,
respectively. Section 4 discusses the experimental re-
sults, and Section 5 states the conclusions.



2. Pattern Classification using Optimum-
Path Forest

The OPF classifier works by modeling the problem
of pattern recognition as a graph partition in a given fea-
ture space. The nodes are represented by the feature
vectors and the edges connect all pairs of them, defining
a full connectedness graph. The partition of the graph is
carried out by a competition process between some key
samples (prototypes), which offer optimum paths to the
remaining nodes of the graph. Each prototype sample
defines its own OPT, and the collection of all OPTs de-
fines an optimum-path forest, which gives the name to
the classifier [7, 6].

2.1 Background Theory

LetZ = Z1∪Z2 be a dataset labeled with a function
λ, in whichZ1 andZ2 are, respectively, a training and
test sets such thatZ1 is used to train a given classifier
andZ2 is used to assess its accuracy. LetS ⊆ Z1 a
set of prototype samples. Essentially, the OPF classifier
creates a discrete optimal partition of the feature space
such that any samples ∈ Z2 can be classified according
to this partition.

The OPF algorithm may be used with anysmooth
path-cost function which can group samples with sim-
ilar properties [4]. Particularly, we used the path-cost
functionfmax, which is computed as follows:

fmax(〈s〉) =

{

0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

in which d(s, t) means the distance between sampless

and t, and a pathπ is defined as a sequence of adja-
cent samples. As such, we have thatfmax(π) computes
the maximum distance between adjacent samples inπ,
whenπ is not a trivial path.

The OPF algorithm assigns one optimum pathP ∗(s)
from S to every samples ∈ Z1, forming an optimum
path forestP (a function with no cycles that assigns
to eachs ∈ Z1\S its predecessorP (s) in P ∗(s) or a
markernil when s ∈ S. Let R(s) ∈ S be the root
of P ∗(s) that can be reached fromP (s). The OPF al-
gorithm computes for eachs ∈ Z1, the costC(s) of
P ∗(s), the labelL(s) = λ(R(s)), and the predecessor
P (s).

2.2 Training

We say thatS∗ is an optimum set of prototypes when
the OPF algorithm minimizes the classification errors

for everys ∈ Z1. S∗ can be found by exploiting the the-
oretical relation between MST and OPT forfmax [2].
The training essentially consists in findingS∗ and an
OPF classifier rooted atS∗.

By computing an MST in the complete graph
(Z1, A), we obtain a connected acyclic graph whose
nodes are all samples ofZ1 and the arcs are undirected
and weighted by the distancesd between adjacent sam-
ples. The spanning tree is optimum in the sense that
the sum of its arc weights is minimum as compared
to any other spanning tree in the complete graph. In
the MST, every pair of samples is connected by a sin-
gle path which is optimum according tofmax. That is,
the minimum-spanning tree contains one optimum-path
tree for any selected root node. The optimum proto-
types are the closest elements of the MST with different
labels inZ1 (i.e., elements that fall in the frontier of the
classes). After finding prototypes, we run the competi-
tion process in order to build the optimum-path forest.

2.3 Classification

For any samplet ∈ Z2, we consider all arcs con-
nectingt with sampless ∈ Z1, as thought were part of
the training graph. Considering all possible paths from
S∗ to t, we find the optimum pathP ∗(t) from S∗ and
label t with the classλ(R(t)) of its most strongly con-
nected prototypeR(t) ∈ S∗. This path can be identified
incrementally by evaluating the optimum costC(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the nodes∗ ∈ Z1 be the one that satisfies Equa-
tion 2 (i.e., the predecessorP (t) in the optimum path
P ∗(t)). Given thatL(s∗) = λ(R(t)), the classification
simply assignsL(s∗) as the class oft. An error occurs
whenL(s∗) 6= λ(t).

3 Optimization by Path-cost Propagation

As aforementioned in Section 2.2, the optimum set
of prototypesS∗, i.e., the one that minimizes the classi-
fication errors in the training step, can be found by ex-
ploiting the theoretical relation between MST and OPT
for fmax [2].

Let G be a graph andF a minimum spanning forest
relative toG, which is essentially a collection of mini-
mum spanning trees. Allene et al. [2] have proved that
if F is a MSF,F is also an optimum-path forest using
fmax as path-cost function. This theorem stands that
given a MST of G, we can obtain an optimum-path for-
est of it by just removing the arcs between prototypes
and updating the costs of all nodes, which we call path-
cost propagation.



The intuitive idea behind this theorem says that the
optimum-paths from prototypes to all nodes will fol-
low the shape of MST, and an optimum-path from the
prototype of the white class, for instance, will need to
pass through the prototype from the black class in order
to reach the black nodes. As we do not have negative
distances, one prototype can not conquer another one.
Therefore, the black prototype works as a sentinel to
protect the black nodes from paths that come from the
white ones. It should be noted that if we have an unique
MST, the OPF training error would be zero.

Figure 1. Example of a complete graph. The
weights of the edges stand for the distance be-
tween nodes.

Figure 2. Minimum Spanning Tree of the graph
displayed in Figure 1.

Figure 3. Optimum-Path forest of the graph
displayed in Figure 1 using the prototypes ob-
tained in Figure 2.

In Figure 1, we can see a complete graph where the
edges between nodes denote the distance between their
corresponding feature vectors. The next step of OPF
training algorithm is to find the prototypes, which can
be done by computing a MST and then marking the
nearest nodes from different classes (Figure 2 displays
the MST and the bounded nodes stand for the proto-
types). Finally, we run the OPF algorithm itself (see

Section 2.2) in order to begin the competition process
and then to partition the graph into OPTs, which are
rooted at each prototype (Figure 3).

From Figure 2, we can also obtain the optimum-path
forest shown in Figure 3 by only removing the arc be-
tween prototypes, directing the arcs and conducting the
path-cost propagation usingfmax. Therefore, it is not
needed to run OPF algorithm, which makes the whole
procedure faster for training. However, it is important
to emphasize that the proposed optimization approach
based on path propagation only works withfmax, as
stated in [2]. Although other path-cost functions have
been proposed, the ones which employsfmax is the
most used.

4 Experiments

In this section, we discuss the experiments con-
ducted in order to show the efficiency of the proposed
optimization for OPF training step. We have used two
public datasets with different sizes to assess the training
efficiency and also the classification accuracy in distinct
scenarios:

• MPEG-7 Shape Dataset [1]: it comprises 1400 sil-
houette images equally divided in 70 classes, i.e.,
20 samples per class. As we have employed the
Fourier descriptor to each image, the feature vec-
tor contains 126 dimensions; and

• Covtype Dataset1 : it comprises 29048 images, di-
vided in 7 classes with a feature vector containing
54 dimensions. This version is a subset containing
5% of the original one.

In regard to training and test sets size, we employed
a cross-validation procedure with different percentages
for training and test sets, which range from 10% to 90%
of training set size, with steps of 10. Figure 4 displays
the mean execution times in seconds for training con-
cerning the traditional and the proposed approach for
MPEG-7 dataset. We not show the accuracy results
since the recognition rates in the test set for both ap-
proaches were the same. As one can see, the proposed
approach becomes still faster when the training set size
increases. On the average, the proposed approach has
been 1.403 times faster for training than traditional one,
without loss of generalization over the test set.

Figures 5 and 6 display, respectively, the mean ac-
curacy and training times for the different percentages
of training and test sets for Covtype dataset. In order
to assess the results, we have executed an unpaired Stu-
dent’s t-test with significance level equals to0.05. The

1http://archive.ics.uci.edu/ml
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Figure 4. Mean execution times in seconds
with respect to training step for MPEG-7
dataset.

null hypothesis, i.e., the ones that guarantees that the
proposed training algorithm and the traditional one have
the same accuracy was accepted for training set percent-
ages at 10%, 20%, 30%, 70% and 90%. In regard to the
remaining training set sizes, the traditional algorithm
was slightly better. However, the proposed approach
has been 1.878 times faster for training (on average).
The speed up can be higher as the training set increases.

It is important to highlight that such differences on
the accuracy are due to the presence of several MSTs,
i.e., several optimum paths. Suppose we have a nodes

from the white class that offers an optimum path-cost
Cs(t) to a black samplet. Now, assume that we have
a black nodep that also offers the optimum path-cost
Cp(t), i.e.,Cs(t) = Cp(t). In this case, ifs came out of
the queue beforep, s will conquert, and we will have a
misclassification.
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Figure 5. Mean classification accuracy for Cov-
type dataset.
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Figure 6. Mean execution times in seconds
with respect to training step for Covtype
dataset.

5 Conclusions
In this paper, we have proposed an optimization of

the OPF training step algorithm based on a theoret-
ical relation between minimum spanning forests and
optimum-path forests. As the optimum-paths follow the
shape of the MST, we can build an optimum-path forest
by removing the arcs between prototypes, redirecting
the edges and propagating the path-costs usingfmax.
The proposed approach has shown to be up to 2 times
faster for training with similar accuracy over the test
sets.
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