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Abstract

This work presents optimality conditions of
Hamilton-Jacobi type for a classe of vector-valued
impulsive control optimal problems. The dynam-
ics are defined by a measure driven differential
inclusion and the vector fields associated with the
singular term do not satisfy the so called Frobenius
condition. The concept of verification function for
the class of problems addressed here is presented.
Besides some regularity hypotheses, verifications
functions satisfy a set of Hamilton-Jacobi type
conditions, as well as a given boundary condition.
It is shown that the existence of a verification
function is a necessary and sufficient condition for
the optimality of a feasible trajectory (in the sense
of proper solution). It is also shown that the value
function of the family of problems parametrized by
the initial date is a verification function, with some
extra properties, and results relating subgradients
of the value function and multipliers of necessary
conditions of the Maximum Principle are presented,
too.

1 Introduction

Impulsive control problems arise in a variety of ap-
plication areas such as finance, mechanics, resources
management, and space navigation, (see, for exam-
ple, [4], [5], [8], [12], and [14]) whose solutions
might involve discontinuous trajectories, motivating
a significant research effort on the so-called Impul-

sive Control Problem (for a selected set of references
see [17] and references therein).

Impulsive control problems with vector valued con-
trol measures have been addressed by a number of
authors, namely [18], [2], [9], and [11], by imposing
the Frobenius condition on the vector fields associ-
ated with the singular term. This very strict assump-
tion ensures an unique jump endpoint, x(t+), once
specified the value of the state variable at t− and the
measure dµ(t).

In [3], this commutativity assumption is lifted by
noting that a certain quotient control system, ob-
tained by an appropriate nonlinear local change of
coordinates in the state space, is an impulsive one
satisfying the above mentioned commutative hy-
pothesis.

In this article, we present optimality conditions of
Hamilton-Jacobi type for a class of impulsive con-
trol problems, like the one of [17]. These problems
have dynamics described by impulsive differential
inclusions driven by vector valued measures, with-
out commutativity assumptions on the vector field
associated to the singular term.

The article is organized as follows. In section 2 we
present the class of addressed problems. Section 3 is
devoted to the definition of feasible trajectories for
the impulsive dynamics under study. In section 4 we
defined the value function for the class of addressed
problems and derived some of its properties. In sec-
tion 5 we present optimality condition of Hamilton-
Jacobi type. Finally, in section 6 we provide a result
relating generalized gradients of the value function
and multipliers of the maximum principle principle



for this class of problems.

2 Statement of the Problem

We will consider the following optimal control prob-
lem:

(P ) min h(x(1))

subject to:

dx(t) ∈ F (t, x(t))dt+

+ G(t, x(t))µ(dt), t ∈ [0, 1],
(1)

µ ∈ K, (2)

x(0) = x0. (3)

Here, F : [0, 1] × R
n

⇒ R
n is a multifunction and

G : [0, 1]×R
n

⇒ R
n×q is a vector of multifunctions.

Function h : R
n → R defines the cost, that depends

only on the final state, and x0 ∈ R
n is the initial

state.

K is the subset of the regular measure space
C∗([0, 1]; Rq) formed by the measures µ satisfying
µ(A) ∈ K for all Borel sets A ⊂ [0, 1], where
K ⊂ R

q is a positive, convex, closed, and pointed
cone. The set K is also represented by C∗([0, 1];K).

3 Solution Concept

In this work we do not assume any commutativ-
ity property of the vector fields generated by the
columns of the multifunction G. Therefore, the con-
cept of feasible trajectory for the impulsive differen-
tial inclusion (1) has to be properly defined.

One of the traditional approaches to the study of im-
pulsive control problems consists on performing a
change of independent variable, in such a way as
to assure the absolute continuity of trajectories, as
functions of the new independent variable. This ap-
proach, originally developed in [18], has been fol-
lowed in several works, such as [19], [20] or [17].
Such approach is usually called reparametrization of
the independent variable and will also be used here.
The construction of the new independent variable
considered in this work is somehow similar to the
one used in [17].

Take a real interval [a, b] a a measure µ ∈

C∗([a, b];K). Define the non-negative scalar mea-
sure µ̄ as the total variation measure associated to
µ, i.e., µ̄(dt) =

∑q

i=1 µ
i(dt), since K is a positive

cone. Here, µi, i = 1, . . . , q, denote the components
of the measure µ. Also define M : [a, b] → K and
η : [a, b] → R by

M(t) =

{

∫

[a,t]
µ(ds) ∀t ∈ ]a, b]

0 if t = a,

η(t) = t− a+

q
∑

i=1

M i(t),

Consider also the function θ : [0, η(b)] → [a, b] de-
fined by

θ(s) = sup{t ∈ [a, b] : η(t) ≤ s}. (4)

Consider {tj}
N
j=1 (where N ∈ N0 ∪ {+∞}) is an

enumeration of the atoms of µ̄ and, for each j, Sj =
θ−1({tj}).

The function η, defined above, is called the
reparametrization associated to the measure µ. Ev-
ery function (θ, γ) : [0, η(b)] → R × R

q where θ is
as above and γ satisfies

γ(s) =

{

M(θ(s)), s ∈ [0, η(b)] \
⋃

j Sj,

M(t−j ) +
∫ s

η(t−
j

)
vj(σ)dσ, ∃j : s ∈ Sj,

where for each j, vj is a map from Sj toK satisfying

q
∑

i=1

vj
i(σ) = 1, Sj − q.s.,

∫

Sj

vj(σ)dσ = µ({tj}),

is called a graph completion of the measure µ.

The definition and results presented below follow
[19] and [17]. To simplify the notation we consider
the time interval to be [0, 1], being obvious that all
definitions and results have readily extensions for
any other time interval.

Definition 1 (Reparametrized trajectory) Take
x0 ∈ R

n a measure µ ∈ C∗([0, 1];K). Consider
a given graph completion (θ, γ) of µ. The function



z ∈ AC([0, η(1)]; Rn) is said to be reparametrized
trajectory of (1), corresponding to the initial condi-
tion x0 and to the graph completion (θ, γ) of µ, if
z(0) = x0 and

ż(s) ∈ F (θ(s), z(s))θ̇(s)+G(θ(s), z(s))γ̇(s), (5)

s ∈ [0, η(1)] − a.e.. Here, η denotes the reparame-
trization of the measure µ. Inclusion (5) means
that there exist f ∈ L1([0, η(1)]; Rn) and g ∈
L1([0, η(1)]; Rn×q) such that f θ̇ and gγ̇ are inte-
grable and

ż(s) = f(s)θ̇(s) + g(s)γ̇(s), s ∈ [0, η(1)] − a.e.,

f(s) ∈ F (θ(s), z(s)), s ∈ [0, η(1)] − a.e.,

g(s) ∈ G(θ(s), z(s)), s ∈ [0, η(1)] − a.e..

The definition of of admissible trajectory is given by
the robust solution concept defined below, which is
a direct extension to the vector valued measures case
of the one introduced in [19]. Differently from the
definition of robust solution presented in [17], our
definition is independent of the cost function of the
underlying optimization problem. Our definition of
robust solution has a semigroup property, which is
crucial for the dynamic programming results derived
here.

Definition 2 (Robust solution) Let x0 ∈ R
n and

µ ∈ C∗([0, 1];K). The function x ∈
BV +([0, 1]; Rq) is a robust solution of the impulsive
differential inclusion (1), corresponding to the ini-
tial condition x0 and to the measure µ, if the exist
f : [0, 1] → R

n, Lebesgue integrable, g : [0, 1] →
R

n, µ̄ integrable, such that, for all t ∈ ]0, 1],

x(t) = x0 +

∫ t

0

f(τ)dτ +

∫

[0,t]

g(τ)µ̄(dτ),

and

x(0) = x0,

f(t) ∈ F (t, x(t)), [0, 1] − a.e.,

g(t) ∈ G̃(t, x(t−);µ({t})), µ̄− a.e.,

where µ̄ is the total variation measure associated to
µ and the multifunction G̃ : [0, 1] × R

n ×K ⇒ R
n

is defined by

G̃(t, z;α) =

{

{ψw(t) : ψ ∈ G(t, z)}, if |α|1 = 0,

Y (t, z, α), if |α|1 > 0,

where

Y (t, z, α) =
{y(|α|1) − y(0)

|α|1
: ẏ(s) ∈ G(t, y(s))γ̇(s),

(0, γ̇(s)) ∈ K1, s ∈ [0, |α|1] − a.e.,

y(0) = z, γ(0) = 0, γ(|α|1) = α
}

.

Here, |α|1 =
∑q

i=1 α
i, w : [0, 1] → R

q is the Radon-
Nikodym derivative of µ with respect to µ̄, and K1 is
the subset of R

1+q defined by

K1 = {(r0, r) ∈ [0, 1] ×K : r0 +

q
∑

i=1

ri = 1}.

The following proposition, see [19] (theorem 4.1)
and also [17], establishes an equivalence relationship
between robust solutions e reparametrized trajecto-
ries.

Proposition 1 Suppose F and G take values closed
sets, F is Lebesgue×Borel measurable and G is
Borel measurable. Take any x0 ∈ R

n and µ ∈
C∗([0, 1];K), and let be η the reparametrization
function for µ. Let x be a robust solution of (1),
corresponding to x0 and µ. Then, there exists z,
reparametrized trajectory z for (1), such that

x(t) = z(η(t)), ∀t ∈ [0, 1]. (6)

Let z be a reparametrized trajectory for (1), corre-
sponding to x0 and to a graph completion (θ, γ) of
µ. Then, there exists x, robust solution for (1), such
that (6) holds. Let x be a robust solution and z a
reparametrized trajectory of (1) such that (6) holds.
Then, ‖x‖TV ≤ ‖z‖TV .

4 Value Function

In this section we defined the value function for the
class of addressed problems and derive some of its
properties. Several works, such as [15], [16], and



[1], concerning the application of dynamic program-
ming concepts to impulsive control problems are
available in the literature. In almost all of them,
the families of auxiliar problems, and, therefore, the
associated value functions, depend not only on the
initial time and state, but also on an additional pa-
rameter that defines the total variation allowed for
the singular part of the dynamics. It is shown that
such value functions satisfy what can be called dy-
namic programming principles in the form of gen-
eralized Hamilton-Jacobi conditions. Nevertheless,
that additional parameter is somewhat artificial and
is mainly intended to assure by construction the well
posedness of the family of auxiliar problems, in the
sense that the optimal value of each of those prob-
lems in bounded from below. In such formulations
the value function also satisfies quite general conti-
nuity properties.

On the contrary, in this work we consider a less re-
strictive definition of the value function, by consider-
ing only its dependance on the initial data (time and
state). In this case, as shown below, we derive some
elementary properties of the value function and also
give sufficient conditions for its Lipschitz continuity.

For each (s, y) ∈ [0, 1] × R
n the impulsive control

problem (Ps,y) is defined by:

(Ps,y) min h(x(1))

subject to:

dx(t) ∈ F (t, x(t))dt+

+ G(t, x(t))µ(dt), t ∈ [s, 1], (7)

µ ∈ C∗([s, 1];K), (8)

x(s) = y. (9)

For all these problems, the function h, the multifunc-
tions F and G, as well as the coneK are the same as
those for problem (P ). The concepts of feasible pro-
cess and of solution for each of these problems are
the “natural” extensions of those considered for (P ).
In the following, X(s, y) denotes the set of feasible
processes for (Ps,y).

The value function V : [0, 1] × R
n → R ∪ {−∞}

considered here will be defined as

V (s, y) = inf
(x,µ)∈X(s,y)

h(x(1)).

The next lemma asserts that feasible processes of
the impulsive differential inclusion (according to our
definition) satisfy a semigroup property.

Lemma 1 Take two intervals [a, b] and [b, c] in [0, 1]
and let (x1, µ1) and (x2, µ2) be feasible processes for
the impulsive differential inclusion in [a, b] and [b, c],
respectively, and such that x1(b) = x2(b). Then,
(x, µ) ∈ BV +([a, c]; Rn)×C∗([a, c];K), defined by

x(t) =











x1(t), if t ∈ [a, b[ ,

x2(b
+), if t = b,

x2(t), if t ∈ ]b, c] ,

µ(A) = µ1(A ∩ [a, b]) + µ2(A ∩ [b, c]), ∀A of Borel

is a feasible process in the interval [a, c].

The following result states elementary properties of
the value function.

Lemma 2 For all y ∈ R
n one has V (1, y) ≤ g(y).

Let (s, y) ∈ [0, 1] × R
n and let (x, µ) be feasible for

(Ps,y). Then, for any t ∈ [s, 1] one has V (s, y) ≤
V (t, x(t)). Moreover, if (x, µ) is optimal for (Ps,y)
then V (s, y) = V (t, x(t)) for any t ∈ [s, 1].

The first assertion of this lemma is easily obtained
by considering problems of the form (P1,y), while
the second one is a consequence of the semigroup
property stated in lemma 1.

The next result concerns the approximation of arcs
by reparametrized trajectories for the impulsive con-
trol system. This result resembles the Fillipov ap-
proximation theorem, derived for absolutely contin-
uous control systems, see (Aubin, Cellina 1984).

Theorem 1 Let F : R × R
n

⇒ R
n and G :

R × R
n

⇒ R
n×q be such that F (·, x) and G(·, x)

are Lebesgue measurable ∀x ∈ IRn, and F (t, ·) and
G(t, ·) are Lipschitz continuous of rank k for all
t ∈ R. Take a > 0 and consider two Lipschitz con-
tinuous functions θ : [0, a] → R and γ : [0, a] → R

q,
satisfying

(θ̇(s), γ̇(s)) ∈ K1, s ∈ [0, a] − a.e..



Take also z ∈ AC([0, a]; Rn) such that

ż(s) = φ(s)θ̇(s) + ψ(s)γ̇(s), s ∈ [0, a] − a.e.

where φ ∈ L1([0, a]; IRn) and ψ ∈ L1([0, a]; Rn×q).
Let p ∈ L1([0, a]; R) be such that

dF (θ(s),z(s))(φ(s)) ≤ p(s) θ̇(s) 6= 0 − a.e.

dG(θ(s),z(s))(ψ(s)) ≤ p(s) γ̇(s) 6= 0 − a.e.

and take x0 ∈ R
n. Let λ : [0, a] → R be defined as

λ(s) = |z(a) − x0|e
k(s−a) +

∫ s

a

ek(s−σ)p(σ)dσ.

Then there exist x ∈ AC([0, a]; Rn), f and
g, measurable selections of F (θ(s), x(s)) and
G(θ(s), x(s)), respectively, satisfying

ẋ(s) = f(s)θ̇(s) + g(s)γ̇(s), s ∈ [0, a] − a.e.,

x(0) = x0,

and such that

|x(s) − z(s)| ≤ λ(s), ∀s ∈ [0, a]

|ẋ(s) − ż(s)| ≤ kλ(s) + p(s), s ∈ [0, a] − a.e.

|f(s) − φ(s)| ≤ kλ(s) + p(s), θ̇(s) 6= 0 − a.e.

|g(s) − ψ(s)| ≤ kλ(s) + p(s), γ̇(s) 6= 0 − a.e..

The following theorem presents sufficient conditions
for the Lipschitz continuity of the value function. Its
proof is based on theorem 1. Its proof relies heavily
on theorem 1.

Theorem 2 Assume the following hypotheses.

(i) h is Lipschitz continuous of constant kh in R
n;

(ii) F is continuous, and for each t ∈ [0, 1] F (t, ·)
is Lipschitz continuous of constant k;

(iii) G is Lipschitz continuous of constant k;

(iv) for each r > 0 there is a constant ko(r) ∈ R,
such that there exists an optimal solution (x, µ)
for (Ps,y) satisfying ‖µ‖ ≤ ko(r), for all y such
that |y| ≤ r, and for all s ∈ [0, 1].

Then, the value function V é locally Lipschitz con-
tinuous.

5 Optimality Conditions

The statement of Hamilton-Jacobi type optimal-
ity conditions for dynamic optimization problems
is usually connected to the concept of verification
function ([10], [6], [7], or [13], present such kind of
results for problems with absolutely continuous tra-
jectories). Here we extend such results to the class
of impulsive control problems addressed.

Definition 3 (Verification function) A function
W : [0, 1] × R

n → R is a verification function for
problem (P ) when

1. W is locally Lipschitz continuous;

2. W (1, x) ≤ h(x), ∀x ∈ R
n;

3. for all (t, x) ∈ ]0, 1[ × R
n

max
(r0,r)∈K1

f∈F (t,x)
g∈G(t,x)

{W 0((t, x);−(r0, fr0 + gr))} ≤ 0,

(10)
and for all (t, x) ∈ [0, 1] × R

n

max
r∈K

g∈G(t,x)

{W 0
(t)(x;−gr)} ≤ 0. (11)

In this definition, and throughout this work, W(t) de-
notes, for each t ∈ [0, 1], the function from R

n to
R defined by W(t)(x) = W (t, x), for each x ∈ R

n,
where W : [0, 1] × R

n → R.

Monotonicity properties along feasible trajectories
permit us to obtain the optimality conditions stated
in the following result.

Theorem 3 Let (z, ν) be a feasible process for (P )
and let W be a verification function such that
h(z(1)) = W (0, x0). Then, (z, ν) is optimal for (P ).

The next theorem gives further properties for locally
Lipschitz continuous value functions.

Theorem 4 Suppose the value function V is locally
Lipschitz continuous on [0, 1] × R

n. Then, for all
(s, y) ∈ ]0, 1[ × R

n

max
(r0,r)∈K1

f∈F (s,y)
g∈G(s,y)

{V 0((s, y);−(r0, fr0 + gr))} = 0,



for all (s, y) ∈ [0, 1] × R
n

max
r∈K

g∈G(s,y)

{V 0
(s)(y;−gr)} ≤ 0,

and for all y ∈ R
n,

max{ max
r∈K

g∈G(1,y)

{V 0
(1)(y;−gr)}, V (1, y) − h(y)} = 0.

This results shows that the value function, when con-
tinuous, is a verification function with a boundary
condition.

6 Multipliers and Gradients of the
Value Function

In this section we present a result relating multipli-
ers of necessary conditions of optimality for problem
(P ) and the generalized gradient of the value func-
tion V defined above.

Definition 4 Let (x, µ) be a feasible process for
(P ), corresponding to the graph completion (θ, γ).
The element p ∈ BV +([0, 1]; Rn), is called a multi-
plier if

1. (x, p) is a robust solution of

(−dp(t), dx(t)) ∈ ∂HF (t, x(t), p(t))dt+

+ ∂HG(t, x(t), p(t))µ(dt)

in the interval [0, 1], corresponding to the graph
completion (θ, γ),

2. and the following conditions are satisfied

σK(HG(t, x(t), p(t))) ≤ 0, ∀t ∈ [0, 1],

σK(HG(t, x(t), p(t))) ≥ 0, µ− a.e..

In this definition, HF denotes the hamiltonian func-
tion associated to F , HG denotes the vector com-
posed by the hamiltonians of the multifunctions
defining G, and, for each r ∈ R

q, σK(r) =
supk∈K{k · r}.

The next proposition (theorem 3.1 of [17]) gives nec-
essary conditions of optimality for problem (P ).

Proposition 2 Suppose the data defining problem
(P ) satisfies the following hypotheses:

(H1) h is locally Lipschitz continuous;

(H2) F is Lipschitz measurable;

(H3) for each t the multifunction x 7→ G(t, x) is
Lipschitz continuous with a constant not de-
pending on t, and for each x the multifunction
t 7→ G(t, x) is continuous;

(H4) F and G are multifunctions with closed
graphs and taking as values convex sets.

Let (x, µ) be an optimal solution for (P ). Then,
there exists a multiplier p such that −p(1) ∈
∂Lh(x(1).

The next results relates multipliers of the necessary
conditions of optimality to the generalized gradient
of the value function.

Theorem 5 Suppose the above hypotheses on the
data defining (P ) are satisfied. Suppose also that
the value function of the family of problems (Ps,y) is
locally Lipschitz continuous. Let (x, µ) be an opti-
mal process for (P ). Then, there exists a multiplier
of the necessary conditions of optimality p such that

− p(0) ∈ ∂V(0)(x0)

(h(t),−p(t)) ∈ ∂V (t, x(t)), ∀t ∈ ]0, 1[ ,

where h(t) = HF (t, x(t), p(t)).
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