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Abstract	

Background:	Several	authors	have	presented	cardiac	phantoms	to	mimic	the	particularities	of	the	

heart,	making	it	suitable	for	medical	training	and	surgical	planning.	Although	the	initial	models	were	

mainly	 focused	 on	 the	 ventricles,	 personalized	 phantoms	 of	 the	 atria	 were	 recently	 presented.	

However,	such	models	are	typically	rigid,	the	atrial	wall	is	not	realistic	and	it	is	not	compatible	with	

ultrasound,	being	sub-optimal	for	planning/training	of	several	interventions.		

Methods:	 In	 this	 work,	 we	 propose	 a	 strategy	 to	 construct	 a	 patient-specific	 atrial	 model.	

Specifically,	the	target	anatomy	is	generated	using	a	computed	tomography	(CT)	dataset	and	then	

constructed	using	a	mold-cast	approach.	An	accurate	representation	of	 the	 inter-atrial	wall	 (IAS)	

was	 ensured	 during	 the	 model	 generation,	 allowing	 its	 application	 for	 IAS	 interventions.	 Two	

phantoms	were	constructed	using	different	flexible	materials	(silicone	and	polyvinyl	alcohol	cryogel,	

PVA-C),	which	were	then	compared	to	assess	their	appropriateness	for	ultrasound	(US)	acquisition	

and	for	the	generation	of	complex	anatomies.		

Results:	Two	experiments	were	set	up	to	validate	the	proposed	methodology.	First,	the	accuracy	of	

the	manufacturing	approach	was	assessed	through	the	comparison	between	a	post-production	CT	

and	the	virtual	references.	The	results	proved	that	the	silicone-based	model	was	more	accurate	than	

the	PVA-C-based	one,	with	an	error	of	1.68±0.79,	1.36±0.94,	1.45±0.77	mm	for	the	left	(LA)	and	right	

atria	(RA)	and	IAS,	respectively.	Secondly,	an	US	acquisition	of	each	model	was	performed	and	the	

obtained	 images	 quantitatively	 and	 qualitatively	 assessed.	 Both	 models	 showed	 a	 similar	

performance	 in	 terms	 of	 visual	 evaluation,	 with	 an	 easy	 detection	 of	 the	 LA,	 RA	 and	 the	 IAS.	

Furthermore,	a	moderate	accuracy	was	obtained	between	the	atrial	surfaces	extracted	from	the	US	

and	the	ideal	reference,	and	again	a	superior	performance	of	the	silicone-based	model	against	the	

PVA-C	phantom	was	found.	

Conclusions:	The	proposed	strategy	proved	to	be	accurate	and	feasible	for	the	correct	generation	

of	complex	personalized	atrial	models.		

Keywords:	 Patient-specific	 phantom	 models,	 cardiac	 atria,	 inter-atrial	 septal	 wall,	 3D-printing,	

ultrasound	compatible	phantom	model.	 	
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1. Introduction	

During	 the	 last	 two	decades,	multiple	authors	 focused	on	 the	development	of	3D	models,	

typically	termed	as	phantoms,	of	multiple	human	organs	(e.g.,	liver,	heart,	brain)	1,2.	Computational	

and	 physical	 models	 were	 initially	 presented	 and	 compared,	 with	 the	 physical	 models	 showing	

several	advantages	(e.g.	easy	to	understand	and	simple	to	learn	the	anatomy)	when	compared	with	

the	virtual	ones	2.	 In	this	sense,	the	physical	models	were	applied	to	characterize	the	anatomical	

shape,	 to	 study	 physiological	 mechanisms	 and	 as	 a	 surgical	 learning	 tool	 3.	 Nevertheless,	

mean/standard	 shape	 models	 were	 used,	 while	 patient-specific	 models	 could	 be	 beneficial.	

Furthermore,	 such	 mean	 models	 are	 not	 necessarily	 adequate	 in	 non-healthy	 patients,	 where	

abnormal	anatomies	are	typically	found.	As	such,	some	authors	presented	patient-specific	models,	

where	 the	 anatomical	 particularities	 of	 each	 patient	 are	 taken	 into	 account	 during	 the	 model	

construction.	 The	 patient	 anatomy	 is	 extracted	 from	 a	 high-resolution	 imaging	 acquisition	 (e.g.,	

computed	tomography	–	CT),	post-processed	and	then	used	to	create	the	model	4-7.	Besides	allowing	

a	 correct	 patient-specific	 anatomy	 assessment,	 these	personalized	models	 also	 improve	 surgical	

planning	strategies	and	surgical	 training	 techniques	 8-10.	Moreover,	 these	realistic	models	can	be	

used	as	a	validation	scenario	11-13.	

Specifically	 for	 the	heart,	multiple	 authors	 developed	 left	 ventricular	models	 to	 study	 the	

dynamic	behavior	of	this	cardiac	chamber	14-16.	Initially,	simple	models	(e.g.,	a	cylinder)	were	used	

17,	while	recent	ones	are	more	realistic	15.	The	heartbeat	is	simulated	through	water	or	air	pumps	

13,14,	with	functional	parameters	similar	to	the	physiological	ones.	Recently,	some	authors	focused	

on	atrial	phantom	models	11,18,19.	These	models	were	mainly	used	for	training/planning	of	cardiac	

ablations	 19,20,	 presenting	 the	 atrial	 body	 and	 the	 proximal	 part	 of	 the	 pulmonary	 veins.	

Nevertheless,	these	solutions	were	either	rigid	19	or	not	appropriate	for	ultrasound	acquisition	11.	

Furthermore,	the	thin	and	complex	inter-atrial	wall	was	not	correctly	modeled	18,20,	hampering	the	
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identification	of	the	atrial	anatomy.	Finally,	the	accuracy	of	the	manufacturing	technique	was	rarely	

assessed	(i.e.	the	error	between	the	virtually	designed	model	and	the	physical	one).		

In	this	work,	we	present	a	strategy	to	construct	a	patient-specific	model	of	the	atrial	region.	

This	is	modeled	from	a	high-resolution	CT	and	then	constructed	by	a	mold-cast	approach	using	a	

flexible	and	ultrasound-compatible	material.	Moreover,	a	correct	representation	of	the	atrial	wall	is	

ensured,	particularly	for	the	inter-atrial	wall,	improving	the	identification	of	this	region	and	allowing	

its	application	as	training/validation	scenario	in	several	atrial	wall	interventions,	such	as	transseptal	

puncture	or	atrial	septal	defect	closure.		

2. Methods	

An	overview	of	the	proposed	technique	is	presented	in	Figure	1.	The	patient-specific	atrial	

model	is	constructed	from	a	3D	CT	of	the	patient	(Figure	1a),	by	manual	delineation	of	the	left	and	

right	atria	(LA,	RA)	and	atrial	wall	(Figure	1b).	Multiple	2D	slices	are	manually	segmented	and	then	

3D	reconstructed	(Figure	1c).	These	3D	surfaces	are	required	to	generate	a	mold	(as	a	negative	of	

the	target	shapes)	using	a	computer-aided	design	(CAD)	software	package	(Figure	1d)	and	finally	

	
Figure	1	-	Overview	of	the	proposed	method	to	construct	patient-specific	atrial	phantom	models.	
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physically	 constructed	 using	 a	 3D-printer	 (Figure	 1e).	 The	 final	 model	 is	 composed	 by	 inner	

structures	(red	molds	in	Figure	1e),	which	represents	the	hollow	cavities	of	the	atrial	bodies,	and	an	

external	mold	(blue	mold	in	Figure	1e),	with	the	external	shape	of	the	target	anatomy.	The	flexible	

phantom	is	created	through	the	pouring	of	a	flexible	material	inside	the	mold	(Figure	1f),	followed	

by	 the	 elimination	 of	 the	 inner	 rigid	 structures	 (red	 parts,	 Figure	 1g).	 Each	 of	 these	 steps	 are	

described	in	detail	 in	the	following	sections.	Furthermore,	a	step-by-step	description	of	the	mold	

construction	is	presented	in	Multimedia	File	I.	

2.1. Data	acquisition	

The	3D	CT	of	 the	 anatomy	was	 acquired	with	 a	 Sensation	64	 (Siemens	Medical	 Solutions,	

Erlangen,	Germany).	The	acquisition	was	performed	with	64	rows,	 rotation	time	0.36	ms,	gantry	

angle	 of	 ±30	 degrees.	 One	 hundred	 and	 twenty	 milliliter	 (ml)	 of	 iodinated	 contrast	 agent	

(Omnnipaque	350;	GE	Healthcare,	Waukesha,	WI)	was	injected	at	5	ml/s.	A	matrix	size	of	512	x	512	

x	96	with	an	isotropic	voxel	spacing	of	0.4	mm	and	a	slice	thickness	of	1	mm	were	used.	The	dataset	

was	reconstructed	at	the	ventricular	end-diastole	phase,	with	a	convolution	kernel	B20f.	The	patient	

was	 enrolled	 in	 this	 study	 with	 indications	 for	 left	 atrial	 pathology,	 but	 with	 normal	 anatomy.	

Because	of	the	retrospective	nature	of	this	study,	no	written	informed	consent	was	obtained	from	

the	patient.	

2.2. Manual	delineation	

The	manual	delineation	was	initially	performed	for	the	atrial	cavities,	followed	by	the	atrial	

outer	wall.	No	pre-processing	stage	was	used,	using	directly	the	real	information	of	the	image.	All	

delineations	were	performed	by	one	experienced	observer	using	the	Medical	Imaging	Interactive	

Toolkit	Software	 (MITK,	 21)	and	 its	specific	 interactive	segmentation	menu.	Specifically,	a	 few	2D	

slices	were	manually	segmented	and	then	used	as	anchors	points	to	reconstruct	the	final	3D	surface.	

The	reconstructed	surface	was	assessed	and	extra	corrections	were	performed	if	needed.	
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The	 LA	 and	 RA	 contours	 rely	 on	 the	 atrial	 body	 region,	 with	 both	 left	 and	 right	 atrial	

appendage	being	excluded	(Figure	2).	Moreover,	only	the	proximal	part	of	the	pulmonary	veins	(PV)	

and	 vena	 cava	 (VC)	were	 included.	 The	mitral	 valve	 (MV)	 and	 tricuspid	 valve	 (TV)	 regions	were	

identified	by	a	plane.	This	plane	was	used	to	separate	the	target	atrial	region	from	the	ventricular	

cavities.	Multiple	access	points	were	defined	for	each	atrium,	namely:	two	for	the	PV,	two	for	the	

VC	(i.e.	 inferior	and	superior)	and	one	for	each	ventricle.	The	size	and	orientation	of	each	access	

point	was	defined	with	a	specific	contouring	label.	Since	the	current	phantom	model	is	intended	to	

be	used	for	planning/training	multiple	surgeries,	realistic	access	points	(i.e.	similar	to	the	real	input	

and	output	orifices	of	the	human	atria)	are	required.	

The	 external	 atrial	 wall	 was	 defined	 using	 the	 aforementioned	 LA	 and	 RA	 regions	 as	

references.	 Indeed,	 it	was	 initially	defined	as	a	dilated	version	of	 the	LA	and	RA	with	a	constant	

thickness	(approximately	3	mm).	Then,	multiple	refinements	were	manually	performed	in	order	to	

guarantee	maximum	adaptation	between	the	contour	and	the	anatomy.	 It	 should	be	noted	that	

intermediate	atrial	regions	(i.e.	inter-atrial	septal	wall)	were	merged.	Moreover,	free	wall	regions	

(e.g.,	mitral	valve	and	tricuspid	valve	regions)	were	not	refined	and	the	constant	thickness	was	kept.		

	

	
Figure	2	-	Manual	delineation	strategy.	a)	Multiple	2D	slices;	and	b)	3D	representation	of	the	atrial	shape.	Yellow	–	
External	atrial	wall,	Green	–	Left	Atrium,	Red	–	Right	Atrium.		
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2.3. Virtual	modeling	of	the	phantom	mold	

In	order	to	manufacture	the	segmented	anatomy,	a	cast-mold	strategy	was	used.	The	entire	

design	 was	 performed	 on	 a	 CAD	 software	 package	 (SolidWorks,	 Dassault	 Systèmes	 S.A,	 Vélizy-

Villacoublay,	France)	using	multiple	solids	of	the	obtained	segmentations	(i.e.	LA,	RA	and	cardiac	

wall).	The	abovementioned	solids	were	generated	using	GeoMagic	 (3D	Systems,	South	Carolina).	

Note	that,	as	output,	a	compact	representation	of	each	contour	was	obtained	(i.e.	the	contour	and	

its	inner	region	are	a	unique	solid	without	hollow	regions).	

Specifically,	the	patient-specific	mold	was	designed	through	a	two-steps	strategy,	namely:		

1)	generation	of	the	cardiac	wall	solid	(see	Figure	3a),	through	the	intersection	between	the	

external	atrial	wall	solid	and	the	negative	of	both	LA	and	RA	solids.	 It	should	be	noticed	that	the	

atrial	wall	solid	is	a	compact	component	that	includes	both	LA	and	RA	solids	and	its	outer	surface	

	
Figure	3	-	Technique	used	to	create	the	phantom	mold.	(a)	Three	different	solids	(LA,	RA	and	external	atrial	wall)	are	
combined.	(b)	Using	the	combined	solid,	 internal	and	external	molds	representing	the	negative	of	 their	shape	were	
designed.	
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shape	 is	 the	 external	 atrial	 anatomy	manually	 delineated	 in	 stage	 2.2.	 As	 such,	 the	 intersection	

between	the	different	components	results	in	a	new	solid	with	hollow	cavities	(see	Figure	3a),	that	

represents	the	desired	phantom	anatomy;		

2)	design	of	the	target	mold	as	the	negative	of	the	cardiac	wall	solid	generated	in	step	(1).	

Due	 to	 the	 complexity	 of	 the	 atrial	 anatomy,	 three	 external	 (gray	molds	 in	 Figure	 3b)	 and	 two	

internal	models	 (yellow	 and	 green	mold	 in	 Figure	 3b)	 are	 required.	 The	 external	molds	 are	 the	

negative	of	the	atrial	wall,	and	the	internal	molds	are	the	LA	and	RA	solids	themselves	(see	Figure	

3b).	Multiple	external	molds	are	needed	to	allow	correct	positioning	of	the	internal	parts,	reduce	

manufacturing	costs	and	consequently	allow	multiple	usages	of	the	same	mold.	As	a	result,	after	

final	mold	 construction	 through	 the	 combination	 of	 the	 different	 external	 and	 internal	 parts,	 a	

compact	 structure	 with	 a	 small	 cavity	 (i.e.	 empty	 space)	 was	 obtained.	 A	 schematic	 (with	

dimensions)	of	the	phantom	wall	is	presented	in	Multimedia	File	II.		

Regarding	 the	 different	 access	 points	 (i.e.	 PV,	 VC,	MV	 and	 TV),	 these	were	 designed	 and	

constructed	as	constant	cylinders	with	specific	diameter	and	thickness	(Figure	3b	and	dimensions	in	

Multimedia	File	II).	The	cylinder	orientation	and	positions	were	defined	based	on	the	user	labeling	

done	 in	 section	 2.2.	Moreover,	 these	 cylinders	 are	 detachable	 in	 order	 to	 allow	 the	 pouring	 of	

material	through	multiple	mold	orifices,	while	guaranteeing	the	correct	position	of	the	inner	molds	

relatively	to	the	external	mold.	As	a	final	remark,	the	authors	would	like	to	emphasize	that	these	

‘adapted’	orifices	can	be	used	to	develop	a	dynamic	phantom	by	connecting	hydraulic	tubes	to	these	

cylinders,	and	 therefore	 simulating	 the	blood	circulation	 into	de	atria	 (see	one	 schematic	of	 the	

dynamic	phantom	model	in	Appendix	A).		

2.4. Construction	of	the	phantom	mold	using	a	3D-printer	

The	designed	molds	were	converted	into	G-code	format	using	the	Cura	software	(Ultimaker,	

Geldermalsen,	 Netherlands)	 and	 3D-printed	 using	 an	 Ultimaker	 II	 (Ultimaker,	 Netherlands).	
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Polylactic	acid	(PLA)	was	used	(filament	of	2.85	mm,	Ultimaker,	Geldermalsen,	Netherlands).	The	

following	parameters	were	applied	during	the	3D-printing:	speed	of	60%,	nozzle	temperature	of	225	

°C,	 build-plate	 temperature	 of	 60	 °C,	material	 flow	 at	 100%	 and	 fan	 speed	 at	 50%.	 An	 in-plane	

resolution	(X-Y)	of	0.25	mm	with	a	layer	height	of	0.06	mm	(resolution	in	Z)	was	used.		

The	printed	mold	is	assembled	as	illustrated	in	Figure	4.	We	start	by	connecting	the	multiple	

cylinders	(yellow	for	the	ventricle	region,	and	blue	for	the	PV	and	VC)	with	the	inner	mold	of	the	RA	

(green	 structure)	 and	 LA	 (red	 structure).	 Then,	 the	 obtained	 component	 (atria	 plus	 cylinders)	 is	

positioned	on	the	inferior	part	of	the	external	mold	(see	gray	mold	in	Figure	4).	The	yellow	and	blue	

cylinders	provide	support	and	guarantee	correct	positioning	of	the	inner	molds.	Finally,	the	mold	is	

closed	with	the	superior	and	central	part	of	the	external	mold.	As	above	mentioned,	in	order	to	pour	

the	flexible	material,	each	cylinder	is	detached	(one	at	a	time)	and	used	as	access	point.	

2.5. Flexible	Materials	

Two	different	materials	were	used	 to	produce	 the	 flexible	 phantom,	namely:	 silicone	 and	

polyvinyl	alcohol	cryogel	(PVA	-	C,	Figure	5).	

	

Figure	4	–	Illustration	of	the	assembled	3D	printed-molds.	Red	and	green	are	the	inner	molds	of	the	right	atrium	and	
left	atrium,	respectively.	Blue	and	yellow	cylinders	are	the	support	structures	to	the	pulmonary	veins/vena	cava	and	
ventricles,	respectively.	The	external	mold	(gray	mold)	is	composed	of	three	independent	components,	i.e.	the	inferior,	
superior	and	central.		
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The	silicone	used	is	an	additive	HB	FLEX	5513	A+B	transparent	(HBQuimica,	Porto,	Portugal).	

This	material	presents	a	Young’s	modulus	of	approximately	720	kPa,	linear	contraction	<0.05%	and	

stretching	until	breaking	of	450	%.	The	flexible	material	was	prepared	by	mixing	75	g	of	both	part	A	

and	 B.	 Then,	 the	material	 was	 poured	 into	 the	mold.	 After	 24	 hours,	 the	 external	molds	 were	

removed.	Regarding	the	internal	molds,	one	small	incision	was	done	to	remove	them,	followed	by	

the	addition	of	silicone	on	the	small	incision	region	to	close	it.		

The	PVA	relies	on	Mowiol	10-98	(Kuraray	Europe	GmbH,	Hattersheim	am	Maim,	Germany)	

with	a	molecular	weight	of	61,000	𝑢,	98-98.8	mol%	hydrolysis,	∼14000	polymerization,	1.1-1.9%	of	

impurities,	viscosity	of	9-11mPa.s,	4%	in	H20	(20°C)	and	ester	number	of	15-25.	Initially,	the	PVA	

powder	was	milled	and	mixed	with	water	(temperature	80°C,	during	2	hours),	creating	a	viscous	

solution.	This	solution	was	subsequently	poured	into	the	mold.	Then,	two	thaw-freeze	cycles	were	

performed,	resulting	 in	a	compact	and	flexible	wall	with	a	Young’s	Modulus	of	near	110	kPa	and	

Poisson’s	 ratio	 of	 0.45	 22,23.	 Each	 cycle	 consisted	 of	 12-h	 freezing	 period	 in	 a	 freezer	 at	 -20°C,	

followed	by	a	24h	thawing	period.	At	the	end	of	the	freezing	stage,	the	freezer	was	turned	off	and	

the	 temperature	 slowly	 increased	 until	 the	 environment	 temperature.	 Finally,	 after	 3-days,	 the	

external	mold	was	removed	and	two	incisions	were	mad	to	remove	the	internal	molds.	The	viscous	

material	was	used	to	cover	the	incision	site,	and	a	third	freeze/thaw	cycle	(12	hours	freezing	and	24	

thawing)	was	performed.	

	
Figure	5	-	Final	silicone-based	and	PVA-C-based	phantoms.	
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3. Experiments	

Two	 independent	experiments	were	performed	 to	validate	 the	proposed	phantom	model,	

namely:	 (i)	 evaluation	 of	 the	 accuracy	 of	 the	 proposed	 phantom	 production	 technique	 and	 (ii)	

qualitative	and	quantitative	assessment	of	the	resulting	ultrasound	image	of	each	phantom	model.	

3.1. Accuracy	of	the	proposed	production	technique	

After	phantom	production,	we	assessed	the	accuracy	of	the	proposed	production	technique,	

through	the	comparison	between	the	resulting	phantom	models	and	the	original	virtual	design.	In	

this	 sense,	 a	high-resolution	CT	 image	was	acquired	 for	each	 constructed	model	 (i.e.	 PVA-C	and	

silicone),	using	a	Somatom	Force	CT	(Siemens	Medical	Solutions,	Erlangen,	Germany).	A	total	of	2	x	

192	rows,	with	a	collimator	width	of	0.6	mm,	a	rotation	time	of	250	ms	and	a	convolution	kernel	

Ur73u	was	used.	Furthermore,	a	matrix	size	of	512	x	512	x	437	with	an	isotropic	pixel	spacing	of	0.35	

mm	and	a	slice	thickness	of	0.3	mm	was	used.	

The	 obtained	 images	 were	 manually	 delineated	 using	 MITK.	 A	 threshold-based	 strategy	

followed	by	manual	corrections	was	applied	to	generate	the	3D	surfaces	of	the	LA	and	RA	bodies	

and	 cardiac	 wall	 (Figure	 6).	 In	 order	 to	 compare	 the	 post-production	 meshes	 with	 the	 pre-

	
Figure	6	-	(a)	CT	image	with	manual	delineated	contours.	(b)	3D	surface	of	the	left	and	right	atrium	and	representation	
of	the	manual	landmarks	required	to	perform	the	surface	alignment.	Green	–	Left	atrium,	Red	–	Right	atrium.	
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production	one,	a	surface-to-surface	alignment	using	the	iterative	closest	point	algorithm	(ICP,	24)	

was	applied.	Specifically,	a	set	of	landmarks	were	manually	selected	in	each	model	(see	Figure	6b),	

allowing	 to	 initially	 align	 both	 models	 with	 a	 similar	 orientation	 and	 position,	 which	 was	

subsequently	refined	using	a	rigid	ICP	strategy.	An	overview	of	the	selected	landmarks	is	presented	

in	Figure	6b,	 in	which	we	can	observe	that	the	model’s	extremities	were	used	to	obtain	a	robust	

initialization.	The	initial	transformation	was	computed	through	a	least	square	solution	between	the	

reference	(pre-production	model)	and	target	(post-production	model)	landmarks.	The	optimal	rigid	

transformation	(initialization	plus	 ICP)	was	finally	applied	to	each	surface	(i.e.	LA,	RA	and	cardiac	

wall),	consequently	aligning	the	pre-	and	post-production	models.	

The	differences	between	pre-	and	post-production	surfaces	(i.e.	LA,	RA	and	cardiac	wall)	were	

assessed	through	three	metrics,	namely	point-to-surface	(P2S)	distance,	Dice	and	95th	percentile	of	

the	 Hausdorff	 distance.	 The	 volume	 of	 each	 chamber	 was	 also	 computed.	 Furthermore,	 we	

evaluated	the	accuracy	of	 the	method	for	 thin	walls	 (in	 this	case,	 the	 inter-atrial	septal	wall).	As	

such,	a	small	region	of	interest	(ROI)	was	created	around	the	thin	wall	region.	This	ROI	was	defined	

as	the	largest	connected	region	with	a	thickness	lower	than	5	mm.	The	abovementioned	threshold	

(i.e.	 5	 mm)	 was	 selected	 based	 on	 the	 expected	 thickness	 of	 the	 thinner	 region,	 as	 previously	

described	in	literature	25.		

3.2. Qualitative	and	quantitative	evaluation	of	the	phantom	model	in	ultrasound	imaging	

Both	phantom	models	(i.e.	silicone	or	PVA-C)	were	submerged	in	a	large	water	tank	(water	at	

room	 temperature	 and	 tank	dimension	of	 45.5x35x25	 cm3)	 and	 the	 resulting	ultrasound	 images	

were	 evaluated.	 The	 acquisition	was	 performed	with	 a	 transesophageal	 echocardiography	 (TEE)	

ultrasound	probe	(Vivid	E9	Breakthrough	2012,	General	Electrics,	Connecticut,	USA)	connected	to	a	

4D-ultrasound	system	(Vivid	E9,	General	Electrics,	Connecticut,	USA).	The	maximum	image	depth	
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was	18	mm	and	the	image	resolution	was	0.07x0.07x1	mm3.	The	frequency	of	the	transducer	was	

set	to	4	MHz.	The	differences	in	terms	of	image	appearance	were	visually	evaluated	by	one	observer.	

Next,	in	order	to	compare	the	resulting	ultrasound	images	of	each	phantom	model	with	the	

ideal	 reference,	 we	 applied	 a	 strategy	 similar	 to	 section	 3.1.	 In	 detail,	 we	 start	 by	 manually	

segmenting	 the	LA	and	RA	 in	each	US	 image	 (for	each	model),	 identifying	subsequently	multiple	

landmarks	to	initialize	the	alignment	strategy	(see	Figure	6b).	A	final	refinement	through	a	rigid	ICP	

is	 applied	 to	 improve	 the	 alignment	 of	 both	 US	 and	 reference	 surfaces.	 Finally,	 the	 difference	

between	 each	 surface	 is	 quantitatively	 assessed	 using	 the	 P2S,	 Dice	 and	 95th	 of	 the	 Hausdorff	

distance.	Moreover,	the	volume	of	each	surface	extracted	from	the	US	is	computed	and	compared	

with	the	ideal	value.	

4. Results	

Table	1	shows	the	shape	differences	between	the	final	post-production	silicone-based	and	

PVA-C-based	phantom	models	(through	a	CT	acquisition)	when	compared	with	the	ideal	model.	The	

errors	 spatial	 distribution	 is	 presented	 in	 Figure	7,	 showing	 the	high	accuracy	of	 the	production	

technique	 for	 the	 real	 atrial	 body.	 A	 superior	 performance	 was	 found	 for	 the	 silicone-based	

Table	1	-	Assessment	of	the	proposed	production	technique	in	terms	of	volume,	point-to-surface	error	(P2S,	mm),	Dice	
(%)	and	95th	percentile	of	the	Hausdorff	distance	(mm).	The	study	is	performed	independently	for	the	left	atrium	(LA),	
right	atrium	(RA),	cardiac	wall	and	thin	walls.	

Structure	 Model	 Volume	(ml)	 P2S	(mm)	 Dice	(%)	 Hausdorff	(mm)	

LA	
Silicone	 71.89	 1.68±0.79	 88.50	 2.97	
PVA-C	 71.39	 1.70±1.34	 87.85	 4.41	

Virtual	model	 77.83	 -	 -	 -	

RA	
Silicone	 43.50	 1.36±0.94	 86.50	 3.35	
PVA-C	 41.20	 1.32±1.11	 88.21	 3.56	

Virtual	model	 49.51	 -	 -	 -	
Cardiac	
wall	

Silicone	 -	 1.59±1.20	 -	 4.20	
PVA-C	 -	 1.90±1.60	 -	 5.25	

Thin	walls	
Silicone	 -	 1.45±0.77	 -	 2.85	
PVA-C	 -	 1.53±1.18	 -	 4.00	
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phantom.	Moreover,	Figure	8	shows	the	errors’	spatial	distribution	for	the	thin-wall,		i.e.	the	inter-

atrial	septal	wall,	with	both	models	showing	high	accuracy	with	a	mean	error	around	1.5	mm	and	a	

maximum	error	of	2.8	mm.	

Figure	9	presents	the	ultrasound	image	appearance	of	each	phantom	model.	Both	chambers	

(LA,	RA)	and	inter-atrial	wall	are	easily	visible.	Furthermore,	the	final	3D	shape	observed	in	US	was	

visually	compared	with	the	ideal	model	(Figure	10),	showing	a	high	similarity.	Table	2	quantitatively	

compare	 (i.e.	 P2S,	 Dice,	 95th	 percentile	 of	 Hausdorff	 and	 volume)	 the	 data	 extracted	 from	 the	

resulting	US	image	and	the	ideal	model,	showing	a	moderate	accuracy	of	the	proposed	method.	

	
Figure	7	-	Accuracy	of	the	proposed	production	technique.	(a)	Left	atrium,	(b)	right	atrium,	(c)	cardiac	wall.	First	row	
represents	the	silicone-based	phantom,	with	the	second	row	being	the	PVA-C-based	phantom.	

	
Figure	8	 -	Accuracy	of	 the	proposed	production	technique	 for	 thin	walls.	 (a)	Silicone-based	phantom	and	 (b)	 PVA-C-
based	phantom.	
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5. Discussion	

In	the	current	study,	we	present	and	assess	the	accuracy	of	a	phantom	production	technique.	

The	proposed	strategy	generates	realistic	and	patient-specific	models	using	as	a	reference	a	high-

resolution	 medical	 acquisition	 based	 on	 CT.	 Besides	 the	 accurate	 representation	 of	 the	 atrial	

anatomy	(i.e.	LA	and	RA	bodies),	a	correct	representation	of	the	inter-atrial	wall	was	also	pursued,	

improving	the	realism	of	the	proposed	atrial	model.	Indeed,	particular	attention	was	given	to	the	

design	 of	 the	 inter-atrial	wall,	 consequently	 showing	 the	 particular	 interest	 of	 this	 phantom	 for	

simulation	of	atrial	wall	 interventions,	specifically:	transseptal	puncture26	and	atrial	septal	defect	

closure27.	 To	 the	 author’s	 best	 knowledge,	 no	 patient-specific	 phantom	 model	 with	 correct	

representation	of	the	mid	atrial	wall	was	previously	presented,	being	a	clear	novelty	of	this	work.			

	
Figure	9	-	Resulting	ultrasound	image	for	(a)	silicone-based	and	(b)	PVA-C-based	phantom.	LA-	Left	atrium,	RA	–	Right	
Atrium,	IAS	–	Inter-atrial	septal	wall.		

	

	
Figure	10	-	3D	visualization	of	the	proposed	phantom	model	in	3D	US	images.	(a)	Ideal	model,	b)	Silicone-based	and	(c)	
PVA-C-based	phantom	model.	
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Regarding	 the	phantom	construction,	 it	 relies	on	 four	main	stages:	1)	accurate	anatomical	

model	generation	using	pre-procedural	image	acquisition,	2)	virtual	and	3)	physical	construction	of	

the	phantom	mold	and	4)	pouring	of	 the	 flexible	 and	ultrasound-compatible	material	 inside	 the	

mold.	 The	 first	 stage	 is	 applied	 to	 obtain	 an	 accurate	 representation	 of	 the	 patient	 anatomical	

details	with	a	particular	 interest	 in	 the	design	of	 the	atrial	boundaries	at	 the	 inter-atrial	 septum	

region,	improving	the	accuracy	of	the	phantom	model	at	this	region.	Previous	works	have	used	a	

similar	 approach	 to	 generate	 the	 phantom	 model	 for	 catheter	 ablation	 simulation	 19,20,28.	

Nevertheless,	 they	 failed	 to	 correctly	 generate	 the	 entire	 inter-septal	wall	 19,20.	 Furthermore,	 in	

order	 to	 allow	 the	 future	 expansion	 of	 the	 current	model	 for	 a	 dynamic	 version	 similar	 to	 the	

suggested	in	Appendix	A,	the	current	phantom	shape	was	segmented	at	the	ventricular	end-diastole	

(i.e.	minimal	atrial	volume	along	the	cardiac	cycle).	In	this	sense,	by	connecting	a	water	pump	with	

our	 flexible	 phantom,	 the	 beating	 of	 both	 atria	 can	 be	 simulated.	 In	 detail,	 the	 water	 pump	

continuously	eject	water	inside	the	model,	increasing	the	pressure	inside	the	cavities	and	increasing	

their	volume	(simulating	the	ventricular	end-systolic	phase).	Then,	an	interrupter	(through	a	valve)	

can	be	posteriorly	applied	to	stop	the	water	flow,	consequently	reducing	the	pressure	and	reducing	

the	atrial	volume	until	the	initial	stage	(i.e.	end-diastolic	phase).	

Secondly	 (i.e.	 stage	 2),	 the	 atrial	 and	wall	 surfaces	 are	 exported	 into	 a	 CAD	 tool,	 virtually	

generating	a	mold	that	represents	the	target	anatomy.	This	stage	is	also	crucial	to	include	multiple	

Table	 2	 –	 Comparison	 of	 the	 atrial	 surfaces	 extracted	 from	 the	 ultrasound	 imaging	 and	 the	 ideal	 models.	 The	
comparison	was	performed	in	terms	of	point-to-surface	error	(P2S,	mm),	Dice	(%)	and	95th	percentile	of	the	Hausdorff	
distance	(mm).		

Structure	 Model	 Volume	(ml)	 P2S	(mm)	 Dice	(%)	 Hausdorff	(mm)	

LA	
Silicone	 68.26	 2.77±2.10	 83.74	 6.51	
PVA-C	 67.89	 2.91±2.36	 82.15	 7.43	

Virtual	model	 77.83	 -	 -	 -	

RA	
Silicone	 40.43	 2.49±2.20	 81.77	 6.34	
PVA-C	 40.97	 2.54±2.39	 81.20	 6.57	

Virtual	model	 49.51	 -	 -	 -	
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entry	 points	 (mimicking	 the	 circulatory	 system)	 on	 the	 target	 anatomy.	 Nevertheless,	 due	 to	

software	 (CAD)	 limitations	 with	 extreme	 irregular	 shapes,	 smoothed	 atrial	 surfaces	 were	 used	

(obtained	through	MITK),	decimating	the	detailed	mesh	and	making	it	suitable	for	the	CAD	software.	

Although	this	smoothing	process	will	slightly	modify	the	patient	anatomy,	it	only	represents	a	mean	

error	of	approximately	0.3	mm.	Note	that	this	error	is	lower	than	the	CT	voxel	size	(0.4	mm),	which	

ultimately	discretize	the	patient	anatomy,	or	even	the	errors	caused	by	the	remaining	stages	of	the	

production	technique.	During	the	remaining	phantom	construction	stages	(stage	3	and	4),	rigid	and	

outer	molds	are	constructed	using	the	recent	3D-printer	technology	(stage	3)	and	the	atrial	anatomy	

generated	by	leaking	flexible	material	inside	the	mold	(stage	4).	Although	such	strategy	allows	a	fast	

and	accurate	generation	of	complex	anatomies,	in	particular	of	the	inter-atrial	walls	(which	are	the	

focus	 of	 the	 current	 work),	 the	 usage	 of	 rigid	 inner	 molds	 hampers	 the	 inclusion	 of	 the	 atrial	

appendages	 and	 the	 pulmonary	 veins.	 Please	 note	 that,	 although	 3D-printing	 could	 be	 directly	

applied	 to	 generate	 a	 flexible	 atrial	 phantom	model	 (instead	 of	 a	mold	 approach),	 allowing	 the	

inclusion	of	atrial	appendages	and	pulmonary	veins	in	the	phantom	model,	ultrasound	compatible	

3D	 printing	 materials	 are	 not	 available	 hampering	 its	 application	 for	 simulation	 of	 the	 real	

intervention	through	ultrasound	 image	28,	not	 following	therefore	the	aims	of	 the	current	study.	

Moreover,	the	proposed	phantom	construction	through	rigid	inner	molds	is	a	sub-optimal	approach,	

due	to	the	latter	incision	of	the	final	phantom	model	(required	to	remove	the	inner	molds).	Indeed,	

in	order	to	improve	the	extraction	stage,	a	3D	printing	material	with	a	dissolvable	support	solution	

or	 even	 a	 highly	 flexible	 inner	mold	 (which	 could	 be	 extracted	 by	 the	 virtually	 generated	 entry	

points)	could	be	interesting	solutions,	preventing	the	incision	stage.	Nevertheless,	further	studies	

to	prove	the	real	advantages	of	such	techniques	still	missing.		

In	order	to	evaluate	the	accuracy	of	the	described	phantom	production	technique,	we	start	

by	comparing	a	post-production	CT	acquisition	of	each	model	with	the	ideal	reference.	Both	models	
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showed	high	accuracy	(P2S	always	lower	than	2	mm),	being	the	errors	found	explained	by	several	

intrinsic	limitations	of	the	proposed	technique,	such	as:	material	tolerance	during	3D	printing	of	the	

mold,	flexible	material	retraction	after	cooling;	reagent	addition	process;	small	errors	linked	to	the	

delineation	and	errors	caused	by	sub-optimal	surface	alignment	through	ICP.	When	comparing	both	

models,	 a	 superior	 performance	 was	 found	 for	 the	 silicone-based	 phantom,	 which	 is	 clearly	

supported	by	the	different	metrics	assessed	in	Table	1	and	through	the	errors’	spatial	map	(Figure	

7).	 Indeed,	 the	 low	 performance	 found	 for	 the	 PVA-C-based	 phantom	 is	 related	 with	 the	 low	

viscosity	 of	 the	 material,	 which	 hampers	 the	 material	 pouring	 and	 the	 incision	 closing	 stage.	

Furthermore,	 and	 contrary	 to	 the	 silicone-based	 phantom,	 the	 PVA-C-one	 required	 storage	 in	 a	

controlled	environment	(i.e.	water	tank	with	water	at	a	specific	temperature)	and	an	inherent	small	

shrinking	of	the	material	along	the	time	was	observed,	which	again	can	explain	the	lower	accuracy	

of	this	model.	

Due	to	the	particular	interest	on	the	inter-atrial	wall,	we	also	assessed	the	technique	accuracy	

at	this	specific	region	(Figure	8).	Again,	a	mean	error	of	approximately	1.5	mm	was	obtained	for	the	

silicone	 and	 PVA-C-based	 phantom	 at	 the	 selected	 ROI,	 corroborating	 their	 accuracy	 and	

applicability	 for	 the	 simulation/training	 of	 the	 aforementioned	 interventions.	 Interestingly,	 it	 is	

possible	to	observe	that	the	lower	errors	(Figure	8)	were	found	at	the	central	position	of	the	selected	

region,	being	the	highest	errors	detected	on	the	 limits	of	the	ROI.	This	result	 is	explained	by	the	

anatomy	of	the	inter-atrial	wall,	being	thin	and	straight	at	the	central	part	and	presenting	a	more	

complex	shape	in	the	peripheries	25,29.	In	this	sense,	the	proposed	phantom	construction	technique	

was	able	to	accurately	generate	the	straight	inter-atrial	wall,	presenting	a	sub-optimal	performance	

on	the	remaining	regions.	Nevertheless,	the	authors	would	like	to	emphasize	that	the	majority	of	

the	inter-atrial	interventions	focus	on	the	straight	inter-atrial	wall	(e.g.	transseptal	puncture26).	
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In	order	to	assess	the	adequacy	of	the	proposed	phantom	model	for	atrial	interventions,	we	

also	 assessed	 the	 resulting	model	 appearance	 on	 a	 traditional	 intra-procedural	 image	modality,	

namely	ultrasound.	 Indeed,	 the	 acquired	ultrasound	 images	 (Figure	9)	 proved	 that	 the	different	

cardiac	chambers	(i.e.	LA	and	RA)	can	be	easily	observed	and	identified	in	both	phantom	models	(i.e.	

silicone-based	and	PVA-C-based).	Similar	to	the	expected	and	observed	in	normal	clinical	practice,	

a	 double	 chamber	 view	 was	 easily	 obtained	 for	 both	 models.	 A	 3D	 analysis	 of	 the	 obtained	

ultrasound	model	(Figure	10)	showed	a	high	similarity	when	compared	with	the	pre-production	one.	

Moreover,	 a	 clear	 definition/identification	 of	 the	 inter-atrial	 septal	 wall	 was	 also	 achieved,	

reinforcing	the	appropriateness	of	the	proposed	phantom	model	for	inter-atrial	wall	interventions.	

Although	gelatin-based	phantom	models	have	been	widely	described	for	different	scenarios	30,31,	its	

application	 for	 this	 specific	 model	 was	 not	 possible	 due	 to	 its	 mechanical	 properties	 (high	

viscoelasticity	and	low	stiffness).		

Similar	to	the	post-processing	evaluation	experiment	(section	3.1),	a	comparison	between	the	

data	extracted	from	the	US	and	the	ideal	model	was	also	performed.	Globally,	the	results	(Table	2)	

confirmed	a	moderate	accuracy	of	the	different	phantom	models,	presenting	errors	lower	than	3	

mm	 for	 both	 chambers.	 A	 slightly	 superior	 performance	 of	 the	 silicone-based	model	was	 found	

when	compared	with	the	PVA-C	model,	which	is	explained	by	the	more	detailed	walls	observed	(not	

so	smooth	as	observed	 in	PVA-C	models,	Figure	9)	and	also	 its	superior	accuracy	throughout	the	

phantom	construction	 stage.	Although	an	 inferior	performance	was	obtained	 in	 this	 experiment	

(Table	2)	when	compared	with	experiment	1	(CT	acquisition	versus	ideal	model,	Table	1),	it	can	be	

easily	explained	by	the	difficulties	to	visualize	the	boundary	positions	(instead	of	smooth	boundaries	

as	typically	found	in	the	US),	image	artifacts	caused	by	the	water	tank	walls	used	throughout	the	

acquisition,	difficulties	to	detect	limits	of	the	generated	orifices	and	to	distinguish	these	region	from	

the	outer	environment,	and	the	low	field	of	view	of	the	TEE	probe	(which	hamper	the	identification	
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of	the	phantom’s	extreme	positions	and	also	superimposed	regions	with	multiple	interfaces)	32-34.	

Additionally	and	as	discussed	in	other	studies	32,35,	manual	segmentation	of	US	image	is	more	prone	

to	errors	and	harder	to	be	performed	than	in	CT	imaging,	justifying	again	the	higher	errors	found	in	

Table	2.	

In	order	to	increase	the	realism	of	the	current	ultrasound	image,	graphite	particles	or	glycerin	

should	be	combined	with	the	flexible	material,	as	suggested	in	previous	studies	14.	Such	particles	

will	 generate	 speckle	 noise	 in	 the	 resulting	 ultrasound	 image,	 making	 the	 cardiac	 wall	

heterogeneous	 (i.e.	multiple	 intensity	 values	 in	 the	 ultrasound	 image)	 and	 thus	 obtaining	more	

realistic,	non-saturated	walls.	Furthermore,	although	PVA-C	is	typically	described	as	one	of	the	most	

realistic	materials	for	ultrasound-based	phantom	model	construction	36,	superior	performance	was	

not	visually	found	in	this	study.	Thus,	further	analysis	will	be	required	to	assess	the	real	performance	

of	each	material.		

Regarding	the	mechanical	properties,	both	materials	presented	a	Young	modulus	higher	(720	

kPa	 for	 the	silicone	and	110	kPa	 for	 the	PVA-C)	 than	 the	expected	 for	 the	 real	 tissue.	Note	 that	

previous	 studies	 focused	 on	 the	 estimation	 of	 the	 mechanical	 properties	 of	 the	 atrial	 region,	

showing	 that	 the	elastic	modulus	 varies	with	 the	 specific	 atrial	 location	 and	 the	 specific	 patient	

anatomy.	Indeed,	a	Young	modulus	between	20–70	kPa	is	usually	reported	for	the	entire	atrial	wall	

37,38.	Specifically	for	the	thin	wall	region,	a	value	around	of	30	kPa	is	expected	37.	In	this	sense,	the	

developed	 phantom	 models	 are	 stiffer	 than	 in	 reality	 and	 assume	 a	 homogeneous	 elasticity	

throughout	the	entire	model,	consequently	presenting	a	sub-optimal	performance	to	mimic	the	real	

deformations	of	 the	atrial	walls.	 In	other	words,	when	puncturing	 the	atrial	wall,	 a	higher	 force	

(when	compared	with	the	real	situation)	would	need	to	be	applied	on	the	needle	to	create	an	access	

route	between	the	two	cavities.	Nevertheless,	similar	limitations	can	be	found	for	previous	phantom	
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models	16,19,39,40,	due	to	difficulties	to	correctly	replicate	the	complex	and	heterogeneous	structure	

of	the	cardiac	muscle.		

Overall,	 the	 current	 phantom	models	 proved	 its	 added-value	 for	 simulation	 of	 inter-atrial	

interventions.	They	overcome	the	previously	described	rigid	or	ultrasound	not	compatible	models,	

allowing	 the	 simulation	 of	 all	 procedural	 stages	 (i.e.,	 planning	 using	 CT	 and	 guidance	 through	

ultrasound).	Moreover,	both	phantoms	(i.e.,	silicone	and	PVA-C)	were	designed	to	allow	its	simple	

adaptation	 for	 a	 dynamic	 setup	 (as	 presented	 in	 Appendix	 A),	 making	 the	 procedural	

simulation/training	more	realistic.	It	should	be	noticed	that	since	a	clear	visualization	of	the	both	

atrial	chambers	was	obtained	with	CT	and	US	images,	the	current	dual-chamber	model	also	showed	

potential	for	its	application	as	a	development	or	validation	scenario	of	novel	image	fusion	strategies.	

Inspired	by	a	similar	goal,	Laing	et	al.28	presented	a	flexible	phantom	model	for	transseptal	puncture	

simulation.	 The	 model	 also	 uses	 realistic	 atrial	 models	 extracted	 from	 a	 CT,	 showing	 a	 high	

production	 accuracy	 when	 comparing	 a	 post-production	 CT	 acquisition	 with	 the	 real	 model.	 A	

correct	representation	of	the	fossa	ovalis	(optimal	location	of	the	transseptal	puncture)	is	ensured	

through	a	post-processing	of	the	obtained	atrial	surfaces.	Nevertheless,	a	detailed	description	of	

the	phantom	construction	strategy	is	missing.	Furthermore,	correct	modeling	of	the	mid	thin	atrial	

walls	(except	the	fossa	ovalis	region)	is	not	described	and	not	validated,	constant	outer	atrial	walls	

are	used,	method’s	 validation	using	 intra-procedural	data	 (i.e.	 ultrasound)	 is	not	presented,	and	

model’s	expansion	for	a	dynamic	version	is	not	possible.	Finally,	their	production	technique	is	more	

time	consuming	than	the	current	one,	taking	upward	of	2	weeks	28	against	the	3	days	required	by	

the	proposed	silicone-based	phantom	(1	week	for	the	PVA-C	model),	making	the	current	method	

more	attractive	for	the	normal	clinical	practice	28.	Moreover,	it	should	be	noticed	that	the	current	

construction	time	of	the	proposed	technique	can	be	notably	reduced	through	the	application	of	an	
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automatic	segmentation	strategy	focused	on	both	atrial	models	and	its	mid-walls,	as	described	in	

our	previous	work	41.	

As	future	work,	an	exhaustive	study	about	the	optimal	phantom	material	will	be	performed,	

identifying	 the	 compound	 that	 correctly	 mimics	 the	 real	 atrial	 tissue	 (i.e.	 similar	 mechanical	

properties,	 similar	 acoustic	 properties,	 among	others).	 Furthermore,	we	 intend	 to	 construct	 the	

proposed	dynamic	phantom	model	and	apply	it	for	simulation	of	specific	inter-atrial	interventions.	

By	applying	it	in	a	real	scenario,	we	expect	to	receive	a	correct	and	realistic	clinical	feedback	of	the	

proposed	 model,	 ultimately	 validating	 the	 proposed	 phantom	 for	 accurate	 simulation	 of	 such	

interventions.	Finally,	we	intend	to	apply	it	as	an	optimal	validation	scenario	for	a	novel	integrated	

interventional	 framework,	based	on	an	 image-fusion	strategy,	 to	assist	 the	physician	throughout	

inter-atrial	interventions	26.	

6. Conclusions	

The	 proposed	 production	 technique	 showed	 high	 accuracy	 for	 the	 generation	 of	 patient-

specific	atrial	phantom	models	with	flexible	and	realistic	walls.	The	current	method	overcomes	some	

limitations	of	 the	 state-of-the-art	models	 (i.e.	 the	majority	are	 rigid	and	not	personalized	 to	 the	

patient	anatomy),	allowing	its	use	for	intervention	planning	and	training.	Phantom	production	with	

silicone	proved	to	be	more	accurate	due	 to	 its	 simple	manipulation,	high	viscosity,	and	a	simple	

construction	technique.		

Both	phantom	models	proved	to	be	suitable	for	interventional	planning	and	training	based	

on	ultrasound	guidance,	being	both	chambers	and	 inter-atrial	wall	easily	 identified.	Moreover,	a	

realistic	anatomy	of	the	entire	atrial	region	was	obtained	in	these	two	cases.	

Overall,	due	to	the	simple	manipulation	and	superior	accuracy	during	model	construction,	the	

silicone-based	phantom	appears	 to	be	more	 feasible	 for	 the	 construction	of	 complex	anatomies	

such	as	the	atrial	region.		
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Appendix	A	–	Dynamic	Atrial	Phantom	Model	

In	the	current	appendix,	we	propose	a	setup	to	develop	a	dynamic	version	of	the	proposed	

phantom	model.	Inspired	by	the	previous	work	from	Cygan	et	al.	39,	where	a	hydraulic	setup	was	

described	to	mimic	the	beating	of	the	left	ventricle,	we	suggest	a	hydraulic	scheme	to	simulate	the	

beating	of	both	atria.	Since	the	LA	and	RA	volume	curves	are	quasi-synchronous	(i.e.	increase	their	

volume	until	the	end	of	the	T	wave,	and	then	reduce	until	the	end	of	the	ventricular	diastole),	a	

continuous	water	pump	can	be	used	to	control	the	volume	in	each	atrium.	The	pump	continuously	

ejects	water	into	the	circuit	(outflow	in	Figure	A.1),	which	circulates	through	the	phantom	until	a	

reservoir.	Since	a	closed	pump	circuit	is	used,	a	connection	between	the	inflow	(see	Figure	A.1)	of	

the	pump	and	the	reservoir	is	used.	A	solenoid	valve	is	used	to	mimic	the	atrial	valve	function	and	

it	state	is	controlled	by	a	virtual	electrocardiogram	(ECG).	The	ECG	is	defined	through	a	graphic	user	

interface,	and	multiple	trigger	functions	are	applied	to	open	or	close	the	circuit.	An	on/off	digital	

controller	(+5/0V)	is	used	to	modify	the	valve	position.	Specifically,	

1) before	the	T-wave,	the	valve	is	closed.	As	such,	the	pump	will	eject	water	into	the	setup,	

increasing	the	pressure	inside	the	phantom	and	consequently	the	atrial	volume.	

2) after	the	T-wave	and	until	the	end	of	the	ventricular	diastole,	the	valve	is	open.	In	this	

sense,	 there	 is	not	pressure	 (or	 volume)	 increase	within	 the	phantom	model,	 and	 the	

water	only	circulates	through	the	phantom	until	the	reservoir.		

An	overview	of	the	setup	can	be	found	in	Figure	A.1.	For	this	specific	scheme,	we	selected	a	

CardioFlow	5000	(Shelley	Medical	Imaging	Technologies,	Canada)	pump,	which	includes	an	external	

controller	with	an	ECG	simulation	function	and	multiple	triggers	embedded.	Furthermore,	a	3/4’’	

solenoid	valve	(Emerson,	United	State	of	America)	is	used.	
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Figure	A.1	–	Schematic	of	the	dynamic	phantom	model.	(A)	–	Hydraulic	pump;	(B)	Computer	station;	(C)	Adapter	between	
tubes;	(D)	Phantom	mock	model;	(E)	Teflon	membrane	to	allow	catheter	insertion	for	minimally	invasive	atrial	interventions	
training;	(F)	–	Solenoid	valve;	(G)	–	Water	reservoir.	(D-1)	and	(D-2)	are	different	views	of	the	connections	near	the	phantom	
model	(D).	Note	that	P1	and	P2	represent	the	same	positions	in	both	schemes.	Furthermore,	for	each	tube,	the	inner	and	
outer	diameter	is	represented	(as	inner/outer).	PV	–	Pulmonary	veins;	VC	–	Vena	Cava;	
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