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Abstract. A paper of Almeida and Trotter on completely regular semigroups

makes essential use of free profinite semigroupoids over profinite graphs with

infinitely many vertices. It has since been shown that such structures must be
handled with great care. In this note, it is verified that the required properties

hold for the profinite graphs considered by Almeida and Trotter, and thus the

gap is filled.

1. Introduction

In [4] one finds a systematic study of relatively free profinite categories and rela-
tively free profinite semigroupoids generated by profinite graphs with a finite num-
ber of vertices. The case of profinite graphs with an infinite number of vertices is
more delicate, as highlighted in [1]. The main problem is that in the infinite-vertex
case, the topological closure of the subsemigroupoid generated by the graph may
not be a subsemigroupoid of the corresponding free profinite semigroupoid. This
problem was overlooked in [3] and [2], where infinite-vertex free profinite semi-
groupoids are seriously considered for the first time as a tool to be used in the
study of relatively free profinite semigroups. While their role in [3] can be con-
sidered marginal, in [2] some specific relatively free profinite semigroupoids with
an infinite number of vertices play a key role in the proofs of the main results re-
main valid by establishing that, for the infinite-vertex graphs which are used in the
proofs, the semigroupoids generated by the graphs are dense in the corresponding
relatively free profinite semigroupoids.

2. The free profinite semigroupoid generated by ∂XP

For general background on pseudovarieties of semigroups and of semigroupoids,
and on their relatively free profinite structures, see [6]. We also adopt the notation
of [2], which we recall here for the reader’s benefit. Let A be a finite alphabet and
let V be a pseudovariety of semigroups. The free pro-V semigroup generated by A is
denoted by ΩAV, and the subsemigroup of ΩAV generated by A is denoted by ΩAV.
Suppose that V contains the pseudovariety Sl of finite semilattices. This hypothesis
enables us to consider the content, which is a continuous homomorphism c from ΩAV
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2 1 AND 2

to the union-semilattice of subsets of A that maps each letter a ∈ A to the singleton
set {a}. The content function extends to (ΩAV)1 by letting c(1) = ∅. Suppose also
that ΩAV has 0, 0̄, 1, 1̄ functions, which means that, for every w ∈ ΩAV, there are
factorizations w = w0aw

′ = w′′bw1 in (ΩAV)1 such that a, b ∈ A and

c(w) = c(w0) ] {a} = {b} ] c(w1),

where the factors w0, a, b, w1 are unique. We put 0(w) := w0, 1(w) := w1, 0̄(w) := a,
and 1̄(w) := b. Note that the functions 0, 0̄, 1, 1̄ are continuous.

Let X be a subset of A with at least two elements. Consider a subset P of ΩAV
such that c(u) ⊆ X for every u ∈ P . We define a graph1 ∂XP on the set of all
factors v ∈ (ΩAV)1 of elements of P such that |X \ c(v)| ∈ {1, 2}. The vertices are
those v such that |X \ c(v)| = 2 and the edges are the remaining elements of ∂XP .
The adjacency functions are α = 0 and ω = 1, where, in a graph, we respectively
denote by α(u) and ω(u) the source and the target of an edge u. This definition
of ∂XP is taken from [2, Subsection 3.1], where the necessary hypothesis that the
content of all elements of P is contained in X is not made explicit, but is implicitly
used.

Profinite graphs are defined in [2] as being the inverse limits of finite graphs, in
the category of topological graphs, with finite graphs having the discrete topology.
It is folklore that the profinite graphs are precisely the topological graphs whose
topology is a Boolean space (a proof can be found in [7].) It follows immediately
from this characterization that the graph ∂XP is profinite if P is a closed subset
of ΩAV, which happens in particular when P = ΩXV, the case considered in the
main results of [2].

Let W be a pseudovariety of finite semigroupoids. We adopt the definition
from [1] of a pro-W semigroupoid as being a compact semigroupoid which is resid-
ually in W in the sense that, for every pair u, v of distinct elements of S, there is
a continuous semigroupoid homomorphism ϕ : S → F into a semigroupoid F of W
satisfying ϕ(u) 6= ϕ(v). For the case where W is the pseudovariety Sd of all finite
semigroupoids, one uses “profinite” as a synonym of “pro-W”. We remark that there
is an unpublished example due to G. Bergman (mentioned in [5]) of an infinite-
vertex semigroupoid which is profinite according to this definition, but which is not
an inverse limit of finite semigroupoids.

Let Γ be a profinite graph and let W be a pseudovariety of semigroupoids. The
free pro-W semigroupoid generated by Γ, denoted ΩΓW, is a pro-W semigroupoid,
together with a continuous graph homomorphism ι : Γ→ ΩΓW, with the following
property: for every continuous graph homomorphism ϕ : Γ→ F into a semigroupoid
of W, there is a unique continuous semigroupoid homomorphism ϕ̂ : ΩΓW → F
such that ϕ̂ ◦ ι = ϕ. It is easy to show that this semigroupoid is indeed unique,
up to isomorphism of compact semigroupoids, and a proof of its existence is made
in [1] by a reduction to the finite-vertex case treated in [4]. Moreover, if W contains
nontrivial semigroups, we may assume (as we do from hereon) that ι is the inclusion
mapping [1]. The subsemigroupoid of ΩΓW generated by ι(Γ) is denoted by ΩΓW.
If Γ has a finite number of vertices then ΩΓW is dense in ΩΓW [4]. However, in
general, that property fails, and it is only by iterating transfinitely algebraic and
topological closures that one reachs the profinite semigroupoid ΩΓW [1].

1Throughout this paper, by graph we mean a directed graph.
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As remarked in [4], if Γ is a finite graph, then ΩΓW is metrizable. The following
is a generalization of this fact, which will be used later on.

Proposition 2.1. Let Γ be a profinite graph and let W be a pseudovariety of semi-
groupoids. If Γ is metrizable, then so is ΩΓW.

For the proof of Proposition 2.1 one uses the next folklore result, for which we
do not have a direct reference. However, a proof is implicit in the proof of [8,
Corollary 1.1.13] (there the reference is made to profinite second countable spaces,
but by Urysohn’s metrization theorem [9, Theorem 23.1], a profinite space is second
countable if and only if it is metrizable.) In the statement we use the notation in [8,
Chapter I] for inverse systems.

Proposition 2.2. Let the topological space X be the inverse limit of an inverse
system {Xi, ϕij , I} of finite discrete spaces. Then X is metrizable if and only if for
some countable totally ordered subset J of I (with order type equal to that of ω) the
space X is the inverse limit of the restricted inverse system {Xi, ϕij , J}.

Proof of Proposition 2.1. By Proposition 2.2, the profinite graph Γ is, in the cat-
egory of profinite graphs, an inverse limit lim←−n≥1

Γn for some inverse sequence

of finite graphs Γn. By the construction of ΩΓW given in [1], the semigroupoid
ΩΓW embeds as a closed subsemigroupoid of lim←−n≥1

ΩΓn
W. Since Γn is finite, the

profinite semigroupoid ΩΓn
W is metrizable. As the inverse limit of a sequence of

metrizable spaces is metrizable (cf. [9, Theorem 22.3]), it follows that lim←−n≥1
ΩΓn

W

and ΩΓW are metrizable. �

Corollary 2.3. The profinite semigroupoid Ω∂XΩAVW is metrizable, for every finite
alphabet A and every subset X of A with at least two elements.

Proof. Since A is finite, ΩAV is metrizable, and therefore so is ∂XΩAV. �

The relatively free profinite semigroupoids which intervene in the main results
in [2] are of the form Ω∂XΩAVW. We remark that in (the applications of) Theo-

rem 2.5 of [2], the graph ∂XΩAV is identified with the graph ∂X(A+) and the sub-
semigroupoid 〈∂XΩAV〉 of Ω∂XΩAVW generated by ∂XΩAV is identified with the

free semigroupoid (∂X(A+))+. These identifications hold in many cases, namely
when V and W contain all finite nilpotent semigroups: we then have ΩAV ∼= A+

and ΩΓW ∼= Γ+ (cf. [1, Theorem 3.16].) But, for example, denoting by Ab the pseu-
dovariety of finite Abelian groups, we know that ΩAAb is not isomorphic to A+.
To fix this problem it suffices to replace ∂X(A+) by ∂XΩAV and (∂X(A+))+ by
〈∂XΩAV〉 when appropriate in [2].

Another problem in [2] that needs to be fixed stems from the fact that in the
proof of Theorem 2.5 in [2] it is assumed that the subsemigroupoid of Ω∂XΩAVW

generated by ∂XΩAV ⊆ ∂XΩAV is dense in Ω∂XΩAVW. As already mentioned,
after the publication of [2], examples of profinite graphs Γ such that ΩΓW is not
dense in ΩΓW were given in [1]. Therefore, one needs to verify if the denseness
assumption made in the proof of Theorem 2.5 in [2] really holds. In the next
proposition, we show that it does hold when V is a pseudovariety of semigroups
such that Sl ⊆ V ⊆ CR, where CR denotes the pseudovariety of completely regular
semigroups, and such that ΩAV has 0, 0̄, 1, 1̄ functions for every finite set A.
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This suffices to guarantee the main results in Sections 3 to 6 of [2], all about
pseudovarieties satisfying these conditions.

Theorem 2.4. Let V be a pseudovariety of semigroups such that Sl ⊆ V ⊆ CR and
let W be any pseudovariety of semigroupoids containing some nontrivial semigroup.
Let A be a finite alphabet, and let X be a subset of A with at least two elements.
Suppose that ΩAV has 0, 0̄, 1, 1̄ functions. Then the subsemigroupoid 〈∂XΩAV〉 of
Ω∂XΩAVW is dense. In particular, Ω∂XΩAVW is dense in Ω∂XΩAVW.

Proof. To avoid confusion between the multiplication in ΩAV and the edge multi-
plication in Ω∂XΩAVW, we denote the multiplication of two composable elements

e, f of Ω∂XΩAVW by e ◦ f .

Note that ∂XΩAV = ∂XΩAV, so that, in particular, 〈∂XΩAV〉 contains ∂XΩAV.
Therefore, since Ω∂XΩAVW is the unique closed subsemigroupoid of Ω∂XΩAVW con-

taining ∂XΩAV, to show that 〈∂XΩAV〉 is dense in Ω∂XΩAVW it suffices to show

that 〈∂XΩAV〉 is a subsemigroupoid of Ω∂XΩAVW.
Thanks to Corollary 2.3, what we want to show translates into proving that if

two edges e and f of Ω∂XΩAVW are limits of sequences (en)n and (fn)n of elements

of 〈∂XΩAV〉 such that e ◦ f is defined, then e ◦ f is also the limit of a sequence of
elements of 〈∂XΩAV〉. This property is established if one shows that it is possible

to replace each fn by another element f̃n of 〈∂XΩAV〉 such that en ◦ f̃n is defined

and (f̃n)n converges to f . The claim follows by continuity of edge multiplication
in Ω∂XΩAVW. Actually, the replacement needs only to be done on a subsequence,

so we may take subsequences of (en)n and (fn)n as convenient.
The only relevant part of e is its end vertex u. We denote by un the end vertex

of en and by u′n the beginning vertex of fn. We then have limun = u = limu′n.
Since the content function is continuous, by taking subsequences we may assume
that c(un) = c(u) = c(u′n) for every n. Since fn ∈ 〈∂XΩAV〉, there is a factorization
fn = sn ◦ tn such that sn ∈ ∂XΩAV and tn ∈ 〈∂XΩAV〉 ] {In}, where In denotes
an adjoined local identity. Again taking subsequences, we may assume that (sn)n
converges to s and (tn)n converges to t (where t may be an adjoined local identity I.)
Note that, by continuity of ◦, we have f = s◦ t. Consider factorizations of the form

sn = 0(sn)0̄(sn)xn = yn1̄(sn)1(sn),

with xn, yn ∈ (ΩAV)1. We have 0(sn) = α(sn) = u′n and ω(sn) = 1(sn) = α(tn).
Once again by taking subsequences, we may suppose that (xn)n and (yn)n respec-
tively converge to some elements x and y of (ΩAV)1. Consider the following element
of ΩAV:

rn = un0̄(sn)xn · sn!
n .

Since c(rn) = c(sn), we know that rn is an edge of ∂XΩAV such that 1(rn) = 1(sn),
and we also have 0(rn) = un due to the equality c(un) = c(0(sn)). Therefore, we
may define the element en ◦ rn ◦ tn of 〈∂XΩAV〉. By continuity of 0̄, we have

limun0̄(sn)xn = u0̄(s)x = lim 0(sn)0̄(sn)xn = s.

On the other hand, the sequence (sn!
n )n converges to the idempotent sω. Therefore,

we have lim rn = sω+1 = s, where the last equality holds because V ⊆ CR. Hence,
we obtained a sequence (en◦rn◦tn)n of elements of 〈∂XΩAV〉 converging to e◦s◦t =
e ◦ f . �
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8. L. Ribes and P. A. Zalesskĭı, Profinite groups, Ergeb. Math. Grenzgebiete 3, no. 40, Springer,
Berlin, 2000.

9. S. Willard, General topology, Addison-Wesley, Reading, Mass., 1970.
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