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Abstract 

Recent computational methodologies, such as individual-based modelling, pave 

the way to the search for explanatory insight into the collective behaviour of 

molecules. Many reviews offer an up-to-date perspective about such 

methodologies, but little is discussed about the practical information requirements 

involved. The biological information used as input should be easily  and routinely 

determined in the laboratory, publicly available and, preferably, organized in 

programmatically accessible data- bases. This review is the first to provide a 

systematic and comprehensive overview of available resources for the modelling 

of metabolic events at the molecular scale. The glycolysis pathway of Escherichia 

coli, which is one of the most studied pathways in Microbiology, serves as case 

study. This curation addressed structural information about E. coli (i.e. defining 

the simulation environment), the reactions forming the glycolysis pathway 

including the enzymes and the metabolites (i.e. the molecules to  be represented), 

the kinetics of each reaction (i.e. behavioural logic of the molecules) and diffusion 

parameters for all enzymes and metabolites (i.e. molecule movement in the 

environment). Furthermore, the interpretation of relevant biological features, such 

as molecular diffusion and enzyme kinetics, and the connection of experimental 

determination and simulation validation are detailed. Notably, the information 

from classical theories, such as enzymatic rates and diffusion coefficients, is 

translated to simulation parameters, such as collision efficiency and particle 

velocity. 
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Single-molecule data pave the way to a new generation of computational 

modelling approaches addressing fundamental biological features such as 

molecular diffusion, (three dimensional) spatial location and molecular crowding 

[4]. One such modelling approach is agent-based or individual-based modelling 

[5–7]. In these models, the cell is viewed as a complex environment, where single 

molecules behave as individual entities and suffer the influence of their local 

surroundings. The general goal is to observe the emergent behaviour of the 

system, namely the appearance of structures and auto-organization between 

molecules, which are difficult to observe in vivo or in vitro. Accordingly, 

individual-based modelling has been already used, for instance, to model 

molecular self-assembly [8] and assess diffusion in the cytoplasm or at the 

cytoskeleton [9–11]. 

The challenges to be met by single-molecule modelling are 2- fold: inaccuracy 

of system representation and high computational cost [12]. Although there is a 

growing volume of experimental data, source experiments are heterogeneous, 

and data integration is not straightforward. For example, it is not desirable to use 

enzyme kinetic data, such as turnover numbers and enzyme affinity rates, 

coming from experiments using different temperature ranges or different 

strains. Moreover, many of the biophysical and biochemical assumptions 

commonly accepted by the research community have to be aligned with suitable 

computational representation and parameterization. Most models, if not all, are 

not able to clearly indicate how they have addressed fundamental concepts of 

biology, namely how the computational parameters representing these features 

have been calibrated. For instance, it is not uncommon to describe particle speed 

(which comes in m/s) in terms of diffusion rate (which comes in m2/s). Other 

processes are typically represented by values that have scarce experimental 

validation, e.g. the individual rates of reaction steps in enzymatic catalysis, such 

as k1 and k2. 

On the other hand, and although computational power has increased 

considerably in recent years, the computational requirements of these 

simulations are substantial. Biologically relevant timescales range from 

nanosecond to microsecond timescales for the internal dynamics of individual 

molecules to timescales of seconds to hours for entire biological processes [12]. 

The use of coarse-graining models, i.e. models that represent the system by a 

reduced and essential number of degrees  of freedom and interactions, is the 

most viable strategy for developing physically accurate models that, at the same 
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time, cover the cellular space and timescales of the biological processes [5, 13]. 

The key issue is to determine what approximations can be tolerated without 

compromising the overall level of real- ism and, inherently, the predictive 

ability. 

Many works describe and compare the computational approaches taken by 

current simulators working at single- molecule precision, but the present review is 

the first to address fundamental biological and computational issues of single- 

molecule modelling in practical and general terms [5, 7, 14]. The case study is the 

single-molecule modelling of the glycolysis path- way in Escherichia coli, which 

is one of the most well-studied pathways in Microbiology. Discussion is centred on 

how to establish a suitable timescale and a realistic dimensioning of the 

environment and its constituents; and, on how to instantiate elementary behaviour, 

such as molecular diffusion and enzymatic reactions, into computational 

parameters that may be experimentally calibrated. Along the way, systematic 

access of public online resources is investigated as means to speed up model  

reconstruction  and result validation  against experimental  measurements. 

The strategies and data resources hereby presented  can be of use to 

mathematicians  and bioinformaticians  who are working  on the development of 

single-molecule simulation frameworks as well as those researchers embracing the 

construction  of new  models. 

 

Minimum information requirements of single- molecule metabolic 

models 

Model construction starts by identifying the most relevant molecules in the 

system of interest and compiling  experimental data on their abundance, 

dimensions and general behaviour, so as to guarantee that their dynamics and 

function are meaning- fully characterized. 

First of all, one must establish the space and timescales encompassed by the 

model. Typically, spatial resolution in the nanometer range is necessary for an 

adequate structural description, and high time resolution (in the nanosecond or 

millisecond range) combined with high temporal dynamic range (spanning from 

milliseconds to seconds) is needed for an adequate temporal analysis. Then, 

molecule characterization involves at least the following data: size, shape, 

localization, direction vector and speed for each molecule, i.e. rules of interaction 

between molecules. To simulate the cell, additional characteristics need also to 

be defined, such as cell shape, dimensions and relevant constituents (e.g. 

membranes) and volume of simulation, namely ac- counting for extracellular 

space or volume for growth (Table 1). 

In this work, data curation was centred on the glycolysis pathway of E. coli K-12 
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MG1655, the most well-studied strain and substrain of E. coli (Figure 1), including 

some enzymes of pyruvate metabolism involved in the formation of excreted 

products (formate, acetate and ethanol). Information was primarily retrieved from 

public web accessible biological databases, namely broad-scope data sources such 

as KEGG [15], domain-specific databases such as BRENDA [16], UniProt [17], 

PubChem [18] and ChEBI [19] and organism-specific data sources, such as EcoCyc 

[20, 21] and CyberCell [22]. When information was not available, the search was 

directed to other sub-strains of E. coli K-12 and, if needed, to records on any strain 

of E. coli. Literature curation, through PubMed [23] and BioNumbers [24], was 

issued in the absence of database records or whenever additional information was 

important. In the event that neither public databases nor scientific literature could 

provide for information on E. coli, information was sought by phylogenetic 

comparison, or following other criteria of similarity that is ad- equate for that 

particular information (e.g. sequence homology be- tween enzymes in the case of 

kinetic  parameters). 

In terms of experimental set-up, the search considered the following 

experiments: in the temperature range of 25–37oC, al- though values near 37oC 

were preferred, to maintain consistency with the growth conditions of cells in 

metabolite quantification experiments [25, 26] and within a pH of 7.2–7.8, which 

is the closest value range to the cytosol [27]. Alternatively, data were collected 

from available experiments with the closest set-up. Moreover, and because the 

first step of glycolysis involves glucose, a component that is typically in the 

exterior of the cell, the process of diffusion of this molecule through the cellular 

envelope is also addressed. 

The next sections detail this curation procedure for the most important 

molecules and biological features of a single- molecule metabolic model of the 

glycolysis pathway in E. coli. 

 

Environment: Dimensions and structure of E. coli 

Information on the macrostructure of E. coli is needed to pro- duce an 

acceptable computational representation of the cellular environment. The 

volume of an E. coli cell is largely dependent on the  strain,  the  phase in the  

cell  growth  (usually divided in exponential and stationary growth phase) and 

its growth conditions [28–30]. Literature reports that cell volume can range from 

approximately 0.4 m3, for E. coli st. B/rA cells in the stationary phase grown in 

minimal glucose medium [31], up to 4.4 m3, for exponentially growing E. coli 

K12 strain BW25113 using a complex medium (LB) as a substrate [28]. Selected 

cell-volume values are displayed in Table 2, and can offer some more insight into 

the possible variability of E. coli. The volume of simulation should be thus 
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determined according to the process of interest. For example, in a large majority 

of biotechnological processes, the relevant growth phase is the exponential and 

E. coli is cultivated under favourable conditions, i.e. in a nutrient-rich broth. 

Geometrically, E. coli is a rod-shaped bacterium and may be modelled as a 

spherocylinder [32]. This means that the volumes described  above  will  have   

to   be  decomposed   into  the two characteristic dimensions of this geometric 

shape, the radius (R) and the height (h) (Figure 2). Some of the studies that 

indicate the cell volume also indicate the radius of the cell (commonly named as 

cell width) (Table 2), and hence the height can be calculated using the volume 

equation for spherocylinders. It should be noticed that the height in this case is 

not equivalent to the cell length, a parameter that is also typically indicated in 

these studies (Table 2). 

Moreover, the model may also encompass the characterization of the cellular 

envelope, because the first step of glycolysis involves glucose, a component that 

is typically in the  exterior of the cell, and has to be transported into the inside of 

the cell. So, if the model describes the membrane interplay related to the passage 

of molecules to and from the extracellular   space,   it  should   include   four   

layers:   outer membrane, periplasm, peptidoglycan and inner membrane 

(Figure 2). An additional layer, that represents the capsule, may be added for 

certain E. coli strains in specific physiological states [33]. 

The physical characteristics of the cell envelope of E. coli (namely the 

thickness of each layer) are still poorly characterized [34, 35]. Existing data are 

limited and have been determined under diverse experimental conditions and 

using different techniques (Table 3). As such, these data should be refined as 

more information appears in the literature. 

Concerning the cellular environment, simulations that con- sider the diffusion of 

compounds across the cell envelope should also account for extracellular volume 

in the simulation. This volume should be sufficiently large to accommodate a 

statistically meaningful number of molecules (e.g. glucose), but is typically 

restricted to improve the computational performance of the model. 

 

Agents or individuals: E. coli molecular species 

After defining the environment where the simulation will take place, it is then 

necessary to identify the agents involved and further characterize them both in 

terms of size and concentration. There are many different types of molecular 

species in the cytoplasm of microorganisms but, because of computational costs, 

biomolecular models typically represent only the most relevant species. For the 

case of metabolic pathways, such as glycolysis, the molecular species of interest 

are the metabolites (which include substrates, products and cofactors) and the 
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enzymes. 

The first step to take is to identify correctly all agents involved, which in the 

case of glycolysis of E. coli consists of 16 enzymes and 19 metabolites. The 

considered pyruvate metabolism, involved in the formation of ethanol, acetate 

and formate, consists of an additional 10 enzymes and nine metabolites. 

Escherichia coli is a well-studied organism, and there are thus several public 

resources describing its metabolic pathways. Because of the sheer amount of data 

that are needed, systematic and programmatic data integration can be 

implemented using standard identifiers, cross-links and molecular species 

names (Table 4). Fully automated data integration is still not possible, but the 

automatic procedures considerably reduce the effort of manual curation and provide 

links to the literature originating the data, which are useful to investigate further details 

[41]. 

Data curation was multistep and iterative. First, the set of re-actions encompassed in 

the glycolysis/gluconeogenesis path-way were identified. Reaction records are typically 

linked to records of enzymes and compounds, and each reaction can be further 

decomposed into substrates, products, enzymes and co-factors (if applicable). Database 

records on each molecular species provide data relevant to the modelling as well as data 

useful to navigate other sources. Data such as molecular weight, amino-acid sequence, 

hydrodynamic radius and kinetic parameters (KM and kcat) are used in the model, 

whereas standard identifiers, ‘logic’ elements (e.g. coding genes for enzymes), and 

database cross-links enable source cross navigation. 

Data on the glycolysis pathway, up to the formation of pyruvate, were extracted from 

the GLYCOLYSIS and PATHWAY: map00010 records in EcoCyc and KEGG, 

respectively (Table 5). 

Further details on the pyruvate metabolism can be retrieved from the ‘mixed acid 

fermentation’ pathway in the FERMENTATION-PWY record in EcoCyc. Pyruvate 

fermentation is responsible for the end products of fermentation under an-aerobic 

conditions, namely lactate, fumarate, ethanol or acetic acid. Pyruvate fermentation 

performs the biological function of regenerating cofactors [like nicotinamide adenine 

dinucleotide (NADH)], besides the possible formation of additional adenosine 

triphosphate (ATP). Under aerobic conditions, pyruvate is directed towards the citric 

acid cycle, which forms CO2 as an end product. Regardless of the metabolic pathway 

that pyruvate will undergo, there will always be end products that will have to be 

transported to the outside of the cell. 

Concerning molecular size, enzymes are typically described in terms of their 

hydrodynamic radius (Rh), i.e. the radius of a sphere that diffuses at an equivalent rate 

of the original, non-spherical molecule. The Rh can be calculated either as a function of 

the number of amino acids (N) in the enzyme (Equation 1) [43]: 
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The number of amino acids (paired with the information of the quaternary structure of 

the enzyme, which indicates if the protein is composed of more than one of the 

polypeptides coded by the amino-acid sequence) and the molecular weight of the 

enzyme are readily available in public databases. Of note, the molecular weight may 

differ among databases, because it may be either inferred from the protein sequence or 

determined experimentally (most commonly, by the sodium dodecyl sulfate poly-

acrylamide gel electrophoresis laboratorial method) [45, 46], and the experimental 

determination can be of the multimer or of each of the subunits. This information is 

explicit in EcoCyc, while UniProt substantiates the information on quaternary structure 

with literature references. Enzyme concentrations were difficult to acquire. The work of 

Albe, published in 1990, is still the most systematized review of cellular concentrations 

of enzymes [42]. Further details can be found in Table S1 in Supplementary Material. 

Table 6 introduces the metabolites in the E. coli glycolysis pathway compiled in this 

work, together with public database identifiers, size and concentration. The radius 

of metabolites (RvdW) can be approximated by a calculation method for the van 

der Waals volume (VvdW) (Equation 3) [47]: 

 

which  accounts  for  the van  der  Waals  volume  for each atom (VvdWi), the 

number of bonds (NB), the number of aromatic rings (RA) and the number of 

non-aromatic rings (RNR) in the molecule. Each radius can then be calculated 

using the geometric relation VvdW = 4/3 :RvdW. Data on the molecular 

structure of the metabolites can be automatically retrieved from chemical 

databases, such as PubChem [18] and CheBI [19]. 

A comprehensive quantification of the concentration of metabolites  in  the  

cytoplasm  of  glucose-fed  and  exponentially growing E. coli was carried out by 

Bennet et al. [26]. Real concentrations of metabolites assessed in that study 

include ATP, NAD+, coenzyme A and other metabolites that participate in 

glycolysis. Further details can be found in Table S2 in Supplementary Material. 
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Behavioural rules: Modelling molecular diffusion in the cell 

Diffusion plays a key role in biological systems. Diffusion, quantified in units 

of area per time, is the traditional way to express rates of movement of 

individual molecules in a crowded medium, such as cytosol or cell membranes. 

The small size of bacteria (about 1 m) makes in vivo measurements of 

diffusive processes substantially more complicated than in larger eukaryotic 

cells [48]. A number of works have studied the diffusion of proteins in E. coli, 

but this work is far from being comprehensive [49–54]. Moreover, it is hard to 

find measurements for the passage of molecules through the cell membranes 

[55]. 

As an alternative,  the diffusion rate is often approximated  by considering that 

molecules have a spherical shape and, consequently, a hydrodynamic radius 

(Rh), which allows the use of the Stokes–Einstein equation to calculate the 

diffusion coefficient (Dc) (Equation 4) [44, 56]. 

 

where R is the Boltzmann’s constant  with  a  value  of  1.3806488 x 10-23 m2 

kg s-2 K-1, T is the temperature (estimated around 25oC, equivalent to 298.12 K) 

and g is the viscosity of the medium in which the particle moves. 

The viscosity may be determined for an approximation of the intracellular 

media in the form of monodispersed hard spheres [43], or using a scale-

dependent viscosity reference curve based in the least squares method [44]. 

This is the typical way to approximate normal diffusion rates. However, in 

scenarios representing molecular crowding, we should account for anomalous 

diffusion and use a corrected form of the equation [57]: 

 

 

where D is related to the apparent diffusion coefficient D and to the half-width 

wo of the detection  volume 𝜏𝐷 =
𝑤0
2

4×𝐷
Г is  a constant that does not depend on 

time and indicates whether diffusion is simple ( = 1) or anomalous ( ≠ 1). 

After obtaining diffusion values for each of the molecules, a strategy must be 

devised to translate the diffusive characteristic of the molecule into a velocity. If 

no applicable molecular tracking data have been published, one should look for 

approximations that render a Brownian motion, i.e. a so-called normal diffusion 

[51, 58, 59]. An alternative would be to take into account the size of the particle 

and move the particle in random direction using a fixed time step [10, 60]. The 
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mean square dis- placement < r2 > of a particle diffusing because of Brownian 

motion is proportional to the time elapsed, and the jump length is 6 x Dc x t in 

a three-dimensional space [61]. Another alternative would be to resort to the 

walk-on-spheres method and related first passage time algorithm [62, 63], or use 

the discretized Brownian trajectories and some variation of this algorithm [64]. 

It is important to notice that, as the information that is provided to an agent is 

the velocity, the diffusion calculated in this manner will always be affected by 

the number of agents that are present in the simulation and therefore needs to 

be recalibrated if this number changes. 

In previous biomolecular models, it is not easy to identify the experimental 

validation supporting the approach to diffusion-velocity approximation, which 

hampers our ability to com- pare results [10, 65]. 

 

Behavioural rules: Detecting and resolving collisions 

Even with the advent of single-particle-tracking experiments, there are no 

characterizations of the initial orientation of molecules of a certain species. As 

such, typically, at the start of the simulation,  particles  are  randomly  initialized  

with  a random orientation. Every time a particle moves, the particle is 

reoriented one unit in the predetermined direction, so as to maintain an angular 

momentum. 

The simulator engine looks into these movements and pin-points possible 

collisions. A collision is detected when the distance between two particles is less 

than the sum of their radii [66, 67]. Under these circumstances, the simulator 

checks if some form of interaction between the colliding particles has been 

specified (behavioural rules). If no rule exists, the particles are reoriented 

according to the constant linear motion equation (Figure 3). If an interaction 

should occur, the particles suffer some transformation, often regulated by a 

probability. 

The specified interaction logic in the definition of behavioural rules reflects the 

biomolecular reactions. These include enzymatic reactions, but also binding 

effects of cofactors and the many types of protein–protein interactions that 

happen in cells. The characterization of such interaction requires specific data 

(Table 7). 

 

Behavioural rules: Enzyme kinetics 

Enzymatic reactions are a common example of interaction. When an enzyme 

meets its substrate, they form a complex, which with a certain probability should 

then react to products or dissociate again by diffusion. 

In recent years, sophisticated experimental techniques, such as kinetic 
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crystallography and microspectrophotometry, have enabled the measurement 

of enzyme-catalyzed reactions inside single cells at the single-molecule level [68–

70]. However, these data are still insufficient to support single-molecule 

modelling on its own. 

The largest source of kinetic data are traditional in vitro experiments that 

estimate the nature and progress of enzyme-catalyzed reactions based on 

mathematical relationships, most notably the equations established by Michaelis 

and Menten [71]: 

 

in which the turnover number (kcat) takes the value of k2,Et½� is the total number of 

enzyme molecules, Vmax is the maximum rate achieved by the system at saturating 

substrate concentration and KM is the Michaelis–Menten constant. 

Individual rates of each of the mechanism steps of enzyme catalysis (in this example, 

k1,k-1 and k2) are hard to come by, and there are currently no databases curating this 

type of information. The scarcity of these values is mainly because of the complexity of 

their experimental determination, usually based on solvent perturbations or 

determination of the temperature dependence of Michaelis–Menten constants [72]. In 

comparison, the determination of Michaelis–Menten parameters usually re-quires a 

fairly trivial set-up, and is a common and comparable measure of the kinetic capacities 

of enzymes. As such, it serves the purposes of research with different scopes, from 

structural biology to enzyme engineering, and there is a large body of published 

literature reporting Michaelis–Menten values. Recent re-views present possible 

mathematical approaches and software implementations [73, 74]. In turn, the BRENDA 

database is a comprehensive resource for further systematic retrieval of experimental 

data. EcoCyc and KEGG databases, although cross-linking extensively to BRENDA, may 

also provide some additional data. Notably, EcoCyc and KEGG organize enzyme 

records and reaction records individually, whereas BRENDA keeps one record per 

reaction. That record includes all possible enzymes that can carry out that 

reaction along with their respective catalytic properties. 

In an attempt to curate kinetic data for the glycolysis path- way in E. coli (see 

basic curation procedure at Figure 1), much of the data could not be reliably 

retrieved from the databases. Mainly, the issue is that most of the existing KM 

and kcat data comes from different experiments, and it is not reasonable to pair 

them directly. So, assuming the need to manually curate kinetic data from the 

literature (either from database references or other literature), the experimental 

variables that affect the determination of Michaelis–Menten constants were 
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evaluated, and a manual curation procedure was devised (Figure 4). 

The procedure puts together eight evaluation criteria that prioritize data  

search  and  selection  in  the  following  order:  in vivo substrates; genes of E. 

coli K-12 MG1655, E. coli K-12 strains or other E. coli strains; paired information 

on KM and kcat obtained under the same conditions and experimental 

procedure, namely temperature and pH [25, 26, 75]; the parameter estimation 

method, notably non-linear fitting to the original Michaelis–Menten equation 

versus Lineweaver–Burke plots [76]; and finally, cofactor concentrations, which 

have also a significant influence in the catalytic efficiency [22]. Further details 

can be found in Table S3 in Supplementary Material. [77]  

The kinetic parameters compiled in this work for the E. coli glycolysis pathway 

are presented in Table 8. 

However, acquiring experimental data on enzyme kinetics is only one side of 

the challenge. It is also necessary to define and validate a computational 

representation of these parameters. There are many possible alternatives to 

obtain this representation. For instance, the physical meaning of the enzymatic 

parameter KM is inversely related to the affinity of the enzyme for substrate and 

may be modelled as the ratio of enzyme– substrate (ES) collisions that result in 

reaction. The probability that   a   reaction   will   take   place   can   be   determined   

by a probability value between 0.0 and 1.0, where a value of 1.0 results in a 100% 

chance of the reaction on collision (i.e. diffusion- limited reaction). In turn, kcat 

is a  time  parameter  expressing the number of product released per number of 

enzyme per time (minutes or seconds), and may be modelled as the number of 

simulation steps in which the complex ES remains coupled. 

Earlier works proposed a ‘look-up’ table for defining the relation between the 

microscopic reaction probability and the macroscopic reaction rate [78, 79]. 

Recent works are using the reaction diffusion equation with a boundary 

condition that reflects the volume exclusion principle [64]. 

 

 

Trade-off between modelling detail and computational costs 

It is important that researchers take in consideration the high computational 

costs associated to such a detailed level of modelling. A realistic modelling of E. 

coli cytoplasm can easily comprise several millions of molecules. The 

cytoplasmic aqueous volume is reported to be 70% of the total volume of the cell, 

and the cellular structures, DNA, proteins and other components ac- count for 

the remaining 30% [22]. The number of protein molecules in the cell is estimated 

at 2.35 million molecules and metabolites at 1.10 million molecules [40]. The 

CyberCell data- base estimates the number of cytosolic proteins, excluding 



12 

ribosomal proteins, close to 1 million molecules, the ions per cell to be around 

120 million and the number of metabolites approximate to 18 million molecules. 

Water molecules, averaging 7 x 10-13 g and 70% of the cell volume, have an 

estimated number of 2.34 x 1010 molecules in a single cell. Moreover, 

biologically relevant timescales range from nanosecond to microsecond time- 

scales for the internal dynamics of individual molecules to timescales of seconds 

to hours for entire biological processes [12]. 

Given that the capture of a larger number of physical concepts by the 

simulation tool (increased number of parameters) leads to a significant increase 

of computational costs, methods and software for flexible and efficient 

simulation of spatial stochastic models are growing in importance. High-

performance computing strategies are of obvious interest and encompass the 

adoption of efficient algorithms, the careful performance tuning and the 

exploitation of parallel computers ranging from multi- core computers to cloud 

computers and supercomputers. At present, parallel computers and 

supercomputers are fairly accessible to most research centres, but the 

development of efficient software for large parallel computers is not in hands to 

many research groups. Some software packages aim to make such specialized 

computation more easily available to modellers. For example, Biocellion parallel 

software framework pro- vides predefined model routines through which end 

users may specify model specificities, without going into the details of the 

underlying high-performance computing strategy [80, 81]. Similarly, the Lattice 

Microbes software package takes advantage of graphical processing units and 

other many-core processors to enable the simulation of molecular crowding and 

sampling trajectories from the spatially homogenous (well stirred)  chemical  

master  equation  and  the   reaction-diffusion master equation [82]. However, 

the costs of the development and maintenance of parallel and distributed 

implementations  of biological models is still expensive, specially if one takes 

into account that most models will need to be revised and, most likely, expanded 

over time. 

In this sense, the use of coarse-graining models, i.e. to represent the system by 

a reduced and essential number of degrees  of freedom and interactions, is one 

of today’s most viable strategies for developing physically accurate and 

computationally reasonable models that, at the same time, cover both cellular 

length scales and timescales of biological processes [5, 13]. The simulation of a 

coarse-grained system requires fewer resources and goes faster than the full-

scale representation of the same system, and thus allows an increase of orders of 

magnitude in the simulated time and length scales. The challenge is to deter- 

mine what approximations can be tolerated without comprising the overall level 
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of realism and, inherently, the predictive ability. For example, the 

representation of ‘obstacles’ or ‘hurdles’, i.e. mobile but inert particles, is a 

possible alternative to approximate the volumetric composition of the E. coli 

cytoplasm and evaluate the impact of molecular crowding [12, 64, 83]. A recent 

work discusses the complexity of the cellular environment in   terms   of   

different   modelling   perspectives,   namely   the chemical perspective, the 

physical perspective, the structural perspective and the biochemical perspective, 

and proposes different models, ranging from fully atomistic to reaction-

diffusion models [12]. 

 

Final remarks 

Single-molecule modelling of biomolecular systems is a powerful tool that 

complements the insights being acquired through state-of-the-art laboratory 

experiments and addresses challenging and fundamental biological questions, 

such as intrinsic noise. Such models may provide missing details, help verifying 

existing empirical results and aid in the formulation of new hypotheses and the 

design of new experiments. 

The success of such computational modelling hinges on the accurate  

representation  of  the  systems  and  the  simulation of biologically relevant 

timescales. Technological advances have made biological investigations of 

single-molecule interactions possible and ever more frequent. Thereby, the 

ensemble-based data obtained from traditional molecular and biochemical 

techniques are being replaced by more detailed and accurate data (heterogeneity 

and intermediate states are readily revealed). 

A key aspect of biological simulators operating at lower levels of detail, such 

as molecular precision, is that the information used as input should be easily and 

routinely determined in the laboratory, widely accessible and, preferably, 

organized in a systematic manner in public, programmatically accessible data- 

bases. Arguably, many important details still reside in scientific literature and 

require careful manual curation. So, effort should be put in releasing new models 

with the supporting data. 

In this review, the information and computational requirements of a  

biomolecular  agent-based  model  were  explored (Figure 5). We investigated 

existing experimental data and described the specifics of different modelling 

approach coping with data uncertainty and incompleteness. As a practical 

exercise, we compiled the experimental data necessary to simulate the 

biochemical functioning of the glycolysis pathway in E. coli (see Tables 5–7 for 

details). Data unavailability and consistency issues (i.e. conciliating data from 

different experiments) were frequent and challenging. We resolved as many 
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issues as possible based on existing data and common biochemical and bio- 

physics principles and assumptions. The curation procedures were described 

so that other researchers may evaluate their adequateness to other model 

reconstruction. Such detailed simulation may help explore complex cellular 

behaviour and, if realistic enough, be a valid complement to the use of 

experimental techniques. Comprehensive details on our reconstruction of the 

biochemical functioning of the glycolysis pathway in E. coli at single-molecule 

scale can be found in Table S4 in Supplementary Material. 

While we have limited our curation to the glycolysis pathway of E. coli, it is 

clear that ideally we should be able to address not only all the biochemical 

pathways of the bacterium, but also all the transport processes that occur at the 

cellular envelope. At the present day, this would likely collide with the 

computational capability of most computers. However, while a number of 

distributed and high-performance computing strategies are being devised in 

response to the large computational requirements, the conception of a 

standardized model format, and the development of modelling editors, should 

also be addressed. To the best of our knowledge, there are no markup languages 

for individual molecule modelling. The more closely related formalism we could 

find was BioNetGen, which was designed for ABMs and addresses the rule-

based modelling of cellular signalling and genetic regulation [84, 85]. The 

creation of markup languages in support of individual-based biomodelling 

would enable model interchange and thus the reproducibility and repeatability 

of the experiments across different simulation tools. 

At another level, the modelling of less-studied  pathways and organisms could 

benefit from this growing work on simulation and tools in bioinformatics. For 

example, the existing kin- etic data could be improved by more detailed 

curation, and new standardized data (for physiological conditions) obtained for 

whole pathways with recent, miniaturized techniques for the determination of 

Michaelis–Menten constants [86, 87]. 
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19 

geforderte     Bewegung     von     in     ruhenden Flü ssigkeiten        suspendierten        
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Figure 1. Semi-automatic E. coli data curation workflow. Public databases are 

accessed programmatically, and database cross-linking is used to navigate 

throughout different databases. Literature curation provides information not 

documented in databases and additional details. 

 

 

 

 

 

Figure 2. Characteristic dimensions and membrane layers in gram-negative 

bacterial cells. (A) The cell depicted as a spherocylinder, such that the height of 

the cylinder is h and the radius of the spherical caps is R. (B) Cross-sectional 

view of the different membrane layers. (C) Detail representation of such layers. 
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Figure 3. Collision detection and particle reorientation. Consider two particles, 

A and B, with initial velocities VA1 and VB2. If they attempt to move to the same 

position, they should bounce. Particle reorientation will be calculated based on 

the angle of collision (), and velocity will be updated to VA2 and VB2, according 

to the linear motion rules. 

 

 

 

Figure 4. Procedure for the manual curation of enzyme kinetics data from 

scientific literature. The procedure is detailed in terms of relevant experimental 

variables, in descending order of relevance. 
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Figure 5. Reconstruction of the biochemical functioning of the glycolysis 

pathway in E. coli at single-molecule level. Data resources and curation are 

described in terms of relevant information and integration steps. Initially, one 

should define the space and timescales encompassed by the model (A). Then, the 

size and shape of molecules should be specified (B) and their behaviour 

characterized (C). Simulation is 2-fold, involving parameter validation (D) and 

results observation (E). 
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Table 1. Essential components of a single-molecule metabolic model. A parallelism between the generic composition of an agent-

based model and the biological information to be incorporated in a single-molecule model is established. Features that are only 

necessary to this modelling approach when the diffusion of particles through the cell envelope is assessed are indicated as optional 
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Table 2. Volume of an E. coli cell in different stages of growth and media. Volumes from [31] were determined for E. coli B/r by 

assessing pellet volume and cell number (Coulter counter); volumes from [28] were determined for E. coli K-12 BW25113 by 

microscopy analysis 

 

 

Table 3. Experimentally calculated values for the different layers of the cellular envelope of E. coli. For the simulation of the 

passage of a solute into out of the cell, spherocylinders with the same R/h ratio as the one determined for the cell volume, and with 

the thickness described here, should be added to the model 
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Table 5. Enzymes involved in E. coli glycolysis pathway. The hydrodynamic radius (Rh) was calculated as a function of the 

number of amino acids in the enzyme or its molecular weight (MW). The diffusion coefficient (Dc) is inversely proportional to the 

Rh and the viscosity of the medium (6.92 x 10-4 Pa.s) 
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Table 6. Metabolites involved in E. coli glycolysis pathway. The van der Waals radius (RvdW) was calculated considering the 

equation for the van der Waals volume. The diffusion coefficient (Dc) is inversely proportional to the RvdW and the viscosity of the 

medium 

 

 



29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

Table 8. Kinetic parameters of enzymes involved in the glycolysis pathway in E.  coli 

 


