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Abstract - In the robotic domain, it is common to deduce and 

use models that allow translating mathematically the element 

behavior. In some cases, these would serve as base to determine 

and develop a controller, for example. Beyond this, the 

simulation and experiments are reasons that leave to the 

development of models, becoming evaluation tools of the system 

behavior, especially when there are constraints of 

implementation or in experiments. However, the modeling is an 

approach to the reality, since it is difficult to translate the 

behavior of an element in a strict way and the disturbances to 

witch it is subject to. In this work, we address the modeling 

questions of an autonomous underwater vehicle.  

This paper describes the deducing of a dynamic model with six 

degrees of freedom of an underwater vehicle, considering all of 

its physical characteristics. This is achieved by the determination 

of all forces that actuates on the body during its motions and by 

the determination of the rigid body dynamic. The modeling 

method is presented as well as the coefficients determination. 

Finally, a comparison with experimental results is carried out. 

I. INTRODUCTION 

Underwater robotic is often affected by experimental 

constraints. In most of cases, first tests of new 

implementations must be done in closed environment as a 

pool or a tank, preventing any error. This is especially true 

when the autonomy of the robot increases. 

The particular case of MARES [1-2] (fig. 1-3) needs large 

space to move during tasks of its major application areas. 

Most of missions that it performs imply diving to several tens 

of meters as motion in a limited horizontal plane with some 

hundreds of meter wide. Such dimensions are only available in 

a river, lake or ocean. These environments represent risks for 

tests, in case of failure. 

In this context, the determination of a model may be useful, 

taking into consideration that the behavior of the vehicle may 

be predicted. Beyond this, the implementation of a simulator 

based on the model allows knowing of followed trajectories. 

If, in addition, constraints due to the environment are 

modeled, a good approach to the real behavior may be 

obtained.  

In other hand, a model may be used to determine control 

laws that allow performing of several trajectories as it is 

demonstrated in [3-5]. 

It is important that the model closely characterize the 

dynamic of the vehicle motion. To reach this aim, all major 

characteristics must be considered. 

II. MARES AUV 

MARES, or Modular Autonomous Robot for Environment 

Sampling, is a 1.5m long AUV (Autonomous Underwater 

Vehicle), designed and built by the Ocean Systems Group at 

the Faculty of Engineering of University of Porto. The vehicle 

can be programmed to follow predefined trajectories, while 

collecting relevant data with the onboard sensors. MARES has 

a slender body form and is endowed with four thrusters that 

confer it four controllable degrees of freedom (DOF). It can 

dive up to 100m deep, and unlike similar-sized systems, has 

vertical thrusters to allow a purely vertical motion in the water 

column. Forward velocity may be independently defined, from 

0 to about 1.5 m/s. Major application areas include pollution 

monitoring, scientific data collection, sonar mapping, 

underwater video or mine countermeasures. 

Though MARES may have multiple configurations, we will 

assume only one as shown in fig.1-3. 

 

 
Fig. 1: Superior view of MARES. 

 
Fig. 2: Lateral view of MARES 

 
Fig. 3: Frontal view of MARES 

As we can see, the vehicle is symmetric relatively to the 

plane formed by  and  axis. This characteristic will be 

helpful on simplification of forces modeling. Additionally, it 

is empirical that the motion in the  and in the  directions 

will originate different forces, due to hull orifices. In the first 

case the water pass through orifices but not in the second. This 



behavior will be explored in the modeling section. The effects 

due to the antenna and handles, on the superior part of the 

vehicle, will be neglected. 

III. MODELING OF THE DYNAMIC 

In this section, we present a general method to determine a 

model for a body inserted in a fluid. We start by relating the 

sum of forces that actuate in the vehicle with its acceleration 

through the Newton second law, prosecuting with the forces 

identification. 

A. Kinematic 

In order to simplify the deducing of model expressions, we 

consider an earth-fixed and a body-fixed referential [6]. Both 

are orthogonal. We assume that the earth-fixed referential, 

formed by axes set , do not experiences any 

acceleration, i.e., it is inertial. Body-fixed referential is formed 

by  as it is shown in figures 1-3. 

A linear vector  in the body-fixed referential may 

be expressed in the earth-fixed referential through the relation 
 

 (1) 
 

where  is the rotation matrix of the referential 

 from . Note that  is orthonormal and its 

inverse is given by . 

B. Rigid-body dynamic 

The Newton’s second law states that a rigid body at rest 

only experiences motion if a force is applied to it. In the 

inverse case, a body only reaches the rest state if a force 

counters the motion. Mathematically, these concepts are 

translated by following two expressions that represent 

conservation of linear and angular momentum, respectively: 
 

 (2) 

 

 

(3) 

 

where  and  are the position of a point of the body related 

to the earth-fixed inertial referential and related to the body-

fixed referential, respectively,  is the volume of the body,  

the density,  the surface,  the acceleration of the gravity and 

 represents the cross product. 

The development of these two equations gives the sum of 

exterior forces and moment that actuate on the body, 

respectively: 
 

 
(4) 

 

(5) 

 

where  is the vector of 

forces components in ,  and  axes, 

 is the vector of moments 

components after ,  and  axes,  is the mass of the 

vehicle,  is the inertia tensor with respect to the body-fixed 

origin,  is the time derivative of the velocity in the body-

fixed referential,  and  are linear and angular velocities 

of the body in the earth-fixed referential, respectively, and  

and  their derivative in order of time. 

The deducing of (4) and (5) may be consulted in [7]. 

Designating  as the vector of forces 

and moments, we may write 
 

 (6) 
 

where ,  are the rigid body inertia matrix 

and the Coriolis and centrifugal terms matrix, respectively. 

These matrices are given by 
 

 (7) 
 

where  is the moment of inertia after the -axis, and 
 

 (8) 

 

considering that the body-fixed referential coincides with the 

center of gravity of the body and that products of inertia (  

for ) are negligible. 

C. Hydrodynamic 

A body inserted in a fluid experiences several forces. In the 

particular case of underwater vehicles, these forces are due to: 

- Added mass, originated by the acceleration of involving 

particles of fluid during the acceleration of the body;  

- Drag, due to friction on the boundary layers, pressure on 

the hull and vortices created by non null velocity; 

- Potential damping that is originated by non null velocity 

of the body. Its contribution is small compared to drag 

and is often included on it. In this paper, we will do the 

same; 

- Froude-Krylov force due to the acceleration of the fluid; 

- Restoring forces due to the weight and to the buoyancy; 

- Propulsion exercised by actuators. 

Note that forces induced by the wind and by waves are 

neglected, assuming that, for underwater vehicles performing 

motion sufficiently far from the surface, these effect are 

relatively small. We recall that the antenna and handles are 

ignored, considering their small dimensions. 

1. Added mass 

The symmetry of the MARES AUV after the plane formed 

by  axes allows the simplification of the added mass 

force expression that is given by 
 

 (9) 



where are the added mass matrix and 

Coriolis and centrifugal terms matrix, respectively.  

In order to clarify the simplification method we consider 

following examples: 

- Linear acceleration after the  axis does not generate 

any moment after , which implies that the 

corresponding term in  must be null ( ); 

- Angular acceleration after the  axis will not have any 

influence on the force after the same axis; 

- Linear acceleration after  does not create any force 

after  or  axis. 

Applying the same reasoning to others terms, we obtain 
 

 (10) 

 

and 
 

 (11) 

 

where  
 

 

 

 

 

 

 

(12) 

 

It is important to refer that coefficients like , ,  and 

 are non null due to the asymmetry relatively to  

plane. The sonar hull, on the inferior part of MARES (cf. fig. 

2-3), turns the body asymmetric after the  plane, 

making coefficients , , ,  non null.  

2. Drag 

Drag forces are generally expressed by a high order 

polynomial equation [8]. However, for the considered range of 

velocities ( ), the quadratic term is 

dominant. This assumption allows writing the drag forces and 

moments vector as 
 

 (13)  
 

where . 

As we will show later, drag coefficients depends on frontal, 

lateral and superior projected areas of the body of MARES. 

As in the case of added mass, symmetry related to the  

plane allows to simplify . 

For example, motion on the -axis will originate a moment 

after  (yaw moment). In other hand the same motion will 

not influence the linear motion after  and  or the angular 

motion after  (pitch moment). Applying the same reasoning 

for the other coefficients, we obtain: 
 

 
(14) 

 

where  is the coefficient of the force induced after  by  

velocity. 

3. Froude-Krylov forces 

This force is generated by the acceleration of the involving 

fluid in the presence of a body. It is expressed by 
 

 (15) 
 

MARES missions are often performed in a river or in 

ocean. Collected data from these missions shows that the 

variation of the fluid velocity is quasi-null, which imply 

. 

4. Restoring forces 

As stated before, these forces result from the weight and the 

buoyancy, given, in modulus by  and , respectively.  
 

 (16) 

 

where  and  are positions of centers of gravity and 

buoyancy, respectively, related to the body-fixed referential. 

Assuming that the fixed-body referential coincides with the 

center of gravity and that  we obtain 
 

 
 

(17) 

 

In the case of MARES, we consider that the angle after  

(roll) is , translating its real behavior . 

5. Propulsion 

Linear force vectors of the propulsion (see fig. 4) are given 

by  
 

  
 (18) 



  

 

where  is the force applied by the -th thruster. 

 
Fig. 4: Configuration of thrusters 

The vector of forces and moments exercised by each 

thruster is given by 
 

 (19) 

 

For the total force and moment applied by the four 

thrusters, we obtain 
 

 (20) 

 

Arranging this last expression, we may re-write it in the 

form 
 

 (21) 
 

where  
 

  (22) 

D. Dynamic equation 

From subsections B and C, the simplified dynamic equation 

results 
 

 (23) 
 

Substituting vectors by their expressions and manipulating 

algebraically, we obtain: 
 

 
(24) 

 

IV. COEFFICIENTS DETERMINATION 

A. Geometric model 

Coefficients that will be determined in following 

subsections depend on projected areas and volumes of 

different parts of MARES. Thus, the deducing of a geometric 

model will be useful. 

MARES is formed by several geometric forms. The nose 

and the tail consist in two semi-ellipsoids, while the central 

part consists in a cylinder with two orifices (fig. 1-3). A 

cylindrical sonar hull is placed in the inferior part of the 

vehicle, as it may be seen in fig. 2-3. Vertical and horizontal 

thrusters are modeled as cylinders, both in motor hulls and in 

ducts. Considering this, we determine the radius of the vehicle 

as a function of  in projections presented in fig. 1-3. 

1. Superior projection 

From fig. 1, it is possible to deduce the expression of the 

radius of the figure projected in the  plane. Only the 

body hull is considered, neglecting thrusters, for the present. 

In this case, vertical orifices are also considered, subtracting 

their influence from the total radius along . The expression 

of the hull radius in the superior as a function of  results: 
 

   ,   

   ,   

   ,   

   ,   

   ,   

   ,  

   , , 

(25) 

where  is the diameter of the hull,  the diameter of orifices 

and . For the intervals, report to fig. 

1-2. 

The radius of the contribution of the two horizontal 

propellers form is given by 
 

   , )   

    (26) 

   ,    
 

Vertical thrusters influence is essentially due to the motor 

hull, neglecting duct and helices effects. Thus, it results in the 

following expressions for the radius of vertical thruster as a 

function of : 
 

  ,   

   

  ,   

(27) 

2. Lateral projection 

The lateral projection of the vehicle hull (fig. 2), i.e., in the 

 allows determining of the radius defined as  
 

 

 



 

 

  ,    

   ,   (28) 

   ,    

  

Notice that, in this case, we consider that the diameter of 

vertical orifices is sufficiently small in order to assume that 

respective concavities in lateral projection are negligible. 

In this projection, part of propellers coincides with the 

vehicle hull, resulting in the following expression: 
 

 

 

  ,    

   (29) 

   ,    
 

The sonar hull height is given by 
 

  ,  (30) 

3. Frontal projection 

The radius of the frontal projection of the hull (in the 

 plane) along the -axis is given by  
 

 (31) 

 

The same projection of horizontal propellers results 
 

 

 

   

     

(32) 

The length of the projected frontal area of the sonar hull is 

given by 
 

  , .  (33) 

B. Rigid body coefficients 

The vehicle mass is , essentially concentrated on 

the central tight part of MARES, in  the interval , and 

on thrusters, whose densities are different. Remaining parts of 

the hull are hollow and filled by involving water when 

submerged. Thus, neglecting the weight of the hull, we 

assume that there are three homogeneous density zones, 

presented in table I. 

TABLE I 
DENSITIES OF MARES 

 

Defining  as the density of the MARES AUV as a 

function of , we may compute moments of inertia defined in 

section III as presented below: 
 

 

 

 

(34) 

 

Using the geometric model, it results 
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(35) 

where  is the mean density of MARES 

and  motors hull length.  

TABLE II 
MOMENT OF INERTIA VALUES 

Moment of inertia Value [ ] 

  

  

  

 

C. Added mass coefficients 

The axial term  is determined using the equation (32) 

from [8, p.41]. We need to approximate the vehicle by an 

ellipsoid with a minor axis  and a major axis . 
 

 (36) 

 

where  is the total vehicle mass, and  is given by [8] 
 

 (37) 

 

and 
 

 (38) 

 

Based on [3] and [10], we assume that the major contribute 

to the added mass are the vehicle hull, the horizontal 

propellers and the sonar transducer. Fluid masses displaced by 

Density Value [ ] Description 

  Tight volume density 

  Permeable volume density (water density) 

  Thruster volume density 



the AUV, per unit of a transversal “slice” of these three 

contributions, are respectively: 
 

  

 (39) 

  

 

where  is the hull radius,  is the propeller radius, 

 is the sonar hull height and  the sonar hull base center. 

The motions in  e  directions cause different forces and 

moments due to the existence of verticals holes in the hull. In 

 or yaw motion, the fluid present in the holes is transported 

with the vehicle, but in  or pitch motion, the fluid does not 

suffer any acceleration. This last case implies that the fluid 

passes through the holes without exercising any force or 

moment on the vehicle. 

We approach the holes by cylinders with a diameter  and 

constant height . We can now define the added mass per 

unit length, due to holes: 
 

 

 , 

 (40) 
 

 , 

 

 

  , Other  

 

In expression (41), we present expressions to determine 

some added mass terms. The other terms can be determined by 

analogy. 
 

 

 

 

(41) 

 

for the limits of integration, see fig.2 and fig.3. 

The most important added mass coefficients are shown in 

table III. 

TABLE III 

ADDED MASS COEFFICIENT VALUES 

Coefficient Value 

  

  

  

  

  
 

Coefficient Value 

  

  

  

  

  
 

D. Drag 

In this work, we consider only quadratic drag terms. We 

assume that the linear and angular speeds are sufficiently high 

to neglect linear terms. The terms greater than second order 

will be also neglect, assuming that their effects are small 

comparing to quadratic terms. 

From [8] and [11] we have the axial force in the  

direction expressed as: 
 

 (42) 

 

where  is the fluid density,   is the 

drag coefficient of an ellipsoidal body depending on the hull 

form and  is the vehicle projected area in the plane formed 

by   and  axes. 

The determination of drag coefficients can result on wrong 

estimations [3] due to the theory behind it witch is often based 

on empirical expressions or experimental results. The best 

way to estimate them is by experimental tests. However, these 

estimates are useful as first approach to the characterization of 

the vehicle motion. 

The drag coefficient  depends on Reynolds Number , 

given by: 
 

 (43) 

 

where  is the axial speed in the -axis,  the vehicle length 

and  the fluid viscosity. We assume  which is a 

typical value for the vehicle velocity,  and 

 at . These values give 

. This implies that the vehicle motion is between the 

laminar and the turbulent flow [11]. 

Using laminar theory, we have the following drag 

coefficient: 
 

 
(44) 

 

where  is the vehicle diameter, and  is given by [9]: 
 

 (45) 

 

Resulting on . 

The turbulence theory gives . The experimental 

results obtained by [3] to determine the drag coefficient point 

to a value close to . Taking into account that the 

dimensions and the speed of operation are similar, we 

consider: 
 

 (46) 
 

We are now in condition to determine the axial term in  

direction: 
 

 



 

(47) 

 

For the limits of integration, see fig.2 and fig.3. 

The motion in the  and  leads a flow around the vehicle 

that we approximate by a cylinder. According to [11] and [12], 

for a cylinder with a ratio , the drag coefficient is: 
 

 (48) 
 

The sonar hull under the vehicle is also cylindrical with a 

ratio 1. From [11] and [12], we obtain a drag 

coefficient equal to: 
 

 (49) 
 

The drag coefficient terms are determined as shown below: 
 

 

 

 

 

(50) 

 

for the limits of integration, see fig.2 and fig.3 

The remaining drag terms can be determined by analogy. 

The most important drag coefficients are shown in table III. 

TABLE III 

DRAG COEFFICIENT VALUES 

Coefficient Value 

  

  

  

  

  
 

Coefficient Value 

  

  

  

  

  
 

 

V. LIMITS ON MOTION 

In this section, we intend to identify limits in some 

maneuvers. This exercise will allow a better knowledge of the 

behavior of MARES due to actuation limits [13]. We will start 

presenting simple motions maneuvers and continue with 

composed motions. 

We assume that the maximum actuation force that it can be 

performed by propellers of MARES is .  

A. Longitudinal motion 

Considering that the vehicle moves only after  at constant 

speed , we get 
 

 (51) 
 

which imply that its time derivative is . 

Extracting the first line of (24), we obtain 
 

 (52) 
 

Assuming that the pitch angle , we easily obtain the 

maximum forward velocity  as presented below: 
 

  (53) 

   

B. Diving motion 

For this motion, we assume that the vehicle dive at constant 

velocity  (after ) with null pitch ( ). Remaining linear 

and angular velocities are considered to be zero. Using the 

third line of the equation (24), we get 
 

 (54) 
 

From this expression, we determine the maximum diving 

velocity for  as 
 

  (55) 

   

C. Rotational motion 
As in previous subsections, only a velocity is considered. In 

this case we assume that  (velocity after ) is a positive 

constant while the remaining linear and angular velocities are 

nulls. Extracting and manipulating the sixth line of the motion 

dynamic equation (24), we obtain, after simplification 
 

 (56) 
 

Knowing that , the maximum yaw velocity is 

determined as shown: 
 

  (57) 

   

D. Circumference maneuver 

In this analysis, we consider that velocities  and  are 

positive constants in steady state. This fact could imply non 

null lateral velocity  (after ). Thus, 
 

 (58) 
 



This maneuver is illustrated in fig. 5. We define  as the 

curvature radius of the described circumference. In steady 

state, we may conclude that 
 

 (59) 

  
Fig. 5: Motion with  e . 

From the second line of the dynamic equation, it is possible 

to deduce 
 

 (60) 

 

whose resolution for  is impossible. This implies 

that the nose points to the center of the circumference. 

In other hand, selecting the first and the sixth lines, we 

determine the following expressions that may be seen as 

common and differential mode expressions, respectively: 
 

 (61) 

 
(62) 

 

Adding and subtracting (61) to (60), we obtain, 

respectively: 
 

 

(63) 

 

and 
 

 

(64) 

 

Solving numerically the equation system composed by (59), 

(60), (63) and (64), for , we obtain the following 

graph of force applied by horizontal thrusters. 

 
Fig. 6: Forces applied by horizontal thrusters as functions of curvature 

This result is paradoxical, given that, as we can conclude 

from the last figure, the moment performed by horizontal 

propellers is opposed to the rotation. Exercised moment is 

negative after the -axis, while the rotation is positive. This 

fact is due to the Munk moment expressed by the term given 

by . According to [14] and [15], this moment tends to 

turn the vehicle (streamlined body) perpendicular to its 

motion. It is explained by the non homogeneous pressure on 

the hull of MARES. In this case, the nose area would have 

greater pressure than the tail. 

Experimentally, it is difficult to observe this phenomenon 

and, for the considered range of velocities, it is compensated 

by drag terms that we have neglected, as , whose value is 

difficult to predict. According to [15], the motion at a 

considerable angle of attack generates a boundary layer near 

from the body hull, which causes an additional drag and 

moment opposed to Munk moment. In order to approach the 

model to experimental data, we decide to neglect Munk 

moment terms as , ,  and . 

With these assumptions, for the motion with , 

thruster P1 will be the first that reach the saturation value 

, as expected. Solving the system of equations given by 

(59), (60) and (63) for , it is possible to determine 

the maximum forward velocity  as a function of 

curvature radius, . The result is presented in the following 

figure. 

 
Fig. 7: Maximum forward velocity as a function of curvature 



Another interesting result that could be extracted is the 

angle formed between the vehicle and the circumference 

tangent,  (see fig. 5). In fig. 8, we present its value as a 

function of curvature radius. 

 
Fig. 8: Angle between vehicle and tangent of the circumference as a 

function of curvature 

VI. EXPERIMENTAL RESULTS 

In order to validate and correct the model of MARES, 

experimental tests were performed. They were carried out in 

the river of Douro, near from Porto. During maneuvers, 

controllers supply voltage references to thrusters and 

localization data is collected. 

A. Longitudinal drag 

A horizontal velocity controller [5] was set to a linear 

motion at constant forward velocity  and . 

The flow effect is neglected, taking into account that its 

velocity is smaller compared to the vehicle one. The filtered 

data of the absolute position derivative, in order of time, is 

presented in fig. 9. The noise is due to the acoustic 

localization error, whose effect is considerable in time 

derivatives. In steady state, the average of the velocity is 

. 

 
Fig. 9: Experimental forward velocity  

For this velocity, we estimate that the force of horizontal 

thrusters is . This estimation is obtained 

from experimental tests performed with MARES thrusters. 

Using (51), we deduce 

 

  (65) 

   

 

This implies a maximum forward velocity  

for the corrected model, which is close to the observed real 

behavior. 

B. Diving drag 

As in the previous subsection, a vertical velocity controller 

was set in order to dive at constant velocity . 

The system response is shown in the next figure. 

 

Fig. 10: Experimental transversal velocity  

We assume that the velocity is constant in the interval 

 and equal to . The collection of 

data related to the voltage applied to vertical thrusters allows 

estimating the force applied by each one: . 

Therefore, using (53), it is possible to determine the drag 

coefficient, as demonstrated below: 

 

  (66) 

   

 

This result is very close to the theoretical one. 

C. Rotational drag 

Applying only a deferential mode to horizontal thruster 

such as  and collecting the data related to 

yaw angle, it is possible to determine the rotational drag 

coefficient . The response of the vehicle is shown in the 

fig. 11. 



 
Fig. 11: Experimental yaw angle  

It was expected that the variation of the yaw angle would be 

linear but the presence of possible magnetic fields in the 

interior of the hull affects the collected data. 

However, the angular velocity can be easily extracted, 

considering the period of the wave form. In steady state, it 

results . Using (56), we easily deduce 
 

 (67) 

 

from which we determine that . 

Though experiments show a value in the same range as the 

determined theoretically, this result may be uncertain given 

that we can not guarantee that forces applied by thrusters are 

the same as previously defined. The reduced distance between 

horizontal actuators may generate disturbances in each other, 

due to the fluid motion, mainly when exercised forces are 

opposite.  

VII. CONCLUSIONS 

This paper proposes a modeling method of an autonomous 

underwater vehicle. First, we have presented the main 

characteristics of MARES, a small-sized AUV developed at 

the University of Porto, whose motion can be performed only 

in the vertical plane through its two vertical thrusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, fundamental concepts and theory were exposed as the 

so-used in robotic kinematic and the rigid body dynamic from 

the Newton’s second law. Main forces and moments for 

underwater vehicles were identified and a general modeling 

method was stated, distinguishing every kind of actuation on 

the body. Through geometric characteristics of MARES, it 

was possible to deduce a simplified tridimensional model and 

determine its coefficients whose deducing effort was done in 

order to obtain an accuracy translating of the real dynamic, 

this is why every technical features were considered. 

We have followed with a theoretical analysis of several 

simple and composed motions, where we have identified and 

corrected some terms in order to obtain a better approach to 

the real behavior. 

Finally, some experimental results were presented and, 

from steady state analysis, it was possible to compute 

estimated main drag coefficients though there are some 

uncertainties in the estimation of thruster actuation forces.   
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