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ABSTRACT 

This work presents a molecular-scale agent-based model for the simulation of enzymatic reactions at 

experimentally measured concentrations. The model incorporates stochasticity and spatial 

dependence, using diffusing and reacting particles with physical dimensions. We developed strategies 

to adjust and validate the enzymatic rates and diffusion coefficients to the information required by the 

computational agents, i.e., collision efficiency, interaction logic between agents, the time scale 

associated with interactions (e.g., kinetics), and agent velocity. Also, we tested the impact of molecular 

location (a source of biological noise) in the speed at which the reactions take place. Simulations were 

conducted for experimental data on the 2-hydroxymuconate tautomerase (EC 5.3.2.6, UniProt ID 

Q01468) and the Steroid Delta-isomerase (EC 5.3.3.1, UniProt ID P07445). Obtained results 

demonstrate that our approach is in accordance to existing experimental data and long-term 

biophysical and biochemical assumptions. 

 

Introduction 

 

Due  to  our  lack  of  sufficient  understanding  about cellular mechanisms, results of in vitro 

experiments often differ considerably from those observed in vivo.1 Possible explanations include 

mechanism-specific uncertainty, unknown and non- specific interactions, and molecular crowding. 

Cells and biomolecular systems are also subject to noise, which is often masked in vitro in ensemble 

experiments and difficult to incorporate in traditional models of biological phenomena. 

Cellular noise may be described as the (small) variation of the physiological state of individual cells 

belonging to an isogenic population and exposed to a similar microenvironment.2 Ultimately, noise 

may have a profound effect in the system as these variations may impact the survival of individual cells  

when  exposed  to   detrimental   microenvironmental conditions such as, for instance, high 

concentrations of antimicrobial agents.3 

Sources of noise are varied and include stochastic gene expression and the quantity and 
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spatiotemporal variation of molecules (most notably proteins) that are present within the cell.4,5 

However, due to their complexity and interrelationship at the nanoscale, the relative contributions of 

different sources of noise to the overall cellular behavior have been hard to evaluate  in  the  

laboratory.  Let  us,  for  instance,  consider a simple case where we want to assess the impact of the 

quantity and spatiotemporal variation of a protein or substrate in a biochemical reaction and, 

subsequently, in the cellular behavior. In such an experiment, we would have to follow the position 

and determine the identity of multiple molecules at the nanotime scale and at a minute volume. While 

single particle tracking and other advanced experimental methods are already delivering data at single 

molecule precision, these assessments are very time-consuming.6 Furthermore, at present, no 

technique allows the simultaneous observation of different molecule types.7 

In silico simulation offers a valid alternative of analysis since it can be implemented and adjusted 

more easily. The noise of a biochemical reaction associated with spatiotemporal variation can be 

assessed by a three-dimensional modeling strategy that accounts for the quantity, diffusion and spatial 

location of the intervening molecules together with the rules of collision between them. As such, the 

assembly of biomolecular models has the obvious potential to elucidate structure and auto- 

organization between molecules as well as complex molecular interplay that are difficult to observe 

in vivo or in vitro. The construction of molecular scale models is challenged by the integration of 

spatial and temporal scales of different orders of magnitude, and the significant computational costs 

associated with higher levels of modeling detail. 

Previous platforms, consisting mainly of agent-based modeling approaches, such as ReaDDy,8 

Smoldyn,9  and Cellular  Dynamic  Simulator,10  are  feature-rich  tools geared toward cellular and 

biomolecular simulation. However, there is often a gap between the data required as inputs in these 

models and the data that is widely available, either at public databases or routinely determined in 

published experiments. A paradigmatic case is the kinetics of enzymatic reactions.  While individual 

rates are commonly used in biomolecular modeling, most of the published literature uses Michaelis− 

Menten parameters to quantify  catalytic  properties.11  In fact, databases maintaining information 

on kinetic parameters, such as BRENDA12 and BioCyc,13 collect kinetic data in terms of the 

Michaelis−Menten parameters. Therefore, interest is set on addressing the realistic representation and 

calibration of simulation parameters according to these experimental data. 

With the new modeling approach reported here, we analyze the noise resulting from arbitrary initial 

location and Brownian dynamics, in particular how molecular diffusion may affect enzymatic kinetics. 

We start by adjusting the information from classical  theories,  namely  the  Michaelis  constant,  Km,  

the turnover number, kcat, and the diffusion coefficient, D, to the information required by the 

computational agents, i.e., the collision efficiency, the interaction logic, and the velocity of each type 

of agent. 

Overall, simulation results demonstrate that our approach is able to describe the molecular interplay 

behind enzymatic reactions and account for stochasticity and spatial dependence successfully. For the 

first time, a biomolecular model has been built on top of database records and experimental data, 

considering the accurate modeling of biological features as well as the necessary trade-offs between 

biological details and computational costs. 
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Materials and Methods 

Simulation Environment. The present work describes and validates the application of agent-based 

reaction-diffusion algorithms to the modeling of diffusional motion of individual biomolecules and 

intermolecular interactions in continuous and fixed time steps three-dimensional cellular 

environments. Enzymes and metabolites are represented by agents with physical dimensions, which 

are based on spherical approximations of the excluded volume of the biomolecules. The spherical 

approximation is an effective way to create middle- out, coarse-grained models of the cell, in a 

compromise between realistic dimensions and computer tractability.14 The excluded volume, 

approximated by the hydrodynamic or van der Waals radius, is a good measure of the actual space 

occupied by molecules in the reaction volume of biomolecular systems (such as enzymatic assays or 

reactors and cells).15 This volume is superior to the purely structural dimensions of biomolecules, 

due to interactions with the solvent media. 

An agent-based simulation system consisting of enzymes and compounds was constructed in a 

0.00088 μm3 cubic environment. Agents capable of diffusion and reaction take on physical dimensions 

based on the data reported by scientific literature and the BRENDA database.16 The hydrodynamic 

radii and diffusion coefficients of the agents are calculated as described in ref 15. The radius of each 

particle is r = 0.0515M0.392(nm) for proteins and  

 

 
 

 

where Mw corresponds to the molecular weight of the enzyme (including quaternary structure and 

number of subunits in the multimers, when applicable), VvdWi accounts for the van der Waals 

volume of each of the atoms of the metabolite, NB refers to the number of bonds in the chemical 

structure of the metabolite, and RA and RNA denote the number of aromatic and nonaromatic rings 

in the chemical structure. Agents are represented by an equivalent sphere with their Stokes radii. 

The simulator implements reaction-diffusion algorithms for modeling the diffusion of individual 

molecules and the reactions between them in continuous and fixed time steps three-dimensional 

cellular environments (Figure 1). 

Every agent is randomly initialized with a given three- dimensional orientation and tracked 

continuously throughout the simulation. In each time step, the model checks the current position of 

the agents, determines the occurrence of agent collisions, and, if so, determines which rule(s) should 

be triggered.  The  behavior  of  the  agent  is  determined  by the corresponding set of behavioral 

rules and its local surroundings. To facilitate visual inspection, enzymes and metabolites are 

represented as spheres, differentiating the species by color and size. 

Model construction and simulation was conducted in the multi-agent simulator of neighborhoods 

(MASON), a Java- based and open-source agent-based modeling framework.17 

Theoretical  Diffusion  and  Brownian  Displacement.  The diffusion coefficients were calculated 

using the Stokes− Einstein equation for diffusion of spherical particles in a liquid:15 

 



4 

 
 

where kB is Boltzmann’s constant, T is the absolute temper- ature, η is the viscosity, and r is the 

hydrodynamic radius of the spherical particle. 

Then, the square-root law of Brownian motion is used to verify that time equivalence and 

theoretically calculated diffusion rates comply with the expected random walk of the molecules, 

namely: 

 

 

where ⟨R2⟩ is the average squared displacement over time, Dc is the diffusion constant, and t is the 

time interval of simulation.  

Collision Detection. Given the spherical shape of the agents, the detection of a collision between 

agents is based on the Pythagorean theorem for triangles:18,19 

 

 

where a1i and a2i are the coordinates of two agents and D is the square distance between the two 

distances (the calculation of square roots is avoided to optimize computational cost). So, a collision 

is deemed to occur whenever D ≤ radiusa1 + radiusa2, i.e., collision is detected by knowing that if 

the distance between the centers of the agents is less than their combined radius the agents collide. 

Collision events are 2-fold: agent against environment boundary, and agent against agent. The rule-

based behavioral engine decides on whether agents are simply reoriented or additional actions should 

be taken (Figure 2). In the present scenario, only enzyme−substrate collisions are actionable and 

represent the occurrence of an enzymatic reaction. 

Enzymatic Reactions. Enzymatic reactions are defined by the computational parameters simkcat, 

simKm, and reaction radius. The simkcat is defined as the number of time steps between the 

formation of enzyme−substrate reaction complex and the product release (and return of the enzyme 

to its free state), mirroring the true kcat parameter as a measure of catalytic efficiency of the enzyme 

under substrate saturation. The Km, which is related to the affinity of the enzyme toward the substrate 

and represents the concentration of substrate at which the velocity of a reaction is half of the maximum 

velocity, was translated in the simKm, which in here it was considered to quantify the probability of 

a successful collision between an interacting enzyme and substrate. More specifically, a simKm of 50% 

means that when the enzyme and substrate collide, half of the times an enzyme−substrate complex is 

formed and ultimately converted to a product agent, and the remaining times the agents rebound. 

When a simKm of 100% was not sufficient  to  portray  a  high  affinity  toward  substrate,  the 

reaction radius was extended so that the enzyme agent could detect substrate agents off the immediate 

vicinity and test more possible interactions. 

Our simulations were 2-fold: a virtual enzyme with a very small Km and extreme substrate affinity 

(a percentage of reactive collisions of 100%) and values of simkcat ranging from 1 to 30 and two 

enzymes whose kinetic parameters were available in the literature.20,21 For simplicity, we performed 
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this analysis for enzymes that use only one substrate. 

The simulation of enzymatic reactions accounts for the number of substrate, enzyme−substrate 

complex, and product agents. Simulations were made in triplicate for scenarios with low 

concentrations of substrate (1.41 mM and below, for both xylH and ksi isomerases simulations) and 

duplicate for the rest. The velocity of reaction is obtained by linear regression of the number of 

product agents vs the number of time steps and later converted to biological units of mM s−1. 

Simulations where the substrate was replenished as it was consumed and where the substrate varied 

with time were performed. For the determination of Michaelis−Menten parameters, it is followed 

an equivalent procedure to the wet lab experiment, i.e., the measurement of initial velocity of 

enzymatic assays with constant enzyme concentration and variable substrate concentration.22 

Noise assessment, in the form of the relative deviation of product formation, was determined by the 

relation between the standard deviation of total product formed at a given time step and the average 

of total product. Final averages were obtained from the interval of time steps from the end of the first 

turnover event to the linear limit of catalysis of the simulation scenario with lower concentration of 

substrate. For the enzymes 2- hydroxymuconate tautomerase (EC 5.3.2.6) and Steroid Delta- 

isomerase, the tracked time of simulations were of 5.30 × 10−7 to 2.93 × 10−6 s (4914 time steps) 

and 2.68 × 10−5 to 3.42 × 10−5 s (125 000 time steps),  respectively. 

 

 

Results and Discussion 

 

General Simulation of a Virtual  Enzymatic  Reaction.  The first aim of this work was to define 

the duration of one simulation time step in seconds. The time step should represent a sufficiently small 

fraction of the second in order to be able to simulate superefficient enzymes, i.e., diffusion-controlled 

enzymes with second-order rate constants of 108 to 1010 M−1 s−1.23 However, if the time step 

represents an excessively small fraction of biological time, it will create an unnecessary computational 

burden in the simulation. As such, we started by testing a virtual enzymatic reaction which consisted 

of an isomerization, with a single substrate and single product, to which the Michaelis−Menten 

equation can be applied directly, and occurring in the limit of the catalytic efficiency. The model aims 

to replicate an enzymatic assay, mimicking the conditions under which the kinetic parameters are 

determined in laboratory settings, and as such, molecular crowding was not accounted for. The 

simulation environment takes on 0.00088 μm3. The system was populated with 5 enzyme agents (a 

concentration of 9.38 × 10−3 mM) and 20 000 substrate agents (a concentration of 3.75 × 101 mM), 

which are realistic relative concentrations compared to literature values.24−26 While the 

concentration difference between molecule types is maintained, the concentrations of enzyme and 

substrate are lower than it is usual in laboratory assays. It is important to notice, however, that the 

periods of time studied in the simulation are also shorter (below 1 s) than the usual time spans of 

enzymatic assays. In these shorter periods of time, it is reasonable to consider that phenomena like 

substrate limitation do not affect the enzymatic reaction in the simulation. The computational 

parameters simkcat and simKm define the molecular behavior derived for an enzymatic reaction. For 

a virtual superefficient enzyme, the simkcat, considered to be the number of time steps needed for a 

reaction to occur once the enzyme−substrate complex is formed, took values from 1 to 30 time steps. 

The simKm, defined as the probability of one enzyme and one substrate located within the reaction 
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radius form an enzyme− substrate complex, was set to 100%. For superefficient enzymes, the 

reversibility of the formation of the enzyme−substrate couples was not considered. 

Diffusion-Controlled Enzymes: simkcat Cutoff Point. Initially, we performed a simulation where 

the transformation of substrate into product would take only one time step to occur, which is 

equivalent in our system to the minimum value of kcat. This implies that, under conditions of 

substrate saturation, the simulated reaction should be limited by diffusion. We used different criteria 

to establish the limit between a superefficient, diffusion-limited virtual enzyme, which represents the 

maximum catalytic efficiency achievable in the simulation environment, and enzymes whose reactions 

are limited by the catalytic step. 

In a first approach, as simkcat increases, the rate of formation of product agents during the time 

steps becomes increasingly linear (Figure 3A). This is to be expected of reactions limited by the 

catalytic step. 

The relative occupancy of enzymes, defined as the percentage of the total number of enzymes that 

are bound in the enzyme− substrate complex (ES/Et %), was also used to distinguish simulations 

where the enzymatic reaction was limited by diffusion, as opposed to being limited by the product 

release step. The relative occupancy of enzymes is calculated based on the average number of ES 

complexes in the simulation for an increasing number of time steps. This behavior can be observed in 

Figure 3B, where systems with higher simkcat are constant at near 100% occupancy of enzymes. 

Simulations with simkcat higher than 6 show very similar behaviors to those observed for simkcat of 

5 and 6 (see Supporting Information S1 for full simulation data). 

The matching ratios of simkcat and kcat are also useful to evaluate diffusion control and the 

coherency of simulation behavior (Figure 3C). It is expected that the kcat will decrease in a linear 

inverse proportion to the simkcat. This rational was applied to the simkcat and the corresponding 

calculated kcat. The deviation between the ratio of consecutive simkcat values (simkcat and 

simkcati+1) and the inverted ratio of the equivalent kcat values corroborate the observation of 

relative occupancy: the first scenario whose reaction velocity is controlled by the product release time 

(kcat) corresponds to the enzyme with a simkcat of 5 (see details in the Supporting Information,  S1). 

Relation between Real Time and  Simulation  Time  Steps. As stated above, a very important 

aspect of this work was to find equivalence between each time step and real time (in seconds). For 

diffusion-limited reactions, Keq constants are known to have a value between 108 and 1010 M−1 

s−1.23 Therefore, for the conditions described in our simulation, 5.94 × 103 M s−1 of product should 

be formed (see the Supporting Information, S1 for full data). 

Considering that the cutoff point for the relative occupancy of enzymes was previously defined for 

a simkcat of 5, the simulation  scenarios  with  lower  simkcat  should  have  a simulation velocity 

that can be related to the real velocity expected for an equivalent real system, as calculated by the Keq 

constant. This relation is a way of comparing real time, in seconds, with simulation time, expressed 

in time steps  (ts): 
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So, the value of kcat can be calculated from simulation velocity, as exemplified in 

 

 
 

The value of kcat for the enzymes with simkcat equal or below 5 should be higher than the kcat of 

real enzymes that are very close to kinetic perfection, such as catalase. The highest reported value of 

kcat for a catalase in the BRENDA database is around 3 × 106 s−1 (EC number 1.11.1.6), i.e., there 

is a difference of 2 orders of magnitude between the perfect simkcat and the maximum kcat occurring 

in reality. This allows the simulation framework to accommodate the fastest enzymes already 

described and even enzymes that may be identified in the future with fastest kinetics. Hence, the value 

of 2.05 × 109 ts s−1 was used for the rest of this work, including for the calculation of kcat values (the 

product produced per enzyme per second) from simulation velocity. 

It is important to bear in mind that the simulation framework is sufficiently flexible to modify the 

correlation between time steps and seconds in several ways, which allows for the correspondence 

between diffusion and reaction to be adaptable. In fact, we can either define that the minimum kcat 

takes more than one step (hence adjusting the maximum speed at which a reaction may occur), alter 

the speed of the molecules in the simulation (hence adjusting the maximum speed at which each 

molecule can move), or even change the enzyme radii at which a reaction is considered to be able to 

occur. 

Simulation of Real Isomerases with Defined Kinetic Parameters. After studying a virtual 

enzymatic reaction, we focused on simulating the behavior of real isomerases that have been previously 

described in the literature (Table 1). The first real isomerase to be studied was the 2-hydroxymuconate 

tautomerase from Pseudomonas putida (EC 5.3.2.6, UniProt ID Q01468). This enzyme is reported to 

have a molecular weight of 22.5 kDa and converts the chemical compound 2- hydroxymuconate to 

2-oxo-3-hexenodiate, with a value of kcat of 1.39 × 106 s−1 and a value of Km of 0.1449 mM.20 

Based on the previous linear relation established between kcat and simkcat, the simkcat input for the 

enzyme was of 1086 time steps (5.30 × 10−07  s1). 

Additional simulations were conducted for the 2-hydrox- ymuconate tautomerase. Specifically, 

these simulations ac- counted for a nonreacting agent strategy to characterize diffusion, substrate 

concentrations ranging from 4.69 × 10−2 to 18.8 × 101 mM and the simKm of 100%, and tested 

reaction radii 2, 4, and 10 times greater than the hydrodynamic radius of 2-hydroxymuconate 

tautomerase enzyme (see details in the Supporting Information, S3). 

Brownian   Dynamics   Simulations. After  defining  the equivalence between the time step of 

the simulation and time, we were able to calculate the diffusion of the enzyme, product, and substrate 

agents. 

The simulation of Brownian motion, which makes the molecules undergo random-walk motion, 

follows a square-root law involving the average displacement over time and the diffusion coefficient. 

For the sake of computational tractability, the simulation does not portray the reaction medium (such 

as water molecules or other molecules that might eventually be part of the laboratorial experiment) 

as explicit agents. Random motion is created by collisions between the agents, and the velocity of each 
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agent species is iterated upon until the resulting diffusive behavior matches the one expected for that 

particular molecule sizes and environment constants, such as temperature and viscosity of the 

simulated reaction medium. Our results are consistent with the expected random movement (see 

graphical illustration of simulated molecular motion in Figure 4). 

Besides visual inspection of the trajectory of the agents, the convergence of displacements of 

individual agents was evaluated. This was achieved by following the evolution of  the average value 

for an increasing number of displacement observations, from a single observation to the average of 

displacements of all the identical agents. The minimum number of agents tested was 750 substrate 

agents and 5 enzyme agents, which in a simulation volume of 0.00088 μm3 correspond to 

concentrations of 1.41 mM of substrate and 9.38 × 10−3 mM of enzyme. For a lower number of agents, 

the visual inspection of the trajectories of each individual agent indicated that the Brownian motion 

was no longer applicable, a perception that was strengthened by the fact that agent velocities had to 

be sharply decreased in these scenarios for a suitable diffusion value to be obtained. As single 

molecules trajectories can be analyzed, a distribution of the distances traveled by the molecules can 

also be obtained (Figure  4C). 

To determine the Michaelis−Menten parameters, reactions velocities are calculated for different 

initial substrate concentrations and under scenarios of substrate saturation and substrate limitation. 

In order to simulate the Km of the 2- hydroxymuconate tautomerase, simulations with initial substrate 

concentration below 1.41 mM were executed to emulate reaction velocities in scenarios under 

substrate limitation, closer to the Km value of 0.144 mM. In order to obtain a more robust simulation 

framework, a second strategy was devised, in which part of the substrate-like agents were converted 

in non- interacting agents, i.e., these agents became obstacles. The velocity of the agents was 

determined for the scenario with highest number of substrate agents and remained constant for the 

rest of the simulation runs. 

Calibration of Km. The calibration of simKm to  Km  was based on the reproduction of 

experimental assays of kinetic parameters, which measure the velocity of the reaction for different 

concentrations of substrate, below the substrate saturation level. 

Different implementations of the model were tested to refine the meaning of simKm. The first 

scenarios ran with the same exact implementation that was simulated for the previous experiments 

of kcat and time to time step relation, i.e., considering a simKm of 100%. So, in each time step, the 

enzyme agent looked into its local surroundings for possible interactions with a suitable substrate 

agent, and if such interaction was possible, the binding was determined by a probability, defined as 

simKm. 

The second implementation changed the enzyme agent behavior so that only one possible 

enzyme−substrate binding was tested in each time step, affecting the probability of successful binding 

(simKm) as before. This implementation was tested for values of simKm of 100%, 75%, 25%, 10%, 

1%, and 0.1%. 

In the third implementation, the meaning of simKm was changed from a probability of successful 

enzyme−substrate binding to a probability of release of product from the enzyme−substrate complex 

(considering a value of simKm of 100%, as in the previous implementations). This implementation 

was tested for values of simKm of 100%, 75%, 50%, and 25%. 

The final strategy was selected on the basis of the sensibility of the resulting values for 

Michaelis−Menten parameters and a lack of effect in the kcat parameter (see details in the Supporting 
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Information,  S2).  Hence,  the  simKm  for  this  enzyme  was defined as the probability of a collision 

between substrate and enzyme generating an enzyme−substrate complex with only one collision 

tested per time step. It is noteworthy that, for slower enzymes, Km is also affected by other 

characteristics of the system, such as the reversibility of the enzyme−substrate complex, a 

characteristic that will not be dealt with here. Hence, this implementation was tested for different 

concentrations of substrate  (1.41,  1.88,  2.35,  4.69,  9.38,  and  18.8  mM)  and different simKm 

probabilities (100%, 75%, 50%, 25%, 10%, 1%, and 0.1%). For the resulting velocities, the Km was 

determined using the least-squares nonlinear regression,27−29 and the linear transformation of 

Lineweaver−Burke, Hanes−Woolf, and Eadie−Hofstee,30 yielding similar values of kinetic 

parameters. 

It was observed that while there was a variation of the resulting Km for different values of simKm, 

as intended, the set of simulation runs with simKm of 100% resulted in a higher Km than the published 

value of 0.1449 mM. To increase the affinity of the enzyme agent, the concept of reaction radius was 

applied. Reaction radius is defined as a volume external to the enzyme and within which this agent 

looks for (anticipates) potential reactive  collisions.  This radius  is  defined  in the  model as a multiple 

of the hydrodynamic radius of the enzyme. The concept is similar to the encounter radius of Smoldyn, 

a point- like particle-based modeling tool.9 

The strategy developed for the 2-hydroxymuconate tautomerase was applied to a different 

isomerase, the Steroid Delta-isomerase, also from Pseudomonas putida (EC 5.3.3.1, UniProt ID 

P07445). The kinetic parameters for the conversion of 5-androstene-3,17-dione to 4-androstene-

3,17- dione are reported to be 5.03 × 10−2 mM for the Km and 2.79 × 104 s−1 for the kcat.
21 

Model inputs were set accordingly: a simkcat of 54122 time steps (2.64 × 10−5 s), a simKm of 100%, 

and a reaction  radius  4 times greater  than the hydrodynamic radius of the Steroid Delta-isomerase. 

The simkcat was determined with the proportion previously described in the virtual enzyme section, 

and the computational parameters related to the simKm were selected according to the aimed Km 

and the previous results obtained for the 2-hydroxymuconate tautomerase. These values rendered 

simulation results that are in the same order of magnitude of the values of Michaelis− Menten 

parameters (Figure 5). A smaller deviation could be achieved by fine-tuning the reaction radius 

parameter, in an iterative fashion. While we are working with only 5 enzymes, it has been previously 

demonstrated that the steady-state of reaction rates of single enzymes still obey the Michaelis− 

Menten equation.31 It is therefore no surprise that, in spite of individual on−off events, the overall 

equation holds valid. In addition, we have also tested this strategy with varying concentrations of 

substrate (i.e., allowing the substrate to be consumed   without   adding   new   substrate   agents   to 

the simulation). As expected, this modification had a higher impact in the Km than in the Kcat 

simulated for both enzymes. 

Assessing  Intrinsic  Noise.  A spatial agent-based  model at the biomolecular scale is suitable for 

assessing intrinsic stochastic noise, especially at the level of stochastic substrate fluctuations. The low 

concentrations of some of the key enzymes and metabolites inside the cell can make local substrate 

fluctuations important sources of cellular variability. While at high concentrations replicate 

simulations have practically the same exact behavior, with very few local discrepancies of the moment 

of catalytic turnover, at lower concentrations the turnover events are more dispersed across time 

steps (Figure 6A). 
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Additionally, the average relative deviation of the number of product agents was calculated to assess 

the impact that the initial substrate concentration has on product formation, both for the 2-

hydroxymuconate tautomerase enzyme (Figure 6B) and steroid-delta isomerase enzyme (Figure 6C). 

In the 2-hydroxymuconate tautomerase simulation, for a small concentration of substrate, 4.69 × 

10−2 mM, the deviation in product formed is above 50%, and the deviation decreases as more substrate 

is available in the simulation. For a low concentration of substrate, the time difference between 

equivalent turnover events (a first conversion  of substrate into product, for example) can be up to 

1.21 × 10−6 s, a period of time superior to the rate at which the enzyme can convert a bound substrate 

to a product molecule. Given that the enzyme agent will form an enzyme−substrate complex if it 

detects any substrate agent, as specified by a simKm of 100%, the deviations in product formation are 

due to the unavailability of substrate agents within the reaction radius. While the mathematical 

modeling of enzymatic reactions accounts for the lowering of product formation rate resulting from 

lower availability of substrate, it does not account for the higher variability. The results show that 

there are considerable fluctuations in the availability of substrate, despite the fact that the three 

simulations had identical starting conditions in every respect, including initial substrate concentration 

and homogeneous spatial distribution. Conditions of low substrate concentration are not negligible 

in in vivo reactions, where intracellular metabolite concentrations in the order of 10−2 mM or below 

are common, including metabolically important metabolites such as glycerol-3-phosphate and 

NADP+.32 

Relative deviations are smaller for equivalent substrate concentrations in the simulation of the 

Steroid Delta-isomerase. This could be due to differences in Michaelis−Menten behavior, since the 

steroid delta-isomerase has a lower Km,  i.e., has more affinity toward the substrate, and has a lower 

kcat, i.e., slower catalytic conversion of substrate. 

Previous work in intrinsic metabolic noise attributed variation to two main sources,  namely, the 

fluctuations on  the three-dimensional structure of proteins and the substrate concentrations in the 

immediate surroundings of the enzyme. The first type of fluctuations give origin to several 

interconvertible conformational states with different catalytic activities.33 The second type of noise, 

that is explored in the present work, arises from the uneven spatial distribution of substrate, which is 

particularly relevant in scenarios with low concentrations of biomolecules or crowding, such as the 

cell.34,35 

Final Remarks. Ultimately, the goal of molecular-scale computational models of cellular 

environments is to grow our understanding  about  the  differences  between  biomolecular behavior 

observed in vitro and in vivo. The simulations described here represent the first attempt to build 

such a model using diffusing and reacting particles with realistic physical dimensions, and 

incorporating stochasticity and spatial dependence in a three-dimensional environment. 

The biophysical assumptions of the model were validated, namely the biological temporal scales 

portrayed by simulation runs and diffusive behavior. We modeled the computational parameters of 

the enzyme agents in such a way that replicated their kinetic behavior in an equivalent to the reaction 

environment of the enzymatic assay, namely, with water as  the solvent of the reaction. If published 

kinetic parameters of in vitro experiments allow us to determine intrinsic enzyme characteristics, the 

simulation of the same enzymes in an environment closer to the cytoplasmic composition could offer 

insight into the kinetic behavior of enzymes in vivo, and by extension, into the kinetics of metabolic 

pathways and cellular systems. A molecular-based model allows the intuitive modeling of different 
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sources of cellular and biomolecular noise. Notably, the spatial scale implicitly incorporates the noise 

related to the spatial distribution of biomolecules. Uneven spatial distribution, at low concentrations, 

can originate diverging results in identical biological scenarios and, at the cellular scale, diverging 

phenotypes. 

In this model, spherical molecules of different sizes diffuse through the three-dimensional space 

and are capable of reaction upon collision. The realism of the model in terms of its diffusive and 

catalytic properties was evaluated according to known empirical behavior and available experimental 

data. For the most part, results show that the devised agent-based approach is consistent with 

experimentally validated results and, thus, may be used for in silico metabolic simulation. 

In order to validate core assumptions without unnecessary complexity, the simulated enzymes were 

both isomerases, following the simplest enzymatic mechanism of irreversible substrate binding and 

single substrate. Also, we selected two enzymes with kcat values above the average to keep 

computation time manageable. However, the present approach should be able to reproduce the 

behavior of any isomerase enzyme, granted that the computational parameters are tuned 

accordingly. The model may also be expanded to  portray more complex kinetics, such as reversibility, 

multisubstrate reactions, enzymatic activation, and inhibition by other metabolites. 

This experiment exposes the computational requirements imposed by a realistic scenario and raises 

discussion about future lines of research and development for agent-based biomodelling. The coarse-

grain modeling approach proposed here can also be further adapted to the simulation of other known 

enzymatic behaviors, such as in the case of fluctuating enzymes,36,37 or expanded to simulate full 

metabolic pathways. 
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1  

Figure 1. Agent-based approach to reaction-diffusion simulation. The basic steps include the 

description of the simulation environment, the indication of molecular species and corresponding 

molecular weight, the calculation of the radii and diffusion coefficients of the agents, the definition of 

the behavioral rules associated with each agent species, and the indication of the number of agents at 

simulation  start. 
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Figure 2. Detection and resolution of collisions. 
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Figure 3. Simulation of a virtual enzymatic assay of an isomerase. (A) Velocity of the enzymatic 

catalysis of the virtual isomerase considering different simkcat. Velocity is calculated as dP/d (time 

step), i.e., the linear regression coefficient of the curve of product formation as a function of the number 

of time steps. (B) Evolution of the relative occupancy of enzymes (ES/Et) in simulations with 

increasing simkcat. (C) Deviations from a linear relationship between an increase of simkcat 

(simkcati+1/simkcati) and a decrease in the kcat of equivalent simulations (kcati/kcati+1). 
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Figure 4. Trajectory of a particle in the three-dimensional continuous and fixed time steps 

simulation environment. (A) 4D perspective, (B) 2D perspective, (C) distribution of the distance 

traveled by enzymes, (D) 3D perspective, and (E) 1D perspective. 
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Figure 5. Final calibration of values for the 2-hydroxymuconate tautomerase (EC 5.3.2.6) and the 

Steroid Delta-isomerase (EC 5.3.3.1). Plots show the simulation data points for constant and varying 

substrate, the fitting of the Michaelis−Menten rate equation to the simulation data, and the predicted 

data points by the published Michaelis−Menten parameters. 
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Figure 6. Observation of intrinsic stochastic noise at the level of stochastic substrate fluctuations. (A) 

Evolution of product formation for replicates of the final simulation of 2-hydroxymuconate 

tautomerase (reaction radius of 2×) for low, medium, and high concentrations of initial substrate. (B) 

Average relative deviation in product formation for all the initial substrate concentrations tested for 

2-hydroxymuconate tautomerase. (C) Average relative deviation in product formation for all the initial 

substrate concentrations tested for Steroid Delta-isomerase. 
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Table 1. Configuration Data of the Virtual and Real-World Enzyme Simulationsa 

 


