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Resumo

Desde que a escrita foi inventada, o texto é a ferramenta humana para comunicação

através do tempo e do espaço. Classificação de texto é a tarefa de catalogar docu-

mentos de acordo com categorias pré-definidas. Esta tarefa foi sempre importante

para a organização da vida humana e para a sociedade.

A internet, e em particular a internet móvel, tornou possível escrevermos e ler-

mos em qualquer lugar. A quantidade de texto que é criado e guardado todos os

dias tornou imperativo que a tarefa de classificação de textos seja automatizada.

As aplicações desta tarefa são inúmeras: desde filtragem de emails até encami-

nhamento de queries ou personalização de conteúdo em redes socias. No entanto,

nem sempre é claro qual a melhor forma abordar este problema. As possibilidades

podem tornar-se esmagadoras particularmente quando o tempo é escasso se consi-

deramos métodos de pré-processamento, algoritmos de classificação e até afinação

de parâmetros.

Neste estudo, olhamos para 384 combinações demétodos de pré-processamento

e algoritmos de classificação – processos de classificação, aplicados a 50 tarefas de

classificação de texto. A performance e o tempo de execução destes processos fo-

ram usados para construir rankings, em que os processos são avaliados por uma

medida que combina a taxa de acerto e o tempo de execução, A3R. Adoptamos dois

métodos de ranking que usam uma abordagem de meta-aprendizagem, Average

Ranking e Active Testing (Abdulrahman, 2017) ao problema deselecção de proces-

sos de classificação de texto. Neste estudo também propomos uma nova ferramenta
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de análise dos constituintes dos processos, uma meta-regressão. Esta ferramenta

mostrou resultados muito promissores, ao ser capaz de medir com precisão quais

os elementos mais benéficos dos processos e identificar os que são irrelevantes.

Palavras-Chave: classificação de textos, meta-aprendizagem, selecção de proces-

sos de classificação, análise de regressão.
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Abstract

Ever since writing was invented, text is used to communicate crossing the bound-

aries of time and space. Text classification is the task of categorising documents

according to pre-defined labels. This task has always played an important role in

organizing human life and society.

Internet and in particular, mobile internet has enabled us to write and read just

about anywhere. The amount of text created and stored every day has made it

imperative that the task of classifying text is automated. From email filtering to

query routing or social media content personalization, the applications of text clas-

sification are boundless. However, it is not always entirely clear how to solve these

problems. The options may seem overwhelming, particularly when time is of the

essence if preprocessing methods, classification algorithms and even hyperparam-

eter tuning are considered.

In this study we looked at 384 combinations of preprocessing methods and clas-

sification algorithms – workflows, applied to 50 text classification tasks. The per-

formance and runtime of these workflows were used to construct rankings, where

workflows were graded according to a measure that combined accuracy and run-

time, A3R. We adapted two methods for ranking that use a metalearning approach,

Average Ranking and Active Testing (Abdulrahman, 2017) to the workflow selection

problem for text classification. In this study we also propose a new tool for analysis

of the elements of workflows, a meta-regression. This tool has shown very promis-

ing results by accurately measuring the most beneficial elements of workflows and
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identifying the redundant or irrelevant ones.

Keywords: text classification, metalearning, classification workflow selection prob-

lem, regression analysis.
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Chapter 1

Introduction

In a world with multiple available options and limited information, how to choose

the best course of action? This is the set-up for the cold-start problem (Schein et al.,

2002) and this dissertation puts forward a solution for this problem – for at least

some scenarios. The scenarios in question are classification problems in machine

learning, specifically text classification problems.

The focus of this dissertation lies in finding what is the most appropriate way to

tackle a text classification problem. Tackling refers here to the complete pipeline of

these tasks, from the preprocessing methods applied to the texts to the algorithm

that will perform the classification. The pipelines of operations are referred here

as workflows.

We propose a methodology that guarantees an ordered list of workflows that

can be executed with the objective to identify the best alternative. We have also

conceived a method that produces insight about which constituents of the work-

flows are more important for the good performance of the classification task. This

allows us to confront the cold start problem in text classification from two fronts:

listing informed suggestions and also considering which options have more impact

on the good solution of the problem.
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1.1 The specificities of text classification tasks

Text classification has always played an important part in organizing human life

and society. Ever since writing was invented, text was used to communicate cross-

ing boundaries of time and space. The internet and in particular mobile inter-

net, allows people to write and read just about anywhere and this creates massive

amounts of information. The amount of text created and stored everyday is at the

level of numbers that we are simply not able to comprehend. Document catego-

rization (Cai and Hofmann, 2004), news filtering (Konstan et al., 1997), document

routing (Joseph, 2002) and personalization of social media content (Agichtein

et al., 2008) are just some of the current applications of text classification. We

need automatic systems to help us to carry out these tasks.

Classification tasks in machine learning consist of automatically assigning the

correct labels to some instances based on the study of previous examples. When

applied to text documents, it consists of labelling new text documents with their

category. Current approaches involve training a classifier on previous instances and

constructing a model that captures the regularities in the examples of each cate-

gory. This model is able to identify these regularities in new examples. Moreover,

in the case of text classification in particular, the texts must be processed before

being used in training due to the particular unstructured format of this data. Fig-

ure 1.1 represents a simplified overview of the knowledge discovery process on text

classification.

Figure 1.1: Knowledge discovery process in text classification.
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Each of the steps featured in our figure can be implemented in different ways

and the result will depend on the decisions made.

It is not possible to find one best solution for all problems as the No Free Lunch

Theorem (Giraud-Carrier and Provost, 2005; Schaffer, 1994) informs us. A good

balance for this problem comes with the metalearning (Brazdil et al., 2008) ap-

proach to the selection of algorithms, that we have adapted to the selection of

workflows. Metalearning utilizes information gathered in past learning episodes

and this way guides users by providing informed suggestions for a new learning

problem.

However, not enough work has been done on applying the metalearning ap-

proach specifically to the text classification problem. We believe that preprocessing

for text classification is fundamentally different from preprocessing for other clas-

sification tasks. Not only there are specific methods for text classification, but also

efficient dimension reduction is much more urgent on these tasks. For instance,

the exhaustive study of classification pipelines performed in the context of the cre-

ation of Auto-SKLearn (Feurer et al., 2015) does include text classification tasks.

However, this study ignored the specific nature of preprocessing methods for text

classification problems, using already structured data.

Although some surveys have been done on the performance of classification al-

gorithms on this type of tasks (such as Sebastiani (2002); Namburu et al. (2005);

Aggarwal and Zhai (2012)) and preprocessing methods (as seen in Yang and Ped-

ersen (1997); Forman (2003)), we were not able to find a study that fully explored

and related these two distinct phases specifically for text classification tasks.

The reasoning behind preprocessing methods in text classification often stems

from semantics. For instance, the argument for removing stop-words from docu-

ments is that since these type of words appear very frequently on every document

(they consist of prepositions, pronouns, adverbs) they do not add any value for

the classification task. However, could there be an algorithm that would achieve
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better results if we kept those frequent words? Are there domains in which this

preprocessing method is more relevant than others? The lack of satisfying answers

to questions like these has served as a motivation to perform our own study on the

subject.

1.2 Objectives and contribution of this thesis

This study was developed with a several goals in mind and constitutes an effort to

make a contribution in the following ways:

• Empirical study of a wide variety of text classification tasks and workflows:

In this study we present the empirical findings from testing 384 distinct work-

flows on 50 text classification datasets.

• Application of algorithm selection methods to text classification: We fol-

low methodology developed in the context of algorithm selection for general

classification task and adapt it to the workflow selection for text classification

problems upholding the principles of the original methods.

• Produce workflow recommendations to text classification problems: our

system is able to produce rankings of workflows for TC problems. We have

considered different ranking methods and a measure that combines accuracy

rate and runtime, A3R. This was compared to the baseline that used accuracy

only.

• Provide a new tool for analysis of elements of workflows: We have proposed

a novel tool for analysing the utility of the constituents of the workflows,

based on their impact on the accuracy rate of workflows.
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1.3 Overview of the organization of this dissertation

This dissertation is organized into five chapters. The next chapter, Chapter 2 sur-

veys related work. Chapter 3 describes the methodology we propose and adopted

in this study. Then, in Chapter 4 the experimental set-up and results are presented

and analysed. Finally, in Chapter 5 we present the conclusions and future work.
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Chapter 2

Literature review

2.1 Text classification

As established in Chapter 1, this thesis will explore the text classification (TC) prob-

lem. This application consists of the adaptation of the common classification task

onto text documents. This task amounts to an automated process of labelling un-

seen document instances based on the analysis of previous examples (Mitchell,

1997; Feldman and Sanger, 2006).

Figure 2.1 shows an overview of the pipeline of a TC task. Starting from training

examples of text, which have already been assigned labels. These are transformed

into a feature vectors format and ran through a machine learning algorithm. The

algorithm identifies patterns within the training examples and constructs a predic-

tive model. When confronted with a new instance of text or document, the same

feature vector transformation is performed and the predictive model is able to au-

tomatically assign expected labels.

Applications of text classification The applications of text classification spread

in a wide variety of domains and contexts. One of the most common is Spam Fil-

tering used by e-mail providers, in which the category of junk mail is automatically

6



Figure 2.1: Pipeline of text classification problems - Adapted from Rehurek (2014).

assigned, allowing the user never to view those (Androutsopoulos et al., 2000).

Routing of customer service tickets yields huge gains in efficiency responding to

queries (Sebastiani, 2002; Joseph, 2002). News articles organization, where such

articles can be directly assigned into a category such as sports or politics is another

often mentioned TC task (Aggarwal and Zhai, 2012). This can be broadened into

text organization and retrieval by applying it to other less specific domains, like

for instance digital libraries, web collections, scientific literature or even social net-

works feeds (Agichtein et al., 2008).

In the next sections the formal definition of these type of learning problems is

presented as well as the distinction between single and multi-label problems in text

classification and its implications. After we explore how the transformation into

feature vector of documents is achieved also known as preprocessing methods.
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2.1.1 Defining text classification problems

Text classification consists of assigning {1, 0} to each pair 〈dj, ci〉 ∈ D × C , where

D is a text collection and C = [c1, c2, ..., cp] is a set of p predefined labels. If 1 is

assigned to 〈dj, ci〉, it reflects the decision that dj belongs to the category ci, and 0 is

assigned otherwise. Formally, this task can be defined as a way to approximate the

unknown target function Φ̂ : D×C → {1, 0} (that describes how the documents ought

to be classified) by means of a function Φ : D × C → {1, 0} called the classifier (rule

or hypothesis or model) such that Φ̂ and Φ coincide as much as possible (Sebastiani,

2002).

During this training phase, the classifier learns from n documents (the train-

ing sample) that are already arranged into p separate folders, where each folder

corresponds to one class (Namburu et al., 2005; Hotho et al., 2005). In the so

called hard version of the classification problem, one label will be assigned to the

new instances, whereas in the soft version, a probability to the example belonging

to the category is computed (Aggarwal and Zhai, 2012).

Single and multi-label classification problems

An important distinction for types of TC tasks is one that involves howmany classes

are assigned to a single text document. This is known as the difference between

single- and multi-class categorization of texts. In single-class problems, each text is

assigned only one class, whereas in multi-class classification each example can be

filed under any number of categories (Feldman and Sanger, 2006). Another way

to distinguish these tasks is by considering multi-class categorization as problems

with overlapping categories, whereas single-class have non-overlapping categories. A

particular case of single-label problems is the binary case. In these problems, the

text documents can only be assigned two possible classes and each document is

singularly assigned to the one class and one class only (Sebastiani, 2002; Feldman
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and Sanger, 2006). This can be translated in saying that dj ∈ D can either be

assigned to ci or to its complementary c̄i. In reality, all TC problems can be trans-

lated into a binary problem, by transforming the decision into does dj belong to

category ci or not?, which works not only for single-class problems with more than

two classes but also for multi-classes ones. A simple transformation makes it pos-

sible for algorithms designed for binary categorization to be used for multi-class

classification, while algorithms for multi-class cannot be used for either the binary

or the single-class TC (Sebastiani, 2002).

Formally, in order to transform a multi-label (or a single-label with more than

two categories) into a binary problem, one can divide the original problem into p

(number of categories) independent tasks — it is assumed normally that labels are

stochastically independent between each other, meaning that for any ck, cr, ∀k, r ∈

C, k 6= r, the value of Φ̂(dj, ck) is independent of Φ̂(dj, cr) (Sebastiani, 2002). It is

expected that problems that have to undergo this transformation achieve worse re-

sults, which comes directly from the fact that the original binary case is the simplest

version of the classification problem, while multi-label or single-label problems with

more than two categories are indeed more complex problems.

2.1.2 Preprocessing for text classification

Adapting the classification problem to text is incredibly useful. However, consid-

ering the type of input for these tasks is text documents, a lot of processing is

necessary in order to be able to feed it into data mining processes. This results

from the fact that these processes only understand highly structured data, which

usually means a spreadsheet format that sustains predictive modelling. This model

of representation of data is built with columns that correspond to features or vari-

ables and each row is a new instance in the dataset. The cells are filed with values

that characterize the instances according to the variables which have meaning as
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this is necessary for the data mining processes to make sense (Sebastiani, 2002).

There are many options and paths one can follow in order to achieve this same

result. Starting with representation options, in which one decides both what the

features are going to be and what will fill the cells with. Normally the features

are either the words in the document collection or some concepts derived from

them. The cells are then filled with a form of frequency counts, that can be just

simple counts, binary values to discern the presence of a word or some weighting

schemes. These options and their relevance are going to be discussed first in this

section (Berry and Castellanos, 2007).

The second problem that preprocessing of text tries to resolve is feature selec-

tion. If the representation chosen covers all the words that appear in the document

collection, one can deduce that the number of features can be extremely large. This

can become very dramatic when the text documents are for instance messages or

social media posts since all the random misspellings of words would be considered

features as well. Moreover, the resulting datasets would be very sparse, which can

potentially be exacerbated if the average size of the documents is small. Consider

the example of tweets, that have a maximum of 140 characters and one outcome

of this is that people end up using many abbreviations and technically misspelling

of words. The consequence would be a feature space of all possible words in a lan-

guage plus all the misspellings/abbreviations/made-up words which frequency is

recorded in texts of 140 characters. Whereas, if each example is a book from a col-

lection of books, with normalized spelling and with a virtually unlimited amount

of words per example, it is normal that there are more repetitions and the spread-

sheets will not be so sparse (Jansen et al., 2009; Chen et al., 2011).

Thus, it is necessary to clean the documents before entering them into classifica-

tion procedures and the techniques used for this purpose are presented summarily

in the next sub-sections. We start by presenting options for representation of docu-

ments in the structured tabular format. Then we present in detail techniques used
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specifically for dimension reduction in TC, such as sparsity correction, stemming and

stop-word removal. We also present a typical preprocessing task for classification

problems, information gain feature selection and then we give a short overview of

other promising preprocessing techniques.

Representation

The need to choose a representation format comes from the fact that the input

data for text classification is text documents. In a data mining perspective, this

means the data is in an unstructured form of data since it does not abide to the

spreadsheet structure. Since the data mining process requires the data to be in

a structured format, text needs to be converted into tables (Feldman and Sanger,

2006).

The typical way a document is represented is through the so called bag-of-words

also referred to as vector space model or even document-term matrix. In this repre-

sentation, we have unique terms as features that characterize the text document.

This entails that the ensemble of the features or single terms becomes the dictio-

nary of the document collection (Weiss et al., 2010). Some studies have tried more

complex constructions for the features, namely the use of phrases, which would

have a greater syntactical value such as N-Grams (Cavnar et al., 1994). However

the test results for these have not been encouraging which reinforces the use of

terms instead (Weiss et al., 2010). Still in the document-term matrix, each row of

the spreadsheet consists in a new example, which means that the number of rows

is the sample size. The cells will then be filled by a statement about frequency of

the term in the particular document.

Tokenization The first step consists of creating a framework for the machine to

understand how to recognize a single word: when does it start and end. This means

to recognize word delimiters. This process is known as tokenization for consisting of
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teaching a machine to break streams of characters into tokens (Weiss et al., 2010).

The intention is to permit the grouping of single terms. Usually and for the sake of

simplicity, all whitespaces are considered delimiters. This concept includes space,

tab and new line. It is defined this way, so that whenever a whitespace is detected,

a new word is considered present. However, it is possible to point out already

a big problem in this decision: multi-word expressions. Saying white and house

should be different from saying White House, these expressions mean completely

different things and treating them the same is incorrect. Another problem that

occurs here are homograph and homonym words being treated as if they have the

same meaning. Methods like word sense disambiguation are applied for solving

these problems, even if their complete efficacy is not assured (Hotho et al., 2005).

When identifying word delimiters another important aspect it is the removal of

punctuation and numbers. These are mostly considered not to be informative and

in fact mark the end of words in conjunction with whitespace. The only exception

to this are intra-word dashes, which are present in hyphenated words. For in-

stance, the function removePunctuation from the tm package includes a very self

explanatory logical option preserve_intra_word_dashes (Feinerer and Hornik,

2012). This may however create other errors, like variations in spelling of the

same concept word, since the use of these hyphens are taken less strictly by most

people (also spell-checkers do not recognize always this sort of mistake). However,

since this is not a problem that affects many expressions, and unless a particularly

important term for the document collection has a dash in between, there is less

need to correct for it.

Frequency format At this point comes the decision about the weighting scheme

to be used. This refers to the weight that is given to a token in a particular document

which is derived from the term frequency, either just in that particular document or

considering also its frequency in the whole document collection. The weight, wjm,
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that are attributed to term tm in document dj, are set between 1 and 0. From here

it can be concluded that for text representation, the datasets do not have negative

values and also there are no missing values (Weiss et al., 2010).

The most common options for the term weighting schemes are:

– the binary case, in which only 1 is attributed as weights, if the token appears

in the document, and zero if it doesn’t,

– the tf case, in which the weighting comes from the frequency of the term in

the document, and

– the most popular tf-idf, that is the term frequency modified by a scale fac-

tor for the importance of the word, which is called inverse document fre-

quency (Weiss et al., 2010).

The tf-idf weighting scheme is described in the equation 2.1 (Salton and Buckley,

1988):
(2.1)tfidf (tm, dj) = # (tm, dj)× log

(
|D|

#D (tm)

)
in which # (tm, dj) is the number of times tm occurs in dj, and #D (tm) is the num-

ber of documents inD in which tm occurs (Sebastiani, 2002). The logic behind this

equation is that the more frequent a term is in a document, the more representative

of that document it is, but that should be countered by how frequent that term is

in the whole document collection. If the term is very frequent throughout, then it’s

much less relevant (Weiss et al., 2010; Sebastiani, 2002).

Advances in the area of representation were made in papers like Bloehdorn

and Hotho (2004), in which the authors challenged the bag-of-words paradigm,

integrating higher semantic level features and using boosting for the TC task. The

results were more promising than past attempts. Also Cai and Hofmann (2003),

made a very similar study, using a concept-based document representation to aid

word- or phrase-based features. Their approach also achieved promising results.

13



Feature Selection

As expressed before, a spreadsheet representation of a text ends up having a very

large number of features, making dimensionality reduction critical. Furthermore,

many of those features are not informative which means they should be dropped as

they are shown to create a bigger risk of over-fitting the classifying task (Sebastiani,

2002). This occurs when a model generated instead of learning to generalize from

the trend, starts to memorize the training data. This will result in much worse

results when the model tries to predict new instances.

Hence, there are a lot of techniques that enable filtering the terms that should be

part of the dataset. Each technique aims at finding the features that are irrelevant

for one reason or another. Next, we will present the feature selection or extraction

techniques that are considered consistently as appropriate for the TC task.

Sparsity correction This technique enforces that for a term to be considered as

a feature for the dataset, it needs to be present on a minimum percentage of doc-

uments across the document collection. The minimum threshold can be set by

the user and their needs. In R this method can be applied through the removeS-

parseTerms function in the tm package (Feinerer and Hornik, 2012). According

to the documentation of this package, if sparse is set for 0.98 or 98%, we are re-

moving the words (features) that are present in only 2% or less of the documents.

So by performing sparsity correction, we are effectively filtering based on how rare

the words are throughout the dataset.

This constitutes one of the first steps in feature selection, based on the grounds

that extremely rare words are unlikely to be present to aid in future classifica-

tions (Forman, 2003). In Yang and Pedersen (1997), this form of dimension re-

duction achieved very competitive results in comparison with methods that use In-

formation Gain and χ2 test. Being one of the simplest and computationally cheap

preprocessing tasks makes this method a reliable alternative when time is of the
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essence. These results suggest a contradiction with an established Information Re-

trieval law that states that the terms with low-to-medium document frequency are

the most informative ones (Sriram et al., 2010), as Sebastiani (2002) points out.

However that is not the case here, since the number of features can be very large

and each single document will have a small percentage of all the possible words

in its collection. From this one can conclude that by taking out the words that ap-

pear at most 2% of the documents, we are not talking about the low-to-medium

frequent terms, these are the extremely sparse terms (Sebastiani, 2002; Feldman

and Sanger, 2006).

Stemming Stemming refers to reducing terms in the bag-of-words into their stem

or root. This comes from the rationale that words which are drawn from the same

base word, have the same concept, the same semantic meaning, so they can be

merged together forming a single feature. This will reduce the words look, looking,

looked and so on, into the single concept: look. This will effectively reduce the

dimension of the possible words in a document collection and inflate the frequency

of the stem words (Aggarwal and Zhai, 2012).

This task is done through the use of stemming algorithms (or stemmers) that

are mostly developed in the context of Information Retrieval. There, stemming is

used to raise the ability of a system to match a query and document vocabulary

because it will reduce word variability (Xu and Croft, 1998). The most popular

stemming algorithm for TC tasks is the Porter stemming algorithm (Porter, 1980)

and is based on suffix removal. This type of stemmer, however, works without the

aid of a dictionary, which makes it too aggressive at times and prone to errors. For

instance, the words general, generous and generic are going to be conflated with

the Porter algorithm, but words like recognize and recognition that actually should

be merged since they are related, will remain separate (Cardoso-Cachopo, 2007).

Actually, some experimental results seem to suggest that stemming may not be too
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beneficial for text classification task and the reason for its continued use has to do

with it’s simplicity and the dimension reduction (Weiss et al., 2010; Sebastiani,

2002). Another variation of stemming has achieved better results than the Porter

algorithm for information retrieval. This stemmer merges words based on corpus

co-occurrence statistics, instead of relying only on morphological rules (Xu and

Croft, 1998).

Some other variations to the normal usage of stemming algorithms can be

pointed. Inflectional stemming is a much less aggressive kind of stemming in which

terms are only merged if they are actually variations of the same word. Thus, only

words that are grammatical variants will be conflated, like singular/plural and

present/past. This type of stemming seems to make more sense for the English

language, in which the irregular verbs for instance tend to make it impossible to

cover them in a rule. Thus, this stemmer integrates a lexical database which makes

sure that the words that end up together are merged correctly, which is an advan-

tage that may compensate for the decreased ability to reduce dimension (Weiss

et al., 2010).

Finally, stemming to a root is very aggressive in comparison to the other variants.

In this case, not only the suffixes will be removed to get to the root but also the

prefixes. In this variant, the word uncomfortable would be reduced to just comfort.

The reasoning behind this type of stemmer is that by reducing the number of single

tokens in a text collection, will make distributional statistics more reliable (Weiss

et al., 2010).

Stop-word removal Stop-words removal or stopping refers to the act of discarding

words that even though may be very frequent, are very frequent throughout the

whole document collection and therefore have no information value. This stems

from the fact that the aim in TC problems is to be able to separate or distinguish

between categories. Stop-words are the most frequent words in texts for a given
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language however, they are used as connectors in sentences and Stopping involves

the words that are frequent for a language however, their use is related to semantics

and grammar. These are the connecting terms in a sentence, like prepositions,

subjects and adverbs, such as the, she, a, which, that, because,... These words allow

us to connect ideas in sentences but besides that, they do not carry any information

for the classification task, since they are frequent throughout the language as a

whole (Hotho et al., 2005; Weiss et al., 2010).

There are words also that are monotonously frequent in a specific document

collection or domain and therefore should be removed as well. For instance, when

the document collection is of reviews of video games, words like game, play should

be removed as well. These are considered domain specific stop-words.

Feature selection using information gain This method is commonly used for

feature selection in any type of data mining tas tasks. It consists of filtering the

features that only contribute up to a minimum threshold for information gain. This

constitutes a way to attribute a rating to terms based on their separating ability.

This rating is measured by how correlated a certain term tm is with a particular

class ci. The logic behind this procedure is that by rating the features in terms

of how useful they are for the classification task, one can just drop the ones that

the algorithm deems not useful. The selection can be of a certain number of the

highest rated terms or by establishing a threshold value for the score, below which

the terms will be rejected (Guyon and Elisseeff, 2003).

This technique can be adapted to text classification, where we consider the

terms as features and where the dimension is a great problem. With Pci as the

global probability of label ci, and pci(tm) as the probability of class i, given that

the document contains the term tm. Let F (tm) be the fraction of the documents

containing the token tm. The information gain measure Ig(tm) for term tm is given
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by equation 2.2 (Aggarwal and Zhai, 2012):

(2.2)
Ig(tm) = −

p∑
ci=1

Pci × log(Pci) + F (tm)×
p∑

ci=1

pci(tm)

× log(pci(tm)) + (1− F (tm))×
p∑

ci=1

× log(1− pci(tm))

In this way, the greater the value of information gain Ig(tm), the greater the dis-

criminatory power of the token tm.

Other preprocessing methods Other preprocessing methods for text classifica-

tion include word sense disambiguation (WSD) techniques, that use the semantic

properties of the words, i. e. their meaning, to create more appropriate features.

Works like of Bloehdorn and Hotho (2004) and Cai and Hofmann (2003) hint on

the fact that promising results can be achieved for text classification when using

phrases or concepts without undermining the statistical qualities of the models.

Also, in Forman (2003), a novel feature selection criteria was introduced, the Bi-

Normal Separation and in that study achieved the better performance than other

measures in most situations, specially when there is skewness in the class distribu-

tion.

Another approach that holds a lot of potential is topic modelling (Papadimitriou

et al., 1998). This consists of an adaptation of the clustering analysis on to topics

in text classification tasks. The logic behind these models is that documents cover

a small number of topics and that topics use a small number of words (Blei et al.,

2003). It consists of a way to find the topics occurring in a collection of documents.

Thus constitutes in itself an unsupervised learning task, quite similar to document

clustering. An adaptation of this tasks to supervised classification would be that

topic model learns topics within the classes, as in Mcauliffe and Blei (2008).
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2.2 Metalearning

Metalearning arises from the need to exploit knowledge gathered through past

experience to make learning systems more efficient (Brazdil et al., 2008). It is

the study of machine learning tasks, contextualized as part of a learning system

to find better ways to solve machine learning problems. In this way, it consists

in machine learning using itself to classify problems in the best way to fix them

(Giraud-Carrier, 2008).

Base learning To understand metalearning and its importance it is necessary to

define the distinction between base (level) learning from meta (level) learning.

Base learning consists in the typical inductive learning scenario: the application

of machine learning methods and tools to a set of data in order solve a particular

problem. The scope of this application is usually limited to the specific task and

data resulting in not much insight ever being transferred to other tasks or domains

(Brazdil et al., 2008). This means the application of a typical learning system does

not usually yield any benefit for application of learning systems in new data and/or

other tasks. This is the point metalearning tries to give a response to.

Goal Metalearning concerns itself with two major aspects:

1. serve as a guideline for users to select the best models, contextualizing the

problems by providing a mapping from tasks to learners (Bensusan et al.,

2000), and

2. how to profit from the repetitive use of a predictive model over similar tasks –

this area is called learning to learn and involves the search for patterns across

tasks (Brazdil et al., 2008).

One goal of metalearning will be to learn what causes algorithm α to perform better

than other algorithms in certain types of learning tasks. Two perspectives can be
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taken to solve this problem: understand what properties these learning tasks share

that make algorithm α more efficient at learning them, and/or understand what

components of algorithm α contribute for the success in its performance on some

learning tasks (Vilalta and Drissi, 2002).

Learning bias According to Rendell et al. (1987), a metalearning system should

be capable of learning through experience when different bias are appropriate for a

particular problem. Even though this idea may minimize the role of metaknowl-

edge (Brazdil et al., 2008), it introduces the important aspect of bias selection that

metalearning studies how to navigate dynamically.

Gordon and Desjardins (1995) offer a broad interpretation for learning bias as

anything that influences the definition or selection of inductive hypothesis. The learn-

ing bias is at the core of learning algorithms and explains why algorithms perform

differently on the same data— they are formulated to find specific kind of regulari-

ties (Vanschoren, 2010). For instance, a linear regression model (LRM) is designed

to predict dependent variables through a linear relationship to its explanatory (in-

dependent) variables. If the relationship between these variables is not linear, the

model will not be good at predicting future values for the independent variable.

This does not mean, however, that the dependent variable is not explained by the

independent ones, but just that the way LRM does its inductive leap to predict new

instances is not appropriate for the data at hand.

The learning bias can be separated in two components: representational bias

and procedural bias. On one hand, the representational (or declarative or lan-

guage) bias is what defines the representation of the search space of hypothesis and

affects the size of the search space (Brazdil et al., 2008; Gordon and Desjardins,

1995). This encompasses that each learning algorithm is optimized to adequately

capture regularities inside of a search space defined by the model itself. The in-

creasing number of observations allow for more refined instances but still limited
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by the search space (Vanschoren, 2010). On the other hand, the procedural bias

(also called algorithm bias) refers to how the order in which the inductive hypoth-

esis are navigated through are defined by the algorithm (Gordon and Desjardins,

1995). Meaning, how the algorithm decides in its iterations which refinements

to the hypothesis are better than the other and so how it should traverse in the

search (Vanschoren, 2010).

Transfer knowledge Metalearning aims at transferring knowledge from one learn-

ing task to another, regardless of domain (Lemke et al., 2015). This is achieved by

exploiting what some authors call metaknowledge. As the name suggests, meta-

knowledge is knowledge about knowledge (Gadomski, 1997). In the context of

metalearning, it refers to analysis and interpretation of the data generated by ap-

plying machine learning techniques (Giraud-Carrier, 2008). This data, also called

metadata, can have different forms but it is from it that metaknowledge is gained

and then exploited in order to build a more effective way of searching through

the space of alternatives (Brazdil et al., 2008). Metadata can include historical

information about the performance of a set of algorithms on different tasks/data,

datasets and metrics available to compute dataset similarity (metafeatures), infor-

mation that can be useful to perform dynamic bias selection, functions and algo-

rithms to get more information (metamodels) (Brazdil et al., 2008). For instance,

metafeatures are computed from the dataset are measurable properties of the data

that use as input the number of classes, the distribution of training examples for

each class (how balanced the training set is), the measure of correlation between

the features and target concept and average class entropy, etc. (Brazdil et al., 2008).

The main goal of these features is to shed some light on the connection between

the learning algorithms and the characteristics of the data (Brazdil et al., 2008).

This way, we are able to recognize on which datasets, a specific learning algorithm

should work better.
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Definition In conclusion, a definition of metalearning can be offered as the sci-

ence of discovering relationships in metadata, generating metaknowledge. This

metaknowledge enlightens the connections between the metafeatures and both

the learning bias and the empirical performance data. By enabling the discovery

of such patterns, metalearning promotes a better understanding of the determi-

nants of the behaviour of algorithms on different types of data and allows informed

recommendations on how to solve new learning tasks (Vanschoren, 2010; Brazdil

et al., 2008).

2.2.1 Algorithm selection problem

The No Free Lunch theorem for machine learning (also known as conservation law of

generalization performance) affirms that if all possible data distributions are equally

likely, any pair of learning algorithms will perform the same on average, or even

that a gain in performance for one algorithm on one class of tasks will correspond

to the same loss on another class of tasks (Schaffer, 1994; Wolpert, 2002). The

consequence of these statements is that it is not possible to create a universal learn-

ing algorithm that would be the best at solving all learning problems and for that

reason metalearning presents itself as a natural alternative.

Figure 2.2: Schematic diagram of Rice’s (Rice, 1976) algorithm selection problem framework. The
objective is to determine the selection mapping S that returns the best algorithm α. Adapted from
Smith-Miles (2009)
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The framework for the algorithm selection problemwas first put forward back in

1976 by John Rice when trying to answer the question: With so many available al-

gorithms, which one is likely to perform best on my problem and specific instance? The

first configuration of the model proposed in Rice (1976) is depicted in Figure 2.2

and has the following essential components:

– the problem space P represents the set of instances of a problem class;

– the feature space F contains measurable characteristics of the instances gen-

erated by a computational feature extraction process applied to P;

– the algorithm space A is the set of all considered algorithms for tackling the

problem; and

– the performance space Y represents the mapping of each algorithm to a set

of performance metrics.

This way, the algorithm selection problem can be formalized as:

For a given problem instance x ∈ P , with features f(x) ∈ F , find the selection

mapping S(f(x)) into algorithm space A, such that the selected algorithm α ∈ A

maximizes the performance mapping y(α(x)) ∈ Y .

According to this model, choosing the features must obey a certain number of

rules. Their choice must expose the varying complexities of the problem instances,

must capture any known structural properties of the problems as well as any known

advantages and limitations of the different algorithms must be related to these

features (Rice (1976) as cited in Smith-Miles (2009)).

Vanschoren (2010) proposes an updated framework for the algorithm selec-

tion problem that expands upon the one proposed by Smith-Miles (2009) and its

schema is shown in Figure 2.3. In Smith-Miles (2009) framework, the metadata

obtained by the characterization of problems and evaluation of learning algorithms

in those problems is then used to improve on existing algorithms but also buildmod-

els of learning behaviour which is then directed to automatically recommend good
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Figure 2.3: An updated framework proposed in Vanschoren (2010) in which the dashed lines are the
extensions to the metalearning framework in Smith-Miles (2009) (here in full lines).

algorithms for a particular problem. This updated framework (Figure 2.3) adds di-

mensions to this problem, namely the parametrisation algorithms (A′) which stems

from the understanding that different parameter settings of the same algorithm

make up for distinct models all together (Soares and Brazdil, 2006). The prepro-

cessing problem space (P ′) also is added, from the idea that a dataset preprocessed

in a certain way will result in different performances for the algorithms as well. And

finally, the properties of the algorithms (G) are also considered as it is the aim of

this model to be able to generalize about learning algorithms to find the patterns

in the features of the algorithms.

An algorithm recommendation systemmust be able to support the users through

the experimental phase of the KDP (Knowledge Discovery Process) in data mining. It

achieves this by reducing the number of alternative learning algorithms that should

be tried. For a given dataset, it selects the most likely models to achieve the best

performance, saving the user time. To be able to accomplish this, it is imperative
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Figure 2.4: Metalearning to obtain metaknowledge for algorithm selection. Adapted from Brazdil et al.
(2008)

that this system is able to accurately predict the algorithms actual performance as

well as their relative performance, so it can return precise comparisons. Figure 2.4

represents this process as well as the inputs for such system as they were proposed

by Brazdil et al. (2008).

2.2.2 Automated machine learning

Automated machine learning or autoML is a field in machine learning that has been

gaining attention and that has several conceptual ties with metalearning. Even

though not all the authors in this section mention this connection to metalearning

in their works, the very implementation of these systems achieve precisely what is

the goal and methodologies that fit the metalearning approach.

The goal of the several autoML systems is the same: to design and recommend

optimized machine learning pipelines, algorithms and even adequate hyperparam-

eters to specific learning tasks without reliance on user prior knowledge (de Sá

et al., 2017; Olson et al., 2016). In this way, autoML seeks tomakemachine learning
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tools more accessible by achieving an optimized solution without human interven-

tion. However, autoML is faced with twomajor problems: first, as was mentioned in

the previous section, there is no single algorithm that is best on all machine learn-

ing tasks and second, some algorithms performance is highly dependent on the

hyperparameter settings used (e.g. non-linear support vector machines) (Feurer

et al., 2015).

Auto-WEKA (Kotthoff et al., 2016; Thornton et al., 2013) and Auto-SKLearn (Feurer

et al., 2015) are currently some of the most popular autoML systems, in part be-

cause of popular software in which they are hosted, Python – specifically in scikit-

learn (Pedregosa et al., 2011) – in the case of Auto-SKLearn and obviouslyWEKA for

the former. Since WEKA has a very intuitive and easy to use interface, it is favoured

by novice users (Kotthoff et al., 2016) and python is currently becoming the most

popular machine learning programming language. Both these autoML systems use

hierarchical Bayesian method to perform a local search to explore the components

of a task and then add some constraints to avoid invalid combinations (de Sá et al.,

2017). Auto-WEKA considers all the algorithms available in WEKA and its possible

hyperparameter combinations as the hypothesis space in which it navigates to find

the most suitable solution: the combination (algorithm & hyperparameter(s)) that

minimizes the cross validation loss of the learning task at hand (Kotthoff et al.,

2016). Auto-SKLearn looks at 15 classifiers, 14 feature preprocessing methods and

4 data preprocessing methods which add up to 110 possible combinations for the

machine learning pipelines that it will explore (Feurer et al., 2015). The Bayesian

optimization method that both Auto-WEKA Auto-SKLearn use, fits a probabilistic

model to capture the relationship between the hyperparameter settings and their

measured performance. This model is then used to find the most promising hyper-

parameter settings, evaluates this configuration and iterates (Feurer et al., 2015).

The way it chooses which are the most promising hyperparameter settings is by ap-

plying a metalearning approach of computing dataset similarity through the use of
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metafeatures and evaluating historical performance data. This way, it is possible

to connect the current problem with the datasets that are more similar to it and

limit the current search space to the more likely settings to achieve better results.

This approach may limit discovery by not exploring new areas of the solution space

but gains in exploiting the known to be good regions (Feurer et al., 2015). Auto-

SKLearn adds to this an automated ensemble construction step, which grants the

possibility of using all the classifiers that were found by the Bayesian optimiza-

tion (Feurer et al., 2015). In a later work, the same research team added neural

networks to the mix by creating Auto-Net. This tool implements automatically-

tuned feed-forward neural network clear of human intervention. This tool combined

with Auto-SKLearn has shown better results than either one alone (Mendoza et al.,

2016).

Figure 2.5: Representation of the typical supervised machine learning process and display of the phases
of this process the automated machine learning system TPOT aims at automating. Most autoML systems
automate these very parts as data cleaning still is, for the most part, too data and domain specific.
Adapted from Olson et al. (2016)

Other recent approaches to the autoML problem have shown promising results.

TPOT (Figure 2.5) is based on genetic programming to optimize a series of fea-

ture preprocessing settings and algorithms for classification pipelines. Further-

more, TPOT considers a Pareto selection for multi-objective search: on one hand,
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to maximize the final accuracy attained with the model and on the other hand,

to minimize the overall complexity of the model (de Sá et al., 2017). Contrary to

Auto-SKLearn, where the search space is limited to the most likely to be successful

regions, such limitations are not imposed on TPOT (Olson and Moore, 2016) . This

way it favours discovery but also has as an disadvantage that it can waste resources

trying solutions that are not actually possible (de Sá et al., 2017). RECIPE (de Sá

et al., 2017) tries to give an answer this problem by working with grammar based

genetic programming, which allows to guide the search inside ML pipelines that

are similar to the ones that have previously shown successful results. This step per-

mits evading infeasible pipelines and takes advantage of the random component

from the genetic algorithm to enlarge the hypothesis search space.

Worth of mention as well is autoBagging, an autoML tool designed as a pack-

age for the R software which takes advantage of the latest advancements in the

metalearning and a learning to rank approach to exploiting metadata (Pinto et al.,

2017). And finally, the very recent but most promising Hyperband (Li et al., 2016).

This method of iteratively tuning algorithms focused on optimizing the runtime of

its iterations. Instead of trying several configurations at once, hyperband runs only

a few iterations to start with in order to ascertain where the data at hand positions

itself in terms of performance for those iterations. Then, it takes the best perform-

ing tries and runs only those further and iterates again (Zając, 2017). The authors

of hyperband argue that methods that use Bayesian optimization (like Auto-WEKA

and Auto-SKLearn), only improve on random search by a negligible margin. Hyper-

band is said to not waste resources on bad iterations and also takes advantage of

random search propensity for discovery.
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Chapter 3

Methodology

3.1 Overview of the problem

The study presented in this dissertation has the goal of facilitating workflow selec-

tion for classification tasks. We propose a method that provides a solution to the

cold start problem in KDP (knowledge discovery process) – which strategy to choose

when many strategies are available? Using a metalearning approach, our method

capitalises on past learning experience in order to find the best workflows auto-

matically. Although our study focuses on text mining tasks, the contribution of our

method is that it can be applied to virtually any data mining problem.

It is well known that preprocessing strategies can significantly affect the perfor-

mance of many classification algorithms. It appears that there are certain benefi-

cial pairings between preprocessing methods and classification algorithms and our

method is designed to uncover these relationships. This way, we suggest workflow

selection, which includes preprocessing strategy (the combination of preprocessing

methods) and algorithm selection and configuration (this may include hyperparam-

eter refinement).

Furthermore, it is more useful to offer a list of recommended solutions instead

of just one potentially best solution. It has been observed that there is no ulti-
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mate solution that can fit every problem (no free lunch theorem (Giraud-Carrier

and Provost, 2005; Schaffer, 1994)). This is even true for problems in the same do-

main, as the best solution is often not transferable across different tasks. This way,

we suggest instead to recommend rankings of solutions – in our case workflows,

that the user or the system could follow. This ranking of alternative solutions is

constructed following different strategies described in this chapter. The past per-

formance of different workflows plays an important role in the elaboration of the

rankings.

We have two goals, on one hand we want to be able to recommend a ranking of

workflows for a specific task. On the other hand we want to gain insight about the

optimal amalgamations of workflow components that lead to good performance.

Thus, we propose a general method for workflow selection problems that is char-

acterized by three main phases. In the first phase, the past learning experience

(metadata) must be identified and gathered taking into account the problem at

hand. This is done either by compilation of the results obtained from other sources

or by performing new experiments.

The second phase of our method involves elaboration of rankings. The past re-

sults gathered are transformed into rankings using two different measures, either

accuracy rate or the A3R measure. The A3R measure combines the accuracy with

the runtime taken by the whole process. We have adopted this measure as others

have shown that it leads to good results (Abdulrahman, 2017). It is indeed impor-

tant for a ranking to penalize solutions that take too long to achieve. This measure

allows the user to impose their own preference for runtime.

These rankings are then used to determine one that achieved the best perfor-

mance for a target dataset. This evaluation is performed with the recourse to mean

loss-time curves in leave-one-out (LOO) cross-validation mode.

Finally, the resulting rankings of workflows are analysed in order to gain insight

about the elements that aremost important for achieving good performance. At this
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stage, we propose to construct meta-model in the form of a linear regression to aid

this analysis. This model relates the workflow elements and certain components

of the workflows (e.g. feature selection) as independent or explanatory variables,

to the output variable, accuracy rate. The following sections provide more details

about the whole process.

3.2 Metadata collection

The first phase of our proposed methodology is defining the scope or extent of the

study. Although the methodology can be applied to other domains, our primary

focus is classification of text documents.

After deciding the scope of the study, it is then necessary to choose theworkflows

that will be included in the study. In our case, a workflow is defined by a certain

preprocessing strategy to be applied (the combination of the preprocessing setups)

and the classification algorithm (may include certain hyperparameter settings).

This way, we need to consider which are the possible preprocessing methods that

can be used and which settings should be considered. The same should be studied

for the classification algorithms and if these require hyperparameter settings, what

should be the actual values. These choices should be focused and justified since

considering too many options unnecessarily will backlash and increase the number

of possible workflows.

Consider the example shown in Table 3.1. There, only two preprocessing meth-

ods (stemming and stop-word removal) are considered with two settings each

in conjuction with two algorithms (random forests and neural networks), one of

which with two hyperparameter settings, will result in: 2 × 2 × 3 = 12 workflows

to consider.

Finally, the datasets should be chosen. Ideally, we would select datasets from

many different sources in order to capture a representative subset of real-world
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Table 3.1: Simple example of workflows construction.

Preprocessing
Worflow Stemming Stop-word removal Algorithm

w1 Porter Applied random forest
w2 - Applied random forest
w3 Porter - random forest
w4 - - random forest
w5 Porter Applied neural network (h1)
w6 - Applied neural network (h1)
w7 Porter - neural network (h1)
w8 - - neural network (h1)
w9 Porter Applied neural network (h2)

w10 - Applied neural network (h2)
w11 Porter - neural network (h2)
w12 - - neural network (h2)

problems. However, this is not always very realistically attainable. The results

of the study will depend on how well the datasets chosen capture the reality of

the problem since the resulting rankings will translate the aspects present in the

datasets considered.

Examples like OpenML (Vanschoren et al., 2013) make it possible to gather in-

formation about past performance of algorithms and even complete workflows. This

database includes the results of many diverse experiments carried out by different

researchers. However, since we consider runtime as an important variable when

grading workflows, we did not trust the information available there, as consistent

conditions may not have been ensured for the experiments. We have therefore car-

ried out our own experiments. Also, by running our own experiments, we are able

to choose exactly which workflows we wish to test. As suggested we combined

several preprocessing methods specific to text classification such as stemming and

sparsity correction with different classification algorithms like random forest, neural

networks and linear discriminant. We gathered several document classification tasks

from three document collections (20 news groups (Lang, 1995), Reuters (Lewis and

Ringuette, 1994) and ohsumed (Hersh et al., 1994)), freely available and typically

used for text classification experiments. These datasets were processed through the
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workflows defined earlier and both accuracy rate and runtime data were collected.

3.3 Ranking methods for workflows

This section describes the ranking methods for workflows proposed for this study.

First, we will present the measure used in conjunction with the ranking of the

workflows, accuracy rate and the A3R measure Abdulrahman and Brazdil (2014).

This is a measure that penalizes the accuracy rate for the time that a workflow

needs to generate a result. Next we present both ranking techniques used average

ranking and active testing. Average ranking Brazdil and Soares (2000) constitutes

a simple method for ranking, where the ranking of workflows for each dataset is

aggregated into a combined average ranking.

Active Testing Leite et al. (2012) is a more complexmethod, that needs an initial

workflow to start a tournament, in which a series of duels between two different

workflows takes place. This method selects the best competitor of the current best

solution based on how likely it is that the competing workflow can outperform the

current best workflow.

3.3.1 Performance measure used in ranking

Users normally prefer to obtain reasonably good solutions fast than solutions that

may be slightly better but would take longer to achieve. This preference should

be taken into account. For this reason, the accuracy rate alone does not seem to

translate this preference well when creating a ranking of workflows. To respond

to this problem, we follow the approach suggested in Abdulrahman and Brazdil

(2014), who described a measure that uses both accuracy and runtime, A3R, that

is used to compare workflows.

The original formulation of the A3Rmeasure is unnecessarily complex for meth-
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ods that do not use pairwise comparison, therefore here we opted for the simplified

formulation proposed in Van Rijn et al. (2015). Let Ai,j be the accuracy (success

rate) of workflow j on dataset i, and Ti,j be the runtime of the same workflow in

this dataset, in seconds. As such, the A3R measure is defined in Equation 3.1.

(3.1)A3Ri,j =
Ai,j(
Ti,j

)P

The P parameter featured in this formula is basically the weighting parame-

ter for the runtime in this measure. That is, as the parameter decreases, the less

importance the A3R gives to runtime. If the value for P is defined as a fraction

(P = 1
r
, T P =

r
√
T ), then when P is equal to zero, A3Ri,j = Ai,j, that is, runtime

has no effect on the overall outcome.

3.3.2 Elaborating average ranking

This method is inspired by the Friedman’s M Statistic (Neave and Worthington,

1988) and its simplicity is one of its most attractive qualities. As the name suggests,

this method consists in aggregating average of ranks the workflows achieved on the

datasets.

After gathering the results obtained by each workflow, these are ordered for

each dataset in terms of the chosen relative measure. In our case, it can be either

accuracy alone or A3R. Then, all these ranks are collected for each workflow and

aggregated by following the method described in Abdulrahman (2017). This list is

then ordered according to the averaged ranks and the result is the average ranking

of the workflows.

Table 3.2 displays an example of how an average ranking can be built for six

workflows based on their results on three datasets.

As can be seen in our table, there is a tie for the first rank for dataset d2 between

workflows w4 and w6. This problem is resolved in the usual way, by assigning to
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Table 3.2: Example on how to construct average ranking of six workflows based on the results on three
datasets.

Datasets Ranks

Workflows d1 d2 d3 d1 d2 d3 Avg. Rank Avg. Ranking

w1 80% 70% 85% 4 4 5 4.33 5
w2 88% 74% 87% 3 3 4 3.33 3
w3 78% 66% 90% 5 5 1 3.67 4
w4 91% 79% 76% 2 1.5 6 3.17 2
w5 75% 60% 89% 6 6 2 4.67 6
w6 90% 79% 88% 1 1.5 3 1.83 1

each tied value the average of the ranks that would have been assigned without ties.

This tie breaking solution is the same that is used for the Friedman’s M Statistic and

has little impact on the results. Furthermore, we can see that w1 has the average

rank of 4.33. This is the result of the average of the ranks this workflow achieved

on each dataset, as in (4+4+5)
3

= 4.33.

3.3.3 Active testing

Active testing was introduced in Leite et al. (2012) and is a method to intelligently

select the most promising model that should be tested next for a specific problem.

By taking advantage of information of the models past performance in similar tasks,

it is able to choose the most powerful adversary to compete with the best solution

found so far. It selects this adversary by looking at a history of duels between the

current best model and all other models, selecting the competitor which had better

results on similar datasets.

The similarity between datasets is defined by the history of results from these

duels, since it is assumed that a similar dataset is a dataset in which the same

two algorithms have analogous outcomes in a duel. This way, the datasets are

characterized by the performance difference between pairs of solutions that were

run on them. It is assumed, for instance, that if solution Awins, ties or loses against

solution B on dataset 1 and dataset 2, the data distribution of these two datasets
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is likely to be similar Leite et al. (2012) . This characterization of datasets works

as a sort of relative landmarking for the solutions. By adding dataset similarity,

this method is able to run through a very large set of possible fits for a problem

relatively quickly, as it focus only on the most promising solutions.

This method returns an ordered list of workflows that should be followed and

are likely to achieve the better results first – a ranking, however it needs a starting

point, a starting workflow from which it can iterate. The method used by us Abdul-

rahman (2017) proposes that the results of average ranking should be used for this

starting point, as it is an already good solution that can be obtained quickly. Given

this first solution and the history of previous duels as relative landmarks, a tour-

nament is started in which, for each round, the current best solution is compared

to the next, most promising challenger. The winner becomes the new current best

solution, the loser is disqualified. Each round contributes to further characterize

the dataset and more accurately estimate similarity between datasets.

This method can only guarantee that the best solution for each dataset (w∗dj) will

be the final winner of the tournament if all solutions are considered. For evaluation

purposes, at the end of each round the difference between the performance of

the winner and the performance of w∗dj can be computed. This difference can be

expressed in terms of loss. The goal will be then to minimize the loss while also

minimizing the time it takes to reach the best result.

After running all workflows through all datasets and recording the performance

achieved, either in terms of accuracy or A3R, the active testing is applied to each

dataset in a leave-one-out cross-validation. This means that a tournament is held

for each dataset and the performance it achieved with the workflows is kept out

when selecting the competitors to ensure no data leakage. Each tournament is

defined for each dataset, dnew and has four main stages:

1. Compute the average ranking for all datasets – leaving the dataset dnew out.

Get the highest ranking workflow in average ranking, wbest and save the per-
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formance achieved by wbest on dnew.

2. Compute the difference between the performance achieved by each work-

flow on each dataset with the corresponding performance of the wbest. Sum

the positive differences for each workflow alternative and select the work-

flow with the highest sum. This is then the workflow that has historically

won against wbest for the largest (relative) margin and therefore the most

challenging competitor, wcompetitor.

3. Get the performance ofwcompetitor on dnew and compare with the performance of

wbest. Select the winner and remove the losing workflow from the tournament.

The winner will become the new wbest.

4. Repeat the process, now excluding the losing workflow, and stop once all

the workflows have been considered or when the w∗dnew
is found, whichever

happens first.

Dataset similarity. Step 2 is where relative landmarking is established and can

be further refined if a non-binary similarity variable is introduced. The original

paper (Leite et al., 2012) proposed different methods for creating this variable and

how to iteratively improve upon it. The most promising alternative presented in

that study was a method in which the number of times two datasets agree on the

duels winners is counted. This number is later corrected according to the Laplace

method and becomes the similarity indicator. Our methodology, however, does not

contemplate this dimension, assuming that all datasets are similar to one another,

following the approach in Abdulrahman et al. (2017).
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3.3.4 Evaluation of ranking methods

Loss-time curves

A good ranking of workflows is one that permits finding good solutions for the

problem – low loss – in short amounts of time. We have decided to use loss-time

curves to evaluate how good the rankings are at achieving this goal. These curves

have the advantage of showing clearly the improvement obtained in the form of a

step function. The shorter and steeper its steps are going down, the better is the

ranking at finding the best workflow. These loss-time curves are an application of

loss curves (first proposed in Abdulrahman et al. (2015)) where runtime evaluation

is introduced to these curves. Instead of number of tests used in ordinary loss

curves, the x-axis shows the runtime. Following a ranking means running the list

of recommended workflows and each workflow takes time to execute. However,

not all the solutions improve upon the current best. In the curve this is translated

into a horizontal line that goes down vertically as soon as a better workflow has

been identified.

Figure 3.1 displays an example of the representation of two loss-time curves

corresponding to two different rankings for fictitious data. As we can see, Ranking2

is a more efficient ranking since it finds better solutions sooner than Ranking2 and

so reaches a reasonable loss sooner. Although Ranking1 ends up finding the best

solution first, Ranking2 performs a more efficient search than Ranking1.

Our figure shows the time represented on logarithmic scale. This was done

on purpose in order to highlight the loss achieved at the beginning of the curve,

corresponding to the initial tests. We assume users would be more interested in

obtaining good recommendations as quickly as possible.

Default loss. The concept of default accuracy is the accuracy that would be ob-

tained for the dataset if we labelled all instances as the majority class. This is often
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Figure 3.1: Loss-time curve example for two ranking methods.

used as the absolute baseline method1 and is the accuracy achieved at moment t0.

From this, we can compute the default loss, which is the difference between the

best possible solution for the dataset (w∗) and its default accuracy. This is the loss

that can be used to initiate each loss curve.

The loss-time curve will start at the default loss and as each workflow is exe-

cuted, we obtain its performance. If the recommended workflow achieves better

performance than the default loss, the loss-time curve will go down to the new loss

point. This will only happen, however, when the workflow finishes its execution.

The limit of the x-axis will be the time taken to execute the workflows. This way,

the earlier this ranking is able to identify the best workflow, the better.
1This classification criteria is slightly better than random choice. Because it uses more informa-

tion, it is possible to compute.
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Mean interval loss A good way to characterize these curves is by computing

the mean loss in a given time interval, which corresponds to the area below the

loss-time curve (Abdulrahman, 2017). Even though users may have their specific

preference for time, they probably have a time budget beyond which they are not

interested in running more tests. This way, we focus on the selection process within

a given interval. This concept allows us to compare different ranking methods by

comparing themean interval loss (MIL), which corresponds to the mean area in the

interval below the loss-time curve. The smaller the MIL value is, the more efficient

the ranking method is.

Mean loss-time curves

When considering a group of datasets, however, other steps need to be added when

carrying out the evaluation. Following Abdulrahman (2017), we adopt the usage

of mean loss-time curves for this aim, where all the individual loss-time curves for

the datasets are aggregated into a single curve. This makes it possible to have an

overview of how different ranking methods compare with each other across a group

of datasets, which represents a more comprehensive analysis.

The aggregation of several loss-time curves into a single curve is not trivial. To

do this we followed the method proposed by Abdulrahman et al. (2015), in which

for every point in time, the loss on each data curve is retrieved then all the values

are averaged.

3.4 Analysis of usefulness of workflow constituents

The last phase of our proposed methodology is focused on gaining insight about

what makes a good workflow for the problem at hand. This step involves using

metaknowledge gathered through the experimental phase. This is a type of knowl-

edge that is useful beyond the single learning task, as it involves transfer across
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domains. The details concerning this approach are given in the following section.

3.4.1 Meta-regression model

Our analysis of results follows a novel methodology. We propose the use of a meta-

regression model, in which the output variable is the accuracy achieved and the

explanatory variables are the components of the workflows and some features char-

acterizing the datasets. In this study we have opted for linear regression model for

the meta-regression. This model is not meant to be used as a prediction model

for accuracy, but rather as a convenient tool for the analysis of the impact of the

elements that define a workflow and the task.

The model is constructed by transforming components of the workflow into cat-

egorical variables. That is, each preprocessing method and algorithm will become

a variable, and the levels for these variables constitute the settings of each workflow.

This way, the output (accuracy) is associated with what defines the workflow. Fur-

thermore, two variables are proposed for characterizing the dataset/task: number

of classes and similarity between classes. Both these variables reflect the complexity

of the task, which influences the performance achieved on those tasks.

Since categorical variables cannot be entered directly in a linear regression

model, our explanatory variables need to be converted into numerical. If the cat-

egorical variables only have two possible levels (dichotomous), the encoding is im-

mediate and the only aspect that has to be considered is that the encoding needs to

be reflected on the interpretation of the regression (e.g. using 0/1 or -1/1). How-

ever, when a categorical variable has more than two levels, further transformations

have to be made. The most common way to deal with these types of variables is to

separate them into their levels.

We would invite the reader to consider the example on Table 3.3. There are

shown examples that can define a workflow, with preprocessing methods (stem-
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ming and sparsity correction) and the algorithm options. While both preprocessing

methods have only two possible levels (dichotomous), the example contemplates

three possible algorithms.

Table 3.3: Simplified example for meta-regression.

Stemming (stem) Sparsity correction (spar) Algorithm (algo)

setting A (0) setting C (0) setting E
setting B (1) setting D (1) setting F

setting G

While setting A and setting C can be converted in 0 and setting B and setting D

into 1, for the algorithm variable it is necessary to perform dummy codification as

shown in Table 3.4.

Table 3.4: Example of dummy encoding of a three level categorical variable.

algorithm algoE algoF

setting E 1 0
setting F 0 1
setting G 0 0

This table shows that the variable algorithm is divided in two new variables,

algoE and algoF. When algorithm is setting E, then variable algoE takes the value of

1 and variable algoF is 0. The contrary happens when algorithm is setting F. When

algorithm is setting G however, both these dummy variables are equal to 0.

Performing this transformation produces an obvious correlation between the

two new dummy variables (algoE and algoF) and also causes some variation in

the results according to the order the variables are entered in the model. This is

an aspect we do not consider too troubling since this model, as stated before, is

not designed as a prediction model for accuracy and rather an analysis tool of this

variable.

Consider Ai,j the accuracy of workflow j on dataset i. We created variables that

define both workflows as well as datasets. LetW be the ensemble of variables that
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define workflows and Q the variables that describe the dataset. In this way, there

can be as many variables for these ensembles as deemed necessary2. Then, each

Wj is defined in terms of k wp variables, one for each workflow setting, and that

each Qi is defined by m ql variables, for each dataset characteristic. All of these

variables take either the value 0 or 1 as they are all dichotomous.

The formal model equation will be given by the Expression 3.2:

(3.2)Ai,j = β0 + β1 × w1 + ...+ βk × wk + βk+1 × q1 + ...+ βk+m × qm + εi,j

where,

– wp is one variable that defines the workflows (out of k variables),

– ql is one variable that defines the type of dataset (out ofm possible variables)

and

– εi refers to the regression error for Ai,j

Using the simple example provided in Table 3.3, in which dataset characteriza-

tion variables are not considered and the necessary transformations discussed, the

meta-regression for this data is given by Expression 3.3

(3.3)Ai,j = β0 + β1 × stem+ β2 × spar + β3 × algoE + β4 × algoF + εi,j

The output of this meta-regression will consist in the estimations of the values

for the model coefficients. The sign of each coefficient estimative is indicates which

direction the corresponding variable level influences the accuracy (if β̂4 > 0, all else

equal, the accuracy increases when algorithm G is used). A t-test is performed for

each coefficient, and the corresponding p-value will tell if that particular variable

level is statistically significant (for a 5% significance level, we can reject the null

hypothesis that the corresponding β is equal to zero if p − value < 0.05). The

output also includes an F-Statistic, which corresponds to a overall significance test,
2There are some workflow elements that will have more than one level, and as seen in Table 3.4,

this will result in separating the workflow element into variables corresponding to each possible
level minus one (setting G in the example).
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and evaluates the null hypothesis that all coefficients are zero. The coefficient of

determination, or adjusted R-squared3 should also be noted, as it translated into the

fraction of the variance of accuracy that is explained by the model.

Furthermore, we propose also to perform an ANOVA Chi-squared test, the out-

put of which groups the impact of each regression variable when looking at the

variance of the target variable,

3.5 Discussion

It is at the first phase of our proposed methodology that generalization can be in-

troduced. It is by defining clearly which metadata to investigate that the scope and

application of the study is also determined. This way, any classification problem

can use our methodology for discovering the most appropriate workflows. Further-

more, by increasing the variety of domains in the metadata, at the limit considering

all possible domains, this methodology can be applied to solve any classification

problem. However, our methodology benefits from some specification of the clas-

sification problem for two reasons: first, we believe that even if we were able to

use all the past performances of all classification problems, that data would not

be useful for recommendation of workflow for a specific problem. The ranking of

workflows would most likely fit better the most performed classification tasks, be-

ing very biased toward popular domains. Second, we believe it should be offered

some liberty in this selection, so the user may decide how wide the scope of their

study should be. This method can equally be applied to all classification tasks as

well as for instance, credit scoring – both applications are valid and the insights

gained could potentially benefit other domains.

Our study consisted of applying this methodology specifically to the text clas-
3We advise looking at the adjusted R-squared instead of R-squared since these models tend to

have a lot of independent variables, which tend to increase the R-squared albeit in a artificial way.
The adjusted R-squared is an effort to correct this artificial effect of adding explanatory variables.
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sification problem. This type of problem is characterized by a special type of data

and distribution – text documents. This results not only in algorithms perform-

ing very differently on this type of classification tasks but also, in needing special

preprocessing methods.

Applying a workflow selection methodology specifically to these type of prob-

lems is new4, as we are studying preprocessing methods that can only be applied

to text data (e.g. stemming or stop-word removal).

Consider the example of the application of stemming method. The reason for

stemming words is that words with the same root-word have the same meaning

and therefore can be grouped in a single word. However, could it be that the use

of these more nuanced versions of the root word is actually important for the task

of classification of documents? Are there algorithms that would benefit from not

performing stemming more than others? We were not able to find such a com-

plete study of text classification workflows in which questions like these are clearly

addressed. This served as a motivation for carrying out this study. Next chapter

(Chapter 4) will explore the results we obtained in our study.

The second phase of our methodology consists of the application of the method-

ology proposed by (Abdulrahman, 2017) for algorithm selection problems on to

workflow selection for text classification problems. This reformulation consisted

of increasing the dimensions of the performance, as now we consider not just the

algorithm but also the data treatment applied before running the classifier.

Finally, the last phase of the methodology consists of a tool for analysing the

elements of workflows, which is not only informative but also very easy to use.

The formulation of linear regression models, where a set of variables is connected

to a target variable, computing how each variable influences it in a ceteris paribus

scenario and performing a significance test consists of a very convenient tool for the
4The study performed for the Auto-SKLearn (Feurer et al., 2015) method does include text classi-

fication problems, however does not consider specific preprocessing methods for text classification.
The author used datasets that are already had been transformed into a structured format.
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analysis of the effect of the elements of workflows and dataset characteristics. This

analysis can support decisions about which elements should be dropped and which

should be further explored in future works and definitely ascertain what makes a

good workflow.
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Chapter 4

Experimental Validation and Results

This chapter describes the experimental set-up used for the experimental validation

of the methodology presented in the previous chapter and the results obtained from

the experiments. First, we present the experimental set-up.

4.1 Experimental set-up

The experiments were performed on the same computer (for the complete hard-

ware specification refer to Table A.1) over the course of 15 days. The computer

was kept off-line for this period and had only essential software running in the

background. The experiments were done in two parts. First, all the preprocessing

strategies were applied on the data resulting in 2,400 preprocessed datasets (50

datasets were built from the 3 document collections and preprocessed in 48 differ-

ent ways) which were then ran through the 8 classification algorithms. At the end

of this process, 19,200 data points were obtained that detailed the time taken to

run the complete process (preprocessing strategy time plus algorithm) – runtime,

and the predictive accuracy obtained.
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4.1.1 Document collections

When preparing the datasets, the difficulty of the classification task was taken into

account. We assumed that the classification task will be more complex when the

labels are more similar (less distinguishable). We also presuppose that classifying

into three classes is more difficult than a task which has only two classes. Table 4.1

shows all the datasets prepared for the experiments, identifying all the classes as

well as the corresponding encoding and number of documents present. The last

column, Similar?, is used to indicate the how closely related the classes of the

dataset are. Every document present in the datasets is labelled with one class only

(single-class problems).

As can be observed in Table 4.1, three document collections were used to create

the datasets used for this study, namely, 20 news groups, reuters and ohsumed. The

20 news groups dataset is a collection of approximately 20,000 newsgroup docu-

ments1, distributed between 20 categories almost evenly. It was downloaded from

the website http://qwone.com/~jason/20Newsgroups/ which consisted of an un-

altered version of the documents, still in their email format. From this document

collection we created 23 datasets with 2 or 3 classes and varying levels of similarity

between them.

The second document collection used here was the OHSUMED collection of

medical abstracts with the MeSH categories from the year 1991. This document

collection was downloaded from http://disi.unitn.it/moschitti/corpora.htm and

consisted of all 50,216 available abstracts of cardiovascular diseases which were di-

vided in 23 categories (types of diseases). The distribution of the documents in cate-

gories is not as uniform as it was in the case of the 20 news groups datasets, therefore

we ensured a balanced class distribution when creating the datasets. Since all the

documents are abstracts frommedical journals, all classes are considered similar in
1These consist of messages and notes exchanged about a particular topic posted in something

like an on-line bulletin board system. These were the precursors of on-line forums.
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Table 4.1: Complete list of datasets, respective sources and class names.

code source class 1 class 2 class 3 no. docs similar?

n1

20 News-
groups

alt.atheism comp.graphics 1772 No
n2 alt.atheism soc.religion.christian 1795 Yes
n3 alt.atheism soc.religion.christian talk.religion.misc 2423 Yes
n4 comp.graphics comp.os.ms-windows.misc 1939 Yes
n5 comp.sys.ibm.pc.hardware comp.sys.mac.hardware 1945 Yes
n6 comp.sys.ibm.pc.hardware comp.os.ms-windows.misc comp.sys.mac.hardware 2911 Yes
n7 comp.windows.x misc.forsale 1960 No
n8 rec.autos sci.crypt 1980 No
n9 sci.electronics comp.graphics 1957 Yes
n10 sci.med talk.politics.guns 1899 No
n11 talk.politics.guns talk.politics.mideast talk.politics.misc 2624 Yes
n12 talk.politics.guns talk.politics.mideast 1849 Yes
n13 sci.space rec.sport.baseball 1981 No
n14 rec.motorcycles rec.autos 1985 Yes
n15 rec.autos alt.atheism 1788 No
n16 talk.religion.misc rec.sport.hockey 1627 No
n17 sci.crypt misc.forsale 1966 No
n18 misc.forsale rec.sport.baseball 1969 No
n19 comp.windows.x alt.atheism sci.med 1765 No
n20 sci.space talk.religion.misc misc.forsale 2590 No
n21 rec.sport.baseball rec.sport.hockey 1993 Yes
n22 sci.electronics sci.med sci.space 2961 Yes
n23 misc.forsale alt.atheism 1774 No

o1

ohsumed

neoplasms cardiovascular 12429 Yes
o2 nervous_syst immunologic 6967 Yes
o3 digestive_syst disorders_environmental 5923 Yes
o4 bacterial_infec_mycoses respiratory_tract 5129 Yes
o5 bacterial_infec_mycoses urologic_male_genital 5058 Yes
o6 respiratory_tract urologic_male_genital 5107 Yes
o7 urologic_male_genital nutritional_metabolic 4437 Yes
o8 musculoskeletal female_genital_pregnancy 3301 Yes
o9 female_genital_pregnancy skin_connective_tissue 3240 Yes
o10 musculoskeletal female_genital_pregnancy skin_connective_tissue 4918 Yes
o11 musculoskeletal skin_connective_tissue 3295 Yes
o12 virus hemic_and_lymphatic 2448 Yes
o13 virus neonatal_abnormalities 2257 Yes
o14 eye neonatal_abnormalities 2084 Yes
o15 eye endocrine 1863 Yes
o16 otorhinolaryngologic endocrine 1580 Yes
o17 stomatognathic animal 1032 Yes
o18 parasitic stomatognathic 953 Yes
o19 parasitic animal 933 Yes
o20 parasitic stomatognathic animal 1459 Yes
o21 digestive_syst immunologic 6106 Yes
o22 virus hemic_and_lymphatic neonatal_abnormalities 3534 Yes

r1

reuters

earn acq 6215 Yes
r2 crude trade 700 No
r3 crude trade money-fx 993 No
r4 money-fx interest 564 Yes
r5 trade money-fx interest 890 Yes

relation to the other. From this document collection, 22 datasets were constructed

with 2 or 3 classes.

Finally, the Reuters dataset is a collection of documents that appeared in the
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Reuters news-wire in 1987, whichweremanually assigned into categories by Reuters

staff members. However, these documents were not just assigned to one category

as a rule, which excluded many of them from this project. From the documents that

were only single labelled, a sub-collection of the 8more frequent labels was selected.

This pre-selection of documents was downloaded from http://ana.cachopo.org/

datasets-for-single-label-text-categorization (Cardoso-Cachopo, 2007) and included

some transformations (e.g. lower case of all letters, replacement of new lines with

single space, etc.). Due to the fact that this sub-collection is very small and the

category distribution is very unbalanced, only 5 datasets were created from this

source. Thus, this work used 50 datasets from 3 sources, 11 of which had 3 classes

instead of 2, and most of these datasets had similar classes.

4.1.2 Workflows

For this study, 48 preprocessing strategies and 8 classification algorithms were con-

sidered forming an hypothesis space with 384 workflows. This section describes the

settings studied.

Preprocessing methods

Five preprocessing methods were considered in our study, namely representation,

Stemming, Sparsity correction, Stop-word removal and Information gain feature selec-

tion. For all of these methods except for stop-word removal, two options were stud-

ied. The methods for representation considered were term frequency (freq) and term

frequency-inverse document frequency (tf-idf). The stemming options considered

were either no stemming (none) or the simple Porter stemming algorithm (Porter,

1980) (porter).

Due to a limitation of the hardware used for the experiments (not enough

random-access memory – RAM), it was necessary to perform some sparsity correc-
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tion (99%) by default. This way, it was possible to reduce the number of features

substantially and it allowed the learning algorithms to run. This could not be en-

sured when sparsity was not corrected since some datasets would have more than

20,000 features2.

Three possible settings for stop-word removal were considered: default, SMART

and none. Default stop-word removal refers to the standard 174 words removed

by the tm package for the English language. The SMART setting refers to a much

more extensive list (contains 571 words) composed by Chris Buckley and Gerard

Salton at Cornell University freely available at http://www.lextek.com/manuals/

onix/stopwords2.html.

Table 4.2 shows the different preprocessing methods included and correspond-

ing options studied. Appendix B presents the full preprocessing strategies3 that

were used in the experiments and their code. Each dataset was preprocessed in the

resulting 48 different ways4, which culminated in 2,400 preprocessed datasets.

Table 4.2: Preprocessing methods options considered and correspondent codified term.

Method Option 1 Code Option 2 Code Option 3 Code

Representation Tf-idf tf-idf Frequency freq
Stemming - none Porter Stemmer porter
Sparsity correction At 99% 0.99 At 98% 0.98
Stop-word removal - none Default tm default Smart list smart
Information gain FS - none More than zero IG >0

Classification algorithms

Eight algorithms were selected for our experiments that were sufficiently diverse so

as to make a representative selection of classifiers for documents. The implementa-

tion was conducted using the caret R package as it provides a consistent interface
2Terms.
3The combination of preprocessing options.
4The resulting preprocessed dataset would be the same every time, save for information gain

feature selection, in which we ensured the same seed was set.
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for all classifiers. The decision was made to use default values for all tuning pa-

rameters which were retrieved either from the original libraries or in some cases

from WEKA software equivalent default values for these algorithms5. Finally, all

workflows were run using 4-fold cross validation.

Table 4.3 shows all the classifiers considered, their code names, the original

libraries and the default tuning parameters settings chosen for the experiments.

Table 4.3: Models considered. Reference to the R libraries used and default values of the tuning param-
eters.

Model Code Libraries Tuning parameters

Linear Support Vector Machines lsvm e1071 cost = 1
Random Forest rf e1071, ranger mtry = round down

√
no.features

Neural Networks nnet nnet size = 1, decay = 0
C4.5-like Trees c4.5 RWeka C = 0.25, M = 2
k-Nearest Neighbours knn knn k = 1
Rule-Based Classifier jrip RWeka NumOpt = 2, NumFolds = 3, MinWeights = 2
Single C5.0 Tree c5.0 C50 -
Linear Discriminant ld MASS -

4.2 Exploratory metadata analysis

A short summary of descriptive statistics of the results helps to draw attention to

some particular patterns that a ranked analysis cannot do. For this reason, the

focus of this section is to provide descriptive statistics of accuracy and runtime by

dataset, since the following section will be focused on the workflow distribution

of results. This can help obtain understanding of the variance of performance in

datasets.

Figure 4.1 refers to the boxplot of accuracy rate obtained per dataset. We can

see which are the datasets that achieved the best results and also the ones which

had the worst results. We consider the mean of accuracy as a proxymeasure for the
5This was the case with the neural network and k-nearest neighbours algorithms. These classi-

fiers had no default values set in their original libraries, so the default values of the correspondent
algorithms in WEKA were used instead.
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difficulty of the task, and this analysis allows us to understand if the assumptions

made in the previous section are empirically held.

Figure 4.1: Boxplot of accuracy per dataset

The reuters dataset r2 seems to have achieved almost perfect accuracy in one

run (in fact Table C.1 shows the maximum result was 99.9%). On the other hand,

the dataset n3 has the worst result, with less than 40% of accuracy. However, the

reason for this becomes clear upon consulting Table 4.1 and observing that not

only is this a 3 class classification task but also every class covers the same topic,

religion. Another trend that can be noted from the boxplot is that the tasks from

the ohsumed dataset seem to be more difficult, which is apparent from the demon-

strated tendency of lower values for accuracy for these tasks overall. This indicates

more complex tasks, which is in line with the fact that all the datasets assembled
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from this document collection have very similar classes (types of diseases). On the

other hand, the distribution of mean accuracy seems to be more uniform for the 20

news groups datasets, which in turn indicates that the difficulty of the tasks across

this group is more uniform.

Figure 4.2 shows the boxplot of the time it took to run each complete work-

flow on the different datasets. It is possible to see that time variance matches the

variance of the number of documents in the datasets, which makes sense since the

more documents had to be processed, the longer the algorithm will take to build a

classifier. Besides that, time seems to not vary greatly. Table C.2 in the Appendix

shows the full set of descriptive statistics for runtime per dataset.

Figure 4.2: Boxplot of runtime per dataset
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4.3 Ranking of the best workflows

This section describes the results of the average ranking and the active testingmeth-

ods with our portfolio of workflows. In this study we use the text classification

datasets described earlier. Our aim was to identify the best workflows and also

to examine how much time is required to obtain a good solution with recourse to

loss-time curves.

First, the final average ranking is presented, both with the A3R measure (AR-

A3R) and using accuracy alone (AR-ACC). A section follows where the workflows

are discussed in more detail, regarding specifically the relationship between the

classifiers and preprocessing strategies that our results indicate. Then, the evalua-

tion of the method in the form of mean loss-time curves is presented and discussed.

In order to achieve the best possible results, a grid search was performed for the

parameter P from the A3R equation for both average ranking (AR) and active test-

ing (AT), even though this parameter had very little effect on AT as will be shown.

This grid search is also featured in a subsection of Section 4.3.2.

4.3.1 Average ranking method

The average rankings constructed in Table 4.4 and 4.5 were done using the full set

of data gathered in the experimental phase. Table 4.4 refers to the AR constructed

with the A3R measure (AR-A3R) that takes not only accuracy rate, but also time

into consideration. The importance of time is measured with parameter P which

was set to 1
40

as a result of the grid search optimization performed and detailed as

part of section 4.3.2.

Table 4.4 shows the top 25 workflows include linear discriminant (ld) and ran-

dom forest (rf), with rf being more common but not taking the first 3 ranks. In

relation with the preprocessingmethods, and in particular representation, both con-

figurations tf-idf and freq are present. It seems that the ld benefits more from tf-idf
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Table 4.4: Top 25 average ranking workflows considering all the datasets using A3R measure and
P = 1

40 (AR-A3R).

rank w_id repr stop stem spar info algo

1 w94 tf-idf default none 0.98 >0 ld
2 w126 tf-idf default porter 0.98 >0 ld
3 w158 tf-idf smart none 0.98 >0 ld
4 w320 freq default porter 0.98 >0 rf
5 w62 tf-idf none porter 0.98 >0 ld
6 w288 freq default none 0.98 >0 rf
7 w312 freq default porter 0.98 none rf
8 w30 tf-idf none none 0.98 >0 ld
9 w256 freq none porter 0.98 >0 rf
10 w128 tf-idf default porter 0.98 >0 rf
11 w224 freq none none 0.98 >0 rf
12 w190 tf-idf smart porter 0.98 >0 ld
13 w384 freq smart porter 0.98 >0 rf
14 w174 tf-idf smart porter 0.99 >0 ld
15 w110 tf-idf default porter 0.99 >0 ld
16 w64 tf-idf none porter 0.98 >0 rf
17 w376 freq smart porter 0.98 none rf
18 w96 tf-idf default none 0.98 >0 rf
19 w296 freq default porter 0.99 none rf
20 w352 freq smart none 0.98 >0 rf
21 w142 tf-idf smart none 0.99 >0 ld
22 w248 freq none porter 0.98 none rf
23 w120 tf-idf default porter 0.98 none rf
24 w32 tf-idf none none 0.98 >0 rf
25 w304 freq default porter 0.99 >0 rf

setting since all the workflows in the top 25, include this combination. Next, our

results suggest that stop-word removal is better than none, with the default setting

having some edge over smart. In regard to stemming, the top 25 seems to suggest

a slight lead for the Porter stemming algorithm. Moving on to the last two prepro-

cessing methods, 98% setting on sparsity correction seems to greatly benefit the

results, and feature selection with information gain is also beneficial.

The complete ranking of the workflows obtained with AR-A3R can be found in

the Appendix, Table D.1. As a matter of interest, the workflow setting that achieved

the worst rank was w68, in which the algorithm used is the K-Nearest Neighbours

classifier, uses tf-idf representation, with default stop-word removal, no stemming

56



and sparsity correction done at 99%.

Table 4.5: Top 25 average ranking workflows considering all the datasets using accuracy rate alone
(AR-ACC).

rank w_id repr stop stem spar info algo

1 w360 freq smart porter 0.99 none rf
2 w168 tf-idf smart porter 0.99 none rf
3 w296 freq default porter 0.99 none rf
4 w104 tf-idf default porter 0.99 none rf
5 w328 freq smart none 0.99 none rf
6 w264 freq default none 0.99 none rf
7 w232 freq none porter 0.99 none rf
8 w136 tf-idf smart none 0.99 none rf
9 w40 tf-idf none porter 0.99 none rf
10 w72 tf-idf default none 0.99 none rf
11 w176 tf-idf smart porter 0.99 >0 rf
12 w312 freq default porter 0.98 none rf
13 w376 freq smart porter 0.98 none rf
14 w112 tf-idf default porter 0.99 >0 rf
15 w184 tf-idf smart porter 0.98 none rf
16 w368 freq smart porter 0.99 >0 rf
17 w304 freq default porter 0.99 >0 rf
18 w120 tf-idf default porter 0.98 none rf
19 w200 freq none none 0.99 none rf
20 w48 tf-idf none porter 0.99 >0 rf
21 w336 freq smart none 0.99 >0 rf
22 w272 freq default none 0.99 >0 rf
23 w174 tf-idf smart porter 0.99 >0 ld
24 w144 tf-idf smart none 0.99 >0 rf
25 w8 tf-idf none none 0.99 none rf

The top 25 workflows ranked on accuracy alone (AR-ACC) tell a different story,

however. Even though ld still appears in the 23rd position, this ranking is clearly

dominated by the rf algorithm which occupied the remaining 24 ranks. Regarding

the preprocessing methods, and in particular the representation format, a surpris-

ing result is that the very top rank is occupied by freq, however, both formats are

featured in a similar way in this ranking. Regarding the stop-word removalmethod,

again the top 25 features default and smart almost equally, with a slight lead to

smart this time. The Porter stemming algorithm is also quite frequent, more so here

than it was in the top 25 of AR-A3R. Finally, regarding sparsity correction and fea-
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ture selection with information gain, surprisingly the very opposite happens with

AR-ACC when compared with AR-A3R. Here the settings with less preprocessing

both clearly win, with 99% for sparsity correction and no information gain feature

selection. It should be noted again that the difference between AR-A3R and AR-

ACC is that the latter does not take runtime into account. Workflows which reduce

the number of features will result in shortening of the runtime as well, which ac-

counts for workflows that featuremore preprocessing being favoured in the AR-A3R

in the same measure as the importance that is given to runtime (the P paramenter).

These results suggest that even though increasing sparsity correction and filtering

features based on their information gainmay decrease the runtime, it does not seem

to benefit accuracy on its own.

The full ranking can be found also in the Appendix, on Table E.1. In the case of

AR-ACC, the worst result comes with workflow w212, again with the knn algorithm

and almost no preprocessing done, besides a 98% setting on the sparsity correction

and representation of the frequency format.

4.3.2 Evaluation of ranking methods

In order to construct a recommendation of workflows for document classification

problems, both average ranking and active testing ranking methods were con-

structed. So far, we presented the average ranking results as the method allows

for a ranked list of workflows to be presented. This is not the case with active

testing, which chooses the best competitor for one starting workflow and performs

duels iteratively. For this reason, the results of this method are only presented in

this section, where we will discuss the quality of the recommendations of work-

flows it returns. Meaning, how fast the user reaches a reasonable amount of loss

when following the ranking proposed by these methods.

This evaluation will be performed with the recourse to mean loss-time curves
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and calculating the corresponding MIL (mean interval loss). These were assembled

using a leave-one-out cross validation method. This method allows for an easy and

effective way of assessing how effective the ranking of workflows is in identifying

the potentially best alternative.

Optimization of the P parameter value

The original paper (Abdulrahman et al., 2017) that proposed the A3R measure for

evaluating rankings of algorithms performed a grid search optimization in order

to find the more beneficial values for the P parameter. Both AR-A3R and AT-A3R

use the A3R measure, however the AT-A3R method needs a starting point for its

iterative search. This means that the A3R measure used for the AR-A3R that jump-

starts the AT-A3R method may have a different P parameter value from the one

used for AT-A3R method. Since this is solely a starting point, it is not considered

to be a problem albeit something that warrants explanation.

The grid search optimization of the MIL measure that was performed for the

AR-A3R and the AT-A3R methods can be examined on Table 4.6. The P parameter

seems to have a greater impact on the AR-A3R and just barely any on AT-A3R.

Table 4.6: MIL value for different settings of parameter P.

P (AR) 1/5
1/10

1/22
1/32

1/40
1/42

1/45
1/75

MIL 5.56 5.63 5.48 5.40 5.31 5.68 8.47 12.11

P (AT) 1/1
1/13

1/21
1/34

1/55
1/90

1/91
1/144

MIL 6.08 5.67 5.51 5.31 5.16 5.1286 5.13 5.13

Figure 4.3 reveals the impact of different P values on the AR-A3R performance.

As it would be expected, if P decreases (P → 0), the AR-A3R becomes very similar

to the AR-ACC6 and therefore the loss-time curves associated with each become the

same. The best P parameter value foundwas 1
40
and is depicted in this figure in blue.

6AR-ACC is equivalent to AR-A3R in which: P = 0
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This setting is somewhat different from the one identified by the authors Abdulrah-

man et al. (2017) (P = 1
64
), however in that study the classification datasets were

very different. Here, we are looking solely at text classification and this problem

was not considered for that study.

Figure 4.3: Mean loss-time curve study of AR-A3R parameter P. The alternatives considered are P = 1
5 ,

P = 1
40 and P = 1

75 .

As was mentioned before, the P parameter value does not seem to have much

impact for this data for the AT-A3R method as we can see in Figure 4.4. Especially

when the P parameter becomes very small, the impact becomes negligible. When

P is relatively high, which means that the A3R measure is giving more weight to

runtime, the AT-A3R becomes less efficient at searching for the best workflows.

The best value of the P parameter is in the end quite small ( 1
90
) which leads us
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to conclude that runtime does not have much impact on the performance of the

AT-A3R ranking method.

Figure 4.4: Mean loss-time curve study of AT-A3R parameter P. The alternatives considered are P = 1,
P = 1

90 and P = 1
233 .

Mean loss-time curves

Figure 4.5 presents the final mean loss-time curves for the average ranking method,

AR-ACC and AR-A3R, and the active testing method, AT-A3R, applied to our data.

First, this plot evidences the great gain in loss-time from using AR-A3R compared to

the AR-ACC, which is quite expectable. As stated previously, this analysis evaluates

the method based on how much time it takes the user to obtain a reasonable loss,

since the AR-A3R considers runtime in its ordering of workflows, it will always get
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an advantage against AR-ACC which solely considers accuracy rate.

Figure 4.5: Mean loss-time curves for all ranking methods considered: AR-ACC (average ranking using
accuracy alone), AR-A3R (average ranking using A3R measure and P =1 /40) and AT-A3R (active
testing using A3R measure and P =1 /90).

Table 4.7: MIL measurements for the three rankings: AR-ACC, AR-A3R and AT-A3R.

AR-ACC AR-A3R AT-A3R

MIL 12.136 5.305 5.129

Then, comparing just AR-A3Rwith AT-A3R, we can seen that the latter is slightly

more efficient than the former. However, this win is only achieved in later points in

time. For instance, at 100 seconds (102), the AR-A3R method is actually returning

better workflows, for amean loss of around 2.5pp. This is also identified in Table 4.7

where the MIL measure is better for the AT-A3R method, even if by a very small
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difference. This indicated that even a very plain method like average ranking, with

a very fast and simple implementation can be more beneficial. This, however, is

also related to the fact that the version of active testing used is a simplified variant,

in which similarity between datasets is not considered in the iterative search. It

is our expectation that this method would benefit from taking similarity between

datasets into account.

4.4 Identifying the important elements of the work-

flows

The first conclusion that can be taken from observing both average rankings de-

picted in this chapter is that from the learning algorithms that were featured in

the experiments, two of them dominated both rankings, with random forest being

the winner overall. This fact has supported our conviction that the right pairing of

preprocessing methods and classifiers is more important than just considering the

algorithm selection problem. This section is dedicated to understanding the com-

ponents that make a good workflow for our data. First, we make a short analysis of

the pairings that are more successful for each dataset, by analysing both AR-ACC

and AR-A3R. Then, we end this chapter with a linear regression analysis which

enables the statistical identification of the impact of the workflow components on

the final accuracy achieved by the workflows.

4.4.1 Algorithms and preprocessing pairings

Table 4.8 orders all the algorithms featured in theworkflows by their overall ranking

position, and displays the highest rank each algorithm achieved in both AR-ACC and

AR-A3R.

Observing the complete ranks (Tables E.1 and D.1 found in the Appendix) allows
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Table 4.8: Algorithm and its highest rank in both AR-ACC and AR-A3R.

Highest rank
Algorithm AR-ACC AR-A3R

Random Forest 1st 4th
Linear Discriminant 23rd 1st
Linear Support Vector Machines 50th 53rd
Neural Networks 83rd 80th
Single C5.0 Tree 126th 103rd
C4.5-like Trees 123rd 110th
Rule-Based Classifier 180th 173rd
k-Nearest Neighbours 257th 248th

us to notice which algorithms benefited the most from each preprocessing strategy

and to realize the differences between AR-A3R and AR-ACC, which gives insight

about the impact of runtime for the AR-A3R method. Looking at the distribution

of the preprocessing strategies on the rankings for each algorithm, it is possible to

conclude that feature selection using information gain is the preprocessing method

with most impact across the algorithms. For almost all, the top half of their ranks

are mostly characterized by the use of this method. This was so remarkably so in

the case of linear discriminant ld and linear support vector machines lsvm, that the

exact (24) top half ranks of both AR-ACC and AR-A3R had the ig>0 setting. This

has also happened in the case of the neural networks (nnet) but only for the AR-

A3R, even though their AR-ACC also benefited greatly from this setting. However,

for the rf algorithm this was not the case, and more specifically for AR-ACC, the

best results were achieved when ig feature selection was not applied and this was

also the same ranking where rf was the clear winner (see Table 4.5).

In fact, the rf presents the most atypical pattern in its settings for the ranking of

preprocessing methods. Freq representation format wins for AR-A3R and the 99%

sparsity correction (our lowest spar setting), achieves the highest ranks for AR-ACC.

Since this is also the winning algorithm, it leads us to believe that this classifier

does not require as much preprocessing and feature selection and has the learning

bias that better adapts to this data. We suspect that this is the result of rf having
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a tuning parameter in which the default value takes the number of features into

account (mtry).

Furthermore, it is possible to observe that the ld classifier, although definitely

the second most successful algorithm, does not have a very uniform performance

in comparison with rf. Indeed, its worst rank is 378th for AR-ACC and 374th for

AR-A3R. In fact, a pattern is easily identifiable for the worst workflows with this

algorithm: the less preprocessing performed, the worse the results. Finally, the

exceptional ranks that these workflows achieve with the AR-A3R do not hold for

the AR-ACC because even though this algorithm is remarkably fast, its accuracy

rate can be topped by other less efficient algorithms.

The lsvm algorithm also seems to suffer drawbacks from using freq format of

representation as most of the bottom ranks for this algorithm are characterized by

this setting and porter stemming seems to benefit single c5.0 tree classifier. The re-

maining algorithms do not show a consistent preprocessing pairing pattern besides

the aforementioned benefit from using information gain for feature selection.

4.4.2 Meta-Regression analysis

Our aim was to determine automatically how important different constituents of

workflows are. We have decided to use regression analysis and corresponding

ANOVA chi-squared test output for this goal, as this method is able to identify how

significant each variable is. The conclusions are quite in line with the analysis so

far, however a regression model offers statistical significance information and the

quantifiable effects of the set-ups. This model is not intended to be used as a pre-

diction tool for accuracy, it is only thought of as a tool for a better understanding

of how some variables make accuracy vary.

To construct the linear regression model, the workflow options considered for

the experiments were transformed into categorical variables (inR, factors). Besides
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this, we have used two additional variables to describe the datasets: one describing

the number of classes of the dataset and another characterizing the similarity of

classes (see Table 4.1). In this way, the linear model has all the workflow set-up

variables and dataset descriptor variables as independent or explanatory variables

and accuracy as the dependent or explained variable. The formula that defines our

meta-regression model is

(4.1)Accuracy = β0 + β1 × Algorithm+ β2 ×Repr + β3 × Stop+ β3 × Stem
+ β4 ×No.Class+ β5 × Similar + β6 × Spar + β7 × Info+ ε

The regression model estimated from the data the output shown in Table 4.97.

Table 4.9: Output of linear regression model.

Call:
lm(formula = accuracy ~ algorithm + repr + stop + stem + no_class

+ similar + spar + info, data = reg_data)

Residuals:
Min 1Q Median 3Q Max

-0.34658 -0.03018 0.03630 0.03727 0.18763

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9382423 0.0017756 528.406 <2e-16 ***
algo_c4.5 -0.0034122 0.0017308 -1.971 0.04869 *
algo_jrip -0.0173145 0.0017308 -10.004 <2e-16 ***
algo_knn -0.0603282 0.0017308 -34.856 <2e-16 ***
algo_ld -0.0386163 0.0017308 -22.311 <2e-16 ***
algo_nnet -0.0067444 0.0017308 -3.897 9.79e-05 ***
algo_rf 0.0493420 0.0017308 28.508 <2e-16 ***
algo_lsvm 0.0170972 0.0017308 9.878 <2e-16 ***
repr_tf-idf 0.0094334 0.0008654 10.901 <2e-16 ***
stop_none -0.0056571 0.0010599 -5.337 9.53e-08 ***
stop_smart 0.0031514 0.0010599 2.973 0.00295 **
stem_porter 0.0061706 0.0008654 7.130 1.04e-12 ***
no.class_3 -0.0893328 0.0010446 -85.519 <2e-16 ***
similar_1 -0.0685716 0.0009637 -71.152 <2e-16 ***
spar_0.99 0.0014016 0.0008654 1.620 0.10533
info_none -0.0326097 0.0008654 -37.681 <2e-16 ***
—
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’·’ 0.1 ’ ’ 1

Residual standard error: 0.05996 on 19184 degrees of freedom
Multiple R-squared: 0.5019, Adjusted R-squared: 0.5015
F-statistic: 1289 on 15 and 19184 DF, p-value: < 2.2e-16

7In this output the coefficients are defined as one setting of the workflows to make clear the
dummy encoding performed of the explanatory variables. For instance, when variable repr equals to
0 it corresponds to frequency format, and when it is 1 it corresponds to the tf-idf format.
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The F-statistic obtained shows a very low p-value, which allows us to reject the

null hypothesis that all the regression coefficients are zero. Furthermore, almost all

the coefficients are statistically significant with very low p-values for their t statis-

tic8 (in reality only the variable concerning sparsity is not statistically significant).

It is interesting to observe the effect of the dependent variables by looking at the

signal of the coefficients. For instance, it can be noted that algorithms rf and lsvm

have a positive impact on accuracy, which goes in line with the position workflows

with these algorithms have obtained in the general rank, and furthermore that the

coefficient of knn has a negative sign. The workflows with this classifier obtained

consistently bad relative results (Table E.1). Moreover, it is possible to note that

preprocessing has a positive impact in accuracy. The coefficient of stop_none re-

ferring to the situation of not performing any stop-words removal is negative. It is

suggested that applying information gain feature selection is particularly beneficial.

Finally, the dataset described as being more complex (when the number of classes

is 3 and the classes are similar to each other) not only has a negative impact on ac-

curacy, but this variable is also accompanied by a larger (absolute value) coefficient

- indicating that this factor has a significant effect on the performance.

The adjusted R squared statistic9 or adjusted coefficient of determination, which

is ameasure of goodness of fit, is just over 50%. Amore detailed analysis of variance

in this model is presented in the ANOVA output table 4.10.

In this output it is possible to observe which variables have the most impact on

the variance of the target variable, that is, accuracy. Specifically, the type of algo-

rithm and the information gain have the most significant impact on the dependent

variable. Only variable spar does not have statistical significance for the variance

of accuracy. We would speculate that the reason is that the difference between the
8Since the t statistic is the result of the coefficients estimates, β̂i, divided by their standard errors,

σ̂i, the p-value is the probability of obtaining a t statistic as high as if the null hypothesis was true,
meaning if β̂i = 0.

9R-squared is the fraction by which the variance of the errors is less than the variance of the
dependent variable.
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Table 4.10: Output of ANOVA Chi-squared test of linear regression model.

> anova(linearReg, test = "Chisq")

Analysis of Variance Table

Response: accuracy

Df Sum Sq Mean Sq F value Pr(>|t|)
algorithm 7 18.636 2.6623 740.5811 <2.2e-16 ***
repr 1 0.427 0.4271 118.8230 <2.2e-16 ***
stop 2 0.255 0.1275 35.4655 4.226e-16 ***
stem 1 0.183 0.1828 50.8409 1.037e-12 ***
no.class 1 26.671 26.6707 7419.1885 <2.2e-16 ***
similar 1 18.199 18.1990 5062.5650 <2.2e-16 ***
spar 1 0.009 0.0094 2.6231 0.1053
info 1 5.104 5.1043 1419.8926 <2.2e-16 ***
Residuals 19184 68.963 0.0036
—
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’·’ 0.1 ’ ’ 1

two settings for sparsity correction is not significant enough to impact accuracy.
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Chapter 5

Conclusions and future work

The study presented in this dissertation focused on text classification tasks. Text

classification is a method increasingly used by many professionals. It also differs

greatly from any other classification task because of the data that it uses, as it

requires converting documents into tables representing a structured format. The

preprocessing methods required for this conversion are mostly specific to text clas-

sification. Also, the performance of algorithms is specific on this type of tasks due

to the sparse nature of the data.

For this dissertation we have conducted an empirical study of the performance

and runtime of 384 workflows on 50 text classification tasks. The results of this

study were analysed in detail and applied to the construction of three rankings of

workflows using different ranking methods and according to a measure that com-

bines accuracy and runtime, A3R. In addition, the data from the experiments was

also used for the construction of a meta-regression model which related the con-

stituents of the workflow and some dataset characteristics to the accuracy achieved.

We were able to conclude that the random forest algorithm was the best algo-

rithm for the text classification tasks considered. The workflows that featured this

algorithm had not only exceptionally good accuracy, but also very short runtimes.

This is due to the use of a fast implementation of this algorithm, ranger (Wright
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and Ziegler, 2017). This algorithm was present in most top ranks for any of our

ranking methods. Regarding the effects of preprocessing we note that information

gain feature selection, which benefited greatly the other algorithms, had a negative

impact on workflows featuring the random forest.

The linear discriminant classification algorithm produced very efficient work-

flows in the A3R-based ranking of workflows. This leads us to conclude that this

algorithm not only has a generally good performance, but is very fast at producing

results. This fact brought workflows that featured this algorithm to the the top of

the rankings.

Furthermore, we built a meta-regression model which was able to accurately

identify the workflow elements which had the largest (and lowest) impact on ac-

curacy. This analysis gave us informed clues as to where the highest potential is

when it comes to constructing text classification workflows and also which settings

should be used or abandoned in future work. This convenient tool produced con-

clusions that were in line with the metadata exploratory analysis performed.

The sections will feature a discussion of our results, with reference to the limi-

tation of the study. In the last section we will present future work.

5.1 Limitation of this work

There are some aspects of our study that deserve some discussion. Some of them

are potential limitations and in some other cases, we would like to state the reasons

for some decisions we made.

Datasets variety. The decision of using only three sources for the text classifica-

tion tasks considered was a difficult one. These sources are widely used in text clas-

sification in literature and are easily accessible which makes our study reproducible

in the future. Furthermore, the use of these datasets allows for direct comparisons
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of our study with other studies that used the same data. However, this is a very

short list of sources and we are afraid that it is not representative enough of many

real applications in text classification. The results could be somewhat different if

the documents used came from social networks, particularly Twitter. This type of

text is one of the most exciting applications of text classification nowadays and one

of the most challenging, due to the short nature of tweets. Ultimately the decision

fell on the reproducibility argument and on the fact that we were not able to find

third-party sources in which tweets were consistently categorized into classes. This

would represent extra work, while the time to carry out the experimental work is

rather limited.

The algorithms. Our preference was to use a representative variety of classifiers,

and we opted to use default values for their hyperparameters. This decision was

made for the sake of comparability since hyperparameter tuning effectively changes

the algorithm. For this reason some algorithms were clearly in a disadvantage, in

particular the neural networks, which normally achieve good results when some

tuning is carried out. Moreover, the rankings featured always the same two algo-

rithms in the top positions. While this is certainly an indicator that these algorithms

are very good fits for the text classification problem, it raises also the question of

whether they had an unfair advantage. Specifically in the case of random forests.

Even though the default settings were used, these settings introduced some adjust-

ment to the specific task by considering the number of features. On one hand this is

a sign of very intelligent algorithm design, when the default hyperparameters are

able to adhere to the particular dataset. On the other hand, this could indicate that

perhaps allowing some tuning of the hyperparameters based on the number of fea-

tures may be a good strategy. Particularly in the case of neural networks, allowing

for some tuning based on the number of the features in the task could useful.
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Rankingmethods used. Even though we are very satisfied with the fact that such

a simple method like average ranking was able to achieve such good quality, other

alternatives could be explored. This method is very biased towards the sample of

datasets used for its creation. It would probably have faired worse, had the datasets

been more diverse. Additionally, we would have liked to explore the potential of

Active Testing further. However, the implementation of this method in its original

set-up has revealed itself too complex to tackle for this study.

Meta-regression for analysis, not prediction. Finally, as was stated often through-

out this dissertation, our meta-model is not meant to be used as a prediction tool

for accuracy, rather of analysis of the elements of workflows. There are several rea-

sons for this, the main one being that the construction of the model is not able to

guarantee that the necessary assumptions for linear regression model to be used

for prediction are met. It is for this reason that we do not correct for correlation

when performing the dummy encoding explained in Chapter 3. We consider that the

limitations of a predictor of this form would actually defeat its purpose, as in order

to capture enough workflows to be useful at predicting accuracy, the significance

of the model would be seriously impaired. As well as considering the data used to

build the model, the independence between the data-points is unlikely, since the

source document collections are only 3.

5.2 Future work

Based on the results and conclusions we presented, future work on this study could

be focused on the following points.

• Drop workflow elements that performed worse: Drop sparsity correction us-

ing 99% as the only setting and drop smart stop-word removal. From the eight
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algorithms, only keep using random forest, linear SVM, linear discriminant and

neural networks.

• Explore other preprocessing methods: In particular topic modelling.

• Increase dataset variety: Use different document collections and from more

distinct sources, like reddit or twitter.

• Carry out some hyperparameter tuning: Investigate tuning of hyperparam-

eters particularly for neural networks. Consider a way to incorporate the num-

ber of features (or an indicator of it).

• Improvement of Active Testing: Considering similarity between datasets.

• Comparison study to other ranking techniques and autoML methods: Ap-

plying a metalearning approach to autoML has proven itself very useful for

algorithm selection and we would like to test how our method would fare in

comparison.
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Appendix A

Computer specifications

Table A.1: Specification of computer in which the experiments were run.

Desktop computer specifications

Processor Intel Core i5 3330 3.0 GHZ 6 Mb
RAM 8 GB
Graphic Card Asus GTX 660
SSD 2.5" Samsung 850 Evo 500GB TLC SATA
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Appendix B

Preprocessing strategies

Table B.1: Full set of preprocessing strategies considered for the experiments.

p_id repr stop stem spar info average no. terms

p1 td-idf none none 0.99 none 1613.2
p2 td-idf none none 0.99 >0 357.7
p3 td-idf none none 0.98 none 846.94
p4 td-idf none none 0.98 >0 267.76
p5 td-idf none porter 0.99 none 1457.44
p6 td-idf none porter 0.99 >0 305.02
p7 td-idf none porter 0.98 none 847.02
p8 td-idf none porter 0.98 >0 247.38
p9 td-idf default none 0.99 none 1519.54
p10 td-idf default none 0.99 >0 337.4
p11 td-idf default none 0.98 none 761.58
p12 td-idf default none 0.98 >0 242.16
p13 td-idf default porter 0.99 none 1371.56
p14 td-idf default porter 0.99 >0 287.96
p15 td-idf default porter 0.98 none 767.98
p16 td-idf default porter 0.98 >0 226.44
p17 td-idf smart none 0.99 none 1343.52
p18 td-idf smart none 0.99 >0 316.52
p19 td-idf smart none 0.98 none 630.64
p20 td-idf smart none 0.98 >0 215.44
p21 td-idf smart porter 0.99 none 1243.12
p22 td-idf smart porter 0.99 >0 271.58
p23 td-idf smart porter 0.98 none 659.92
p24 td-idf smart porter 0.98 >0 205.9
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p_id repr stop stem spar info average no. terms

p25 freq none none 0.99 none 1613.2
p26 freq none none 0.99 >0 315.58
p27 freq none none 0.98 none 846.94
p28 freq none none 0.98 >0 237.2
p29 freq none porter 0.99 none 1457.44
p30 freq none porter 0.99 >0 267.72
p31 freq none porter 0.98 none 847.02
p32 freq none porter 0.98 >0 217.58
p33 freq default none 0.99 none 1519.54
p34 freq default none 0.99 >0 297.28
p35 freq default none 0.98 none 761.58
p36 freq default none 0.98 >0 214.92
p37 freq default porter 0.99 none 1371.56
p38 freq default porter 0.99 >0 252.06
p39 freq default porter 0.98 none 767.98
p40 freq default porter 0.98 >0 199.12
p41 freq smart none 0.99 none 1343.52
p42 freq smart none 0.99 >0 279.78
p43 freq smart none 0.98 none 630.64
p44 freq smart none 0.98 >0 192.78
p45 freq smart porter 0.99 none 1243.12
p46 freq smart porter 0.99 >0 238.26
p47 freq smart porter 0.98 none 659.92
p48 freq smart porter 0.98 >0 181.94
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Appendix C

Summary statistics by dataset

C.1 Summary statistics of accuracy by dataset

Table C.1: Summary statistics of accuracy by dataset

Data Mean Std. dev. Min. Max. Median

n1 0.913 0.051 0.606 0.981 0.911

n2 0.882 0.056 0.615 0.950 0.893

n3 0.724 0.073 0.375 0.843 0.735

n4 0.811 0.053 0.503 0.910 0.818

n5 0.812 0.046 0.637 0.899 0.808

n6 0.731 0.066 0.503 0.859 0.739

n7 0.890 0.050 0.616 0.959 0.890

n8 0.912 0.061 0.559 0.982 0.918

n9 0.820 0.061 0.520 0.923 0.816

n10 0.900 0.054 0.661 0.966 0.902

n11 0.783 0.080 0.456 0.910 0.805

n12 0.897 0.073 0.521 0.977 0.903

n13 0.915 0.059 0.582 0.987 0.912

n14 0.880 0.058 0.546 0.951 0.888

n15 0.917 0.049 0.624 0.983 0.920

n16 0.918 0.056 0.653 0.987 0.925

n17 0.914 0.059 0.573 0.977 0.923

n18 0.908 0.049 0.621 0.978 0.904

n19 0.833 0.078 0.451 0.945 0.845

n20 0.835 0.068 0.498 0.932 0.843
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Data Mean Std. dev. Min. Max. Median

n21 0.882 0.065 0.542 0.977 0.879

n22 0.789 0.076 0.536 0.922 0.793

n23 0.929 0.051 0.587 0.986 0.931

o1 0.905 0.036 0.745 0.939 0.917

o2 0.868 0.044 0.693 0.908 0.888

o3 0.835 0.054 0.656 0.904 0.850

o4 0.793 0.051 0.597 0.865 0.807

o5 0.853 0.048 0.642 0.912 0.865

o6 0.874 0.052 0.659 0.941 0.884

o7 0.822 0.042 0.677 0.890 0.830

o8 0.883 0.048 0.685 0.942 0.893

o9 0.847 0.047 0.656 0.913 0.859

o10 0.714 0.075 0.473 0.816 0.737

o11 0.749 0.049 0.586 0.826 0.759

o12 0.846 0.048 0.663 0.905 0.862

o13 0.885 0.045 0.688 0.942 0.896

o14 0.851 0.051 0.645 0.922 0.860

o15 0.867 0.058 0.528 0.924 0.883

o16 0.875 0.063 0.570 0.942 0.890

o17 0.878 0.063 0.567 0.945 0.890

o18 0.855 0.059 0.558 0.943 0.864

o19 0.821 0.061 0.548 0.889 0.837

o20 0.747 0.083 0.443 0.870 0.768

o21 0.862 0.050 0.648 0.922 0.872

o22 0.734 0.074 0.508 0.840 0.755

r1 0.962 0.017 0.843 0.984 0.962

r2 0.959 0.067 0.619 0.999 0.974

r3 0.899 0.113 0.465 0.987 0.936

r4 0.853 0.041 0.661 0.915 0.862

r5 0.822 0.084 0.485 0.926 0.843

C.2 Summary statistics of time by dataset

Table C.2: Summary statistics of time by dataset

Data Mean Std. dev. Min. Max. Median

n1 38.76 18.43 16.58 107.54 33.59

n2 44.54 25.05 16.09 130.91 35.89
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Data Mean Std. dev. Min. Max. Median

n3 70.74 49.94 19.50 263.68 50.47

n4 31.87 15.56 11.35 79.79 26.98

n5 25.69 12.69 9.37 64.25 20.71

n6 49.67 30.22 14.48 159.97 39.30

n7 31.83 13.64 12.52 75.79 29.46

n8 43.23 21.24 16.38 115.78 37.18

n9 32.83 17.39 10.74 91.06 26.71

n10 46.28 24.08 18.16 124.03 38.12

n11 109.60 73.63 32.60 459.17 82.58

n12 60.14 31.95 23.57 181.71 49.68

n13 41.93 23.78 15.11 130.89 34.00

n14 32.67 17.77 10.71 91.67 27.98

n15 37.92 19.08 15.10 110.36 32.35

n16 35.60 16.53 15.44 93.69 31.29

n17 40.32 17.44 16.16 95.95 36.18

n18 33.38 14.39 13.26 78.78 31.02

n19 81.87 46.34 25.49 267.95 67.96

n20 67.67 37.27 21.17 204.20 57.15

n21 39.82 21.41 13.03 114.21 33.37

n22 79.97 54.32 21.02 278.38 62.47

n23 32.43 12.81 12.64 71.51 29.59

o1 654.04 784.12 69.18 4632.06 326.93

o2 203.66 206.72 31.42 1237.87 133.02

o3 151.09 144.97 25.56 842.28 97.72

o4 118.59 119.07 23.13 610.22 69.47

o5 105.70 98.46 22.66 590.94 70.23

o6 101.88 102.49 21.68 625.46 62.43

o7 98.76 80.35 21.23 453.15 72.44

o8 54.71 37.86 14.93 221.63 43.77

o9 51.52 34.85 14.94 203.05 39.57

o10 116.60 107.44 20.22 530.30 75.05

o11 61.34 54.33 13.88 311.94 37.87

o12 37.96 21.84 12.24 123.93 30.32

o13 35.06 18.69 11.80 104.19 28.59

o14 29.61 16.32 10.19 81.43 23.29

o15 26.06 13.40 9.93 70.37 20.92

o16 23.46 11.81 8.58 68.86 19.06

o17 14.00 5.70 6.41 33.98 12.53

o18 12.63 5.47 5.62 32.39 11.28
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Data Mean Std. dev. Min. Max. Median

o19 13.71 5.77 6.46 34.45 12.21

o20 22.61 11.33 8.00 62.57 18.67

o21 164.22 157.81 28.57 931.37 108.30

o22 73.83 50.53 17.40 269.62 61.89

r1 66.32 63.77 17.84 380.00 48.59

r2 10.85 3.83 5.18 25.56 10.21

r3 16.73 7.07 7.85 52.58 15.23

r4 7.12 2.61 3.23 19.57 6.61

r5 13.74 5.45 6.77 40.00 12.52
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Appendix D

Workflow ordered rank - A3R (p=40)

Table D.1: Full workflow ordered rank considering all datasets - A3R (p=40).

workflow repr stop stem spar info algo

1 w94 td-idf default none 0.98 >0 ld

2 w126 td-idf default porter 0.98 >0 ld

3 w158 td-idf smart none 0.98 >0 ld

4 w320 freq default porter 0.98 >0 rf

5 w62 td-idf none porter 0.98 >0 ld

6 w288 freq default none 0.98 >0 rf

7 w312 freq default porter 0.98 none rf

8 w30 td-idf none none 0.98 >0 ld

9 w256 freq none porter 0.98 >0 rf

10 w128 td-idf default porter 0.98 >0 rf

11 w224 freq none none 0.98 >0 rf

12 w190 td-idf smart porter 0.98 >0 ld

13 w384 freq smart porter 0.98 >0 rf

14 w174 td-idf smart porter 0.99 >0 ld

15 w110 td-idf default porter 0.99 >0 ld

16 w64 td-idf none porter 0.98 >0 rf

17 w376 freq smart porter 0.98 none rf

18 w96 td-idf default none 0.98 >0 rf

19 w296 freq default porter 0.99 none rf

20 w352 freq smart none 0.98 >0 rf

21 w142 td-idf smart none 0.99 >0 ld

22 w248 freq none porter 0.98 none rf

23 w120 td-idf default porter 0.98 none rf
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24 w32 td-idf none none 0.98 >0 rf

25 w304 freq default porter 0.99 >0 rf

26 w192 td-idf smart porter 0.98 >0 rf

27 w280 freq default none 0.98 none rf

28 w112 td-idf default porter 0.99 >0 rf

29 w344 freq smart none 0.98 none rf

30 w360 freq smart porter 0.99 none rf

31 w176 td-idf smart porter 0.99 >0 rf

32 w184 td-idf smart porter 0.98 none rf

33 w168 td-idf smart porter 0.99 none rf

34 w78 td-idf default none 0.99 >0 ld

35 w368 freq smart porter 0.99 >0 rf

36 w46 td-idf none porter 0.99 >0 ld

37 w104 td-idf default porter 0.99 none rf

38 w240 freq none porter 0.99 >0 rf

39 w160 td-idf smart none 0.98 >0 rf

40 w336 freq smart none 0.99 >0 rf

41 w56 td-idf none porter 0.98 none rf

42 w272 freq default none 0.99 >0 rf

43 w48 td-idf none porter 0.99 >0 rf

44 w14 td-idf none none 0.99 >0 ld

45 w88 td-idf default none 0.98 none rf

46 w232 freq none porter 0.99 none rf

47 w264 freq default none 0.99 none rf

48 w152 td-idf smart none 0.98 none rf

49 w208 freq none none 0.99 >0 rf

50 w144 td-idf smart none 0.99 >0 rf

51 w80 td-idf default none 0.99 >0 rf

52 w40 td-idf none porter 0.99 none rf

53 w127 td-idf default porter 0.98 >0 lsvm

54 w216 freq none none 0.98 none rf

55 w63 td-idf none porter 0.98 >0 lsvm

56 w16 td-idf none none 0.99 >0 rf

57 w31 td-idf none none 0.98 >0 lsvm

58 w24 td-idf none none 0.98 none rf

59 w328 freq smart none 0.99 none rf

60 w319 freq default porter 0.98 >0 lsvm

61 w136 td-idf smart none 0.99 none rf

62 w95 td-idf default none 0.98 >0 lsvm
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63 w223 freq none none 0.98 >0 lsvm

64 w200 freq none none 0.99 none rf

65 w255 freq none porter 0.98 >0 lsvm

66 w72 td-idf default none 0.99 none rf

67 w287 freq default none 0.98 >0 lsvm

68 w351 freq smart none 0.98 >0 lsvm

69 w191 td-idf smart porter 0.98 >0 lsvm

70 w383 freq smart porter 0.98 >0 lsvm

71 w159 td-idf smart none 0.98 >0 lsvm

72 w111 td-idf default porter 0.99 >0 lsvm

73 w47 td-idf none porter 0.99 >0 lsvm

74 w175 td-idf smart porter 0.99 >0 lsvm

75 w8 td-idf none none 0.99 none rf

76 w303 freq default porter 0.99 >0 lsvm

77 w239 freq none porter 0.99 >0 lsvm

78 w367 freq smart porter 0.99 >0 lsvm

79 w335 freq smart none 0.99 >0 lsvm

80 w25 td-idf none none 0.98 >0 nnet

81 w9 td-idf none none 0.99 >0 nnet

82 w143 td-idf smart none 0.99 >0 lsvm

83 w79 td-idf default none 0.99 >0 lsvm

84 w15 td-idf none none 0.99 >0 lsvm

85 w89 td-idf default none 0.98 >0 nnet

86 w271 freq default none 0.99 >0 lsvm

87 w57 td-idf none porter 0.98 >0 nnet

88 w207 freq none none 0.99 >0 lsvm

89 w73 td-idf default none 0.99 >0 nnet

90 w185 td-idf smart porter 0.98 >0 nnet

91 w137 td-idf smart none 0.99 >0 nnet

92 w121 td-idf default porter 0.98 >0 nnet

93 w281 freq default none 0.98 >0 nnet

94 w345 freq smart none 0.98 >0 nnet

95 w105 td-idf default porter 0.99 >0 nnet

96 w153 td-idf smart none 0.98 >0 nnet

97 w313 freq default porter 0.98 >0 nnet

98 w361 freq smart porter 0.99 >0 nnet

99 w169 td-idf smart porter 0.99 >0 nnet

100 w377 freq smart porter 0.98 >0 nnet

101 w329 freq smart none 0.99 >0 nnet
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102 w297 freq default porter 0.99 >0 nnet

103 w253 freq none porter 0.98 >0 c5.0

104 w41 td-idf none porter 0.99 >0 nnet

105 w217 freq none none 0.98 >0 nnet

106 w249 freq none porter 0.98 >0 nnet

107 w265 freq default none 0.99 >0 nnet

108 w222 freq none none 0.98 >0 ld

109 w285 freq default none 0.98 >0 c5.0

110 w314 freq default porter 0.98 >0 c4.5

111 w286 freq default none 0.98 >0 ld

112 w233 freq none porter 0.99 >0 nnet

113 w317 freq default porter 0.98 >0 c5.0

114 w221 freq none none 0.98 >0 c5.0

115 w250 freq none porter 0.98 >0 c4.5

116 w334 freq smart none 0.99 >0 ld

117 w350 freq smart none 0.98 >0 ld

118 w381 freq smart porter 0.98 >0 c5.0

119 w270 freq default none 0.99 >0 ld

120 w254 freq none porter 0.98 >0 ld

121 w206 freq none none 0.99 >0 ld

122 w378 freq smart porter 0.98 >0 c4.5

123 w318 freq default porter 0.98 >0 ld

124 w282 freq default none 0.98 >0 c4.5

125 w238 freq none porter 0.99 >0 ld

126 w302 freq default porter 0.99 >0 ld

127 w349 freq smart none 0.98 >0 c5.0

128 w366 freq smart porter 0.99 >0 ld

129 w382 freq smart porter 0.98 >0 ld

130 w201 freq none none 0.99 >0 nnet

131 w218 freq none none 0.98 >0 c4.5

132 w122 td-idf default porter 0.98 >0 c4.5

133 w237 freq none porter 0.99 >0 c5.0

134 w301 freq default porter 0.99 >0 c5.0

135 w346 freq smart none 0.98 >0 c4.5

136 w186 td-idf smart porter 0.98 >0 c4.5

137 w298 freq default porter 0.99 >0 c4.5

138 w234 freq none porter 0.99 >0 c4.5

139 w125 td-idf default porter 0.98 >0 c5.0

140 w365 freq smart porter 0.99 >0 c5.0
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141 w362 freq smart porter 0.99 >0 c4.5

142 w90 td-idf default none 0.98 >0 c4.5

143 w189 td-idf smart porter 0.98 >0 c5.0

144 w58 td-idf none porter 0.98 >0 c4.5

145 w61 td-idf none porter 0.98 >0 c5.0

146 w373 freq smart porter 0.98 none c5.0

147 w103 td-idf default porter 0.99 none lsvm

148 w167 td-idf smart porter 0.99 none lsvm

149 w154 td-idf smart none 0.98 >0 c4.5

150 w39 td-idf none porter 0.99 none lsvm

151 w26 td-idf none none 0.98 >0 c4.5

152 w309 freq default porter 0.98 none c5.0

153 w97 td-idf default porter 0.99 none nnet

154 w245 freq none porter 0.98 none c5.0

155 w106 td-idf default porter 0.99 >0 c4.5

156 w93 td-idf default none 0.98 >0 c5.0

157 w170 td-idf smart porter 0.99 >0 c4.5

158 w205 freq none none 0.99 >0 c5.0

159 w1 td-idf none none 0.99 none nnet

160 w269 freq default none 0.99 >0 c5.0

161 w49 td-idf none porter 0.98 none nnet

162 w42 td-idf none porter 0.99 >0 c4.5

163 w333 freq smart none 0.99 >0 c5.0

164 w109 td-idf default porter 0.99 >0 c5.0

165 w277 freq default none 0.98 none c5.0

166 w29 td-idf none none 0.98 >0 c5.0

167 w266 freq default none 0.99 >0 c4.5

168 w173 td-idf smart porter 0.99 >0 c5.0

169 w157 td-idf smart none 0.98 >0 c5.0

170 w119 td-idf default porter 0.98 none lsvm

171 w213 freq none none 0.98 none c5.0

172 w55 td-idf none porter 0.98 none lsvm

173 w315 freq default porter 0.98 >0 jrip

174 w379 freq smart porter 0.98 >0 jrip

175 w129 td-idf smart none 0.99 none nnet

176 w177 td-idf smart porter 0.98 none nnet

177 w150 td-idf smart none 0.98 none ld

178 w183 td-idf smart porter 0.98 none lsvm

179 w7 td-idf none none 0.99 none lsvm
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180 w33 td-idf none porter 0.99 none nnet

181 w357 freq smart porter 0.99 none c5.0

182 w113 td-idf default porter 0.98 none nnet

183 w65 td-idf default none 0.99 none nnet

184 w135 td-idf smart none 0.99 none lsvm

185 w182 td-idf smart porter 0.98 none ld

186 w71 td-idf default none 0.99 none lsvm

187 w145 td-idf smart none 0.98 none nnet

188 w251 freq none porter 0.98 >0 jrip

189 w330 freq smart none 0.99 >0 c4.5

190 w45 td-idf none porter 0.99 >0 c5.0

191 w81 td-idf default none 0.98 none nnet

192 w87 td-idf default none 0.98 none lsvm

193 w347 freq smart none 0.98 >0 jrip

194 w151 td-idf smart none 0.98 none lsvm

195 w23 td-idf none none 0.98 none lsvm

196 w202 freq none none 0.99 >0 c4.5

197 w17 td-idf none none 0.98 none nnet

198 w293 freq default porter 0.99 none c5.0

199 w161 td-idf smart porter 0.99 none nnet

200 w370 freq smart porter 0.98 none c4.5

201 w283 freq default none 0.98 >0 jrip

202 w341 freq smart none 0.98 none c5.0

203 w337 freq smart none 0.98 none nnet

204 w229 freq none porter 0.99 none c5.0

205 w369 freq smart porter 0.98 none nnet

206 w299 freq default porter 0.99 >0 jrip

207 w74 td-idf default none 0.99 >0 c4.5

208 w325 freq smart none 0.99 none c5.0

209 w363 freq smart porter 0.99 >0 jrip

210 w338 freq smart none 0.98 none c4.5

211 w219 freq none none 0.98 >0 jrip

212 w187 td-idf smart porter 0.98 >0 jrip

213 w138 td-idf smart none 0.99 >0 c4.5

214 w77 td-idf default none 0.99 >0 c5.0

215 w306 freq default porter 0.98 none c4.5

216 w118 td-idf default porter 0.98 none ld

217 w123 td-idf default porter 0.98 >0 jrip

218 w178 td-idf smart porter 0.98 none c4.5
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219 w235 freq none porter 0.99 >0 jrip

220 w273 freq default none 0.98 none nnet

221 w305 freq default porter 0.98 none nnet

222 w261 freq default none 0.99 none c5.0

223 w353 freq smart porter 0.99 none nnet

224 w141 td-idf smart none 0.99 >0 c5.0

225 w289 freq default porter 0.99 none nnet

226 w321 freq smart none 0.99 none nnet

227 w181 td-idf smart porter 0.98 none c5.0

228 w146 td-idf smart none 0.98 none c4.5

229 w197 freq none none 0.99 none c5.0

230 w13 td-idf none none 0.99 >0 c5.0

231 w114 td-idf default porter 0.98 none c4.5

232 w242 freq none porter 0.98 none c4.5

233 w10 td-idf none none 0.99 >0 c4.5

234 w331 freq smart none 0.99 >0 jrip

235 w375 freq smart porter 0.98 none lsvm

236 w343 freq smart none 0.98 none lsvm

237 w86 td-idf default none 0.98 none ld

238 w91 td-idf default none 0.98 >0 jrip

239 w311 freq default porter 0.98 none lsvm

240 w117 td-idf default porter 0.98 none c5.0

241 w267 freq default none 0.99 >0 jrip

242 w155 td-idf smart none 0.98 >0 jrip

243 w247 freq none porter 0.98 none lsvm

244 w359 freq smart porter 0.99 none lsvm

245 w274 freq default none 0.98 none c4.5

246 w231 freq none porter 0.99 none lsvm

247 w279 freq default none 0.98 none lsvm

248 w44 td-idf none porter 0.99 >0 knn

249 w348 freq smart none 0.98 >0 knn

250 w295 freq default porter 0.99 none lsvm

251 w380 freq smart porter 0.98 >0 knn

252 w59 td-idf none porter 0.98 >0 jrip

253 w149 td-idf smart none 0.98 none c5.0

254 w50 td-idf none porter 0.98 none c4.5

255 w215 freq none none 0.98 none lsvm

256 w364 freq smart porter 0.99 >0 knn

257 w354 freq smart porter 0.99 none c4.5
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258 w54 td-idf none porter 0.98 none ld

259 w82 td-idf default none 0.98 none c4.5

260 w60 td-idf none porter 0.98 >0 knn

261 w171 td-idf smart porter 0.99 >0 jrip

262 w257 freq default none 0.99 none nnet

263 w327 freq smart none 0.99 none lsvm

264 w203 freq none none 0.99 >0 jrip

265 w107 td-idf default porter 0.99 >0 jrip

266 w108 td-idf default porter 0.99 >0 knn

267 w172 td-idf smart porter 0.99 >0 knn

268 w210 freq none none 0.98 none c4.5

269 w53 td-idf none porter 0.98 none c5.0

270 w18 td-idf none none 0.98 none c4.5

271 w332 freq smart none 0.99 >0 knn

272 w188 td-idf smart porter 0.98 >0 knn

273 w371 freq smart porter 0.98 none jrip

274 w85 td-idf default none 0.98 none c5.0

275 w28 td-idf none none 0.98 >0 knn

276 w263 freq default none 0.99 none lsvm

277 w300 freq default porter 0.99 >0 knn

278 w199 freq none none 0.99 none lsvm

279 w162 td-idf smart porter 0.99 none c4.5

280 w316 freq default porter 0.98 >0 knn

281 w12 td-idf none none 0.99 >0 knn

282 w124 td-idf default porter 0.98 >0 knn

283 w22 td-idf none none 0.98 none ld

284 w284 freq default none 0.98 >0 knn

285 w165 td-idf smart porter 0.99 none c5.0

286 w290 freq default porter 0.99 none c4.5

287 w43 td-idf none porter 0.99 >0 jrip

288 w27 td-idf none none 0.98 >0 jrip

289 w140 td-idf smart none 0.99 >0 knn

290 w156 td-idf smart none 0.98 >0 knn

291 w241 freq none porter 0.98 none nnet

292 w21 td-idf none none 0.98 none c5.0

293 w307 freq default porter 0.98 none jrip

294 w339 freq smart none 0.98 none jrip

295 w139 td-idf smart none 0.99 >0 jrip

296 w98 td-idf default porter 0.99 none c4.5
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297 w76 td-idf default none 0.99 >0 knn

298 w179 td-idf smart porter 0.98 none jrip

299 w92 td-idf default none 0.98 >0 knn

300 w101 td-idf default porter 0.99 none c5.0

301 w322 freq smart none 0.99 none c4.5

302 w268 freq default none 0.99 >0 knn

303 w226 freq none porter 0.99 none c4.5

304 w75 td-idf default none 0.99 >0 jrip

305 w209 freq none none 0.98 none nnet

306 w275 freq default none 0.98 none jrip

307 w37 td-idf none porter 0.99 none c5.0

308 w147 td-idf smart none 0.98 none jrip

309 w130 td-idf smart none 0.99 none c4.5

310 w243 freq none porter 0.98 none jrip

311 w115 td-idf default porter 0.98 none jrip

312 w133 td-idf smart none 0.99 none c5.0

313 w225 freq none porter 0.99 none nnet

314 w34 td-idf none porter 0.99 none c4.5

315 w193 freq none none 0.99 none nnet

316 w69 td-idf default none 0.99 none c5.0

317 w11 td-idf none none 0.99 >0 jrip

318 w258 freq default none 0.99 none c4.5

319 w66 td-idf default none 0.99 none c4.5

320 w5 td-idf none none 0.99 none c5.0

321 w355 freq smart porter 0.99 none jrip

322 w83 td-idf default none 0.98 none jrip

323 w194 freq none none 0.99 none c4.5

324 w291 freq default porter 0.99 none jrip

325 w342 freq smart none 0.98 none ld

326 w374 freq smart porter 0.98 none ld

327 w211 freq none none 0.98 none jrip

328 w2 td-idf none none 0.99 none c4.5

329 w51 td-idf none porter 0.98 none jrip

330 w166 td-idf smart porter 0.99 none ld

331 w163 td-idf smart porter 0.99 none jrip

332 w323 freq smart none 0.99 none jrip

333 w236 freq none porter 0.99 >0 knn

334 w310 freq default porter 0.98 none ld

335 w227 freq none porter 0.99 none jrip
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336 w99 td-idf default porter 0.99 none jrip

337 w259 freq default none 0.99 none jrip

338 w278 freq default none 0.98 none ld

339 w252 freq none porter 0.98 >0 knn

340 w246 freq none porter 0.98 none ld

341 w19 td-idf none none 0.98 none jrip

342 w131 td-idf smart none 0.99 none jrip

343 w102 td-idf default porter 0.99 none ld

344 w134 td-idf smart none 0.99 none ld

345 w35 td-idf none porter 0.99 none jrip

346 w214 freq none none 0.98 none ld

347 w67 td-idf default none 0.99 none jrip

348 w195 freq none none 0.99 none jrip

349 w220 freq none none 0.98 >0 knn

350 w204 freq none none 0.99 >0 knn

351 w372 freq smart porter 0.98 none knn

352 w38 td-idf none porter 0.99 none ld

353 w340 freq smart none 0.98 none knn

354 w70 td-idf default none 0.99 none ld

355 w3 td-idf none none 0.99 none jrip

356 w308 freq default porter 0.98 none knn

357 w356 freq smart porter 0.99 none knn

358 w358 freq smart porter 0.99 none ld

359 w180 td-idf smart porter 0.98 none knn

360 w6 td-idf none none 0.99 none ld

361 w294 freq default porter 0.99 none ld

362 w52 td-idf none porter 0.98 none knn

363 w324 freq smart none 0.99 none knn

364 w276 freq default none 0.98 none knn

365 w116 td-idf default porter 0.98 none knn

366 w148 td-idf smart none 0.98 none knn

367 w292 freq default porter 0.99 none knn

368 w326 freq smart none 0.99 none ld

369 w230 freq none porter 0.99 none ld

370 w20 td-idf none none 0.98 none knn

371 w262 freq default none 0.99 none ld

372 w164 td-idf smart porter 0.99 none knn

373 w84 td-idf default none 0.98 none knn

374 w198 freq none none 0.99 none ld
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375 w260 freq default none 0.99 none knn

376 w244 freq none porter 0.98 none knn

377 w36 td-idf none porter 0.99 none knn

378 w100 td-idf default porter 0.99 none knn

379 w228 freq none porter 0.99 none knn

380 w132 td-idf smart none 0.99 none knn

381 w212 freq none none 0.98 none knn

382 w196 freq none none 0.99 none knn

383 w4 td-idf none none 0.99 none knn

384 w68 td-idf default none 0.99 none knn
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Appendix E

Workflow ordered rank - Accuracy

Table E.1: Full workflow ordered rank considering all datasets - Accuracy only.

workflow repr stop stem spar info algo

1 w360 freq smart porter 0.99 none rf

2 w168 td-idf smart porter 0.99 none rf

3 w296 freq default porter 0.99 none rf

4 w104 td-idf default porter 0.99 none rf

5 w328 freq smart none 0.99 none rf

6 w264 freq default none 0.99 none rf

7 w232 freq none porter 0.99 none rf

8 w136 td-idf smart none 0.99 none rf

9 w40 td-idf none porter 0.99 none rf

10 w72 td-idf default none 0.99 none rf

11 w176 td-idf smart porter 0.99 >0 rf

12 w312 freq default porter 0.98 none rf

13 w376 freq smart porter 0.98 none rf

14 w112 td-idf default porter 0.99 >0 rf

15 w184 td-idf smart porter 0.98 none rf

16 w368 freq smart porter 0.99 >0 rf

17 w304 freq default porter 0.99 >0 rf

18 w120 td-idf default porter 0.98 none rf

19 w200 freq none none 0.99 none rf

20 w48 td-idf none porter 0.99 >0 rf

21 w336 freq smart none 0.99 >0 rf

22 w272 freq default none 0.99 >0 rf

23 w174 td-idf smart porter 0.99 >0 ld
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24 w144 td-idf smart none 0.99 >0 rf

25 w8 td-idf none none 0.99 none rf

26 w240 freq none porter 0.99 >0 rf

27 w248 freq none porter 0.98 none rf

28 w80 td-idf default none 0.99 >0 rf

29 w56 td-idf none porter 0.98 none rf

30 w192 td-idf smart porter 0.98 >0 rf

31 w110 td-idf default porter 0.99 >0 ld

32 w384 freq smart porter 0.98 >0 rf

33 w128 td-idf default porter 0.98 >0 rf

34 w344 freq smart none 0.98 none rf

35 w320 freq default porter 0.98 >0 rf

36 w16 td-idf none none 0.99 >0 rf

37 w280 freq default none 0.98 none rf

38 w142 td-idf smart none 0.99 >0 ld

39 w152 td-idf smart none 0.98 none rf

40 w88 td-idf default none 0.98 none rf

41 w208 freq none none 0.99 >0 rf

42 w64 td-idf none porter 0.98 >0 rf

43 w46 td-idf none porter 0.99 >0 ld

44 w256 freq none porter 0.98 >0 rf

45 w78 td-idf default none 0.99 >0 ld

46 w24 td-idf none none 0.98 none rf

47 w352 freq smart none 0.98 >0 rf

48 w216 freq none none 0.98 none rf

49 w190 td-idf smart porter 0.98 >0 ld

50 w175 td-idf smart porter 0.99 >0 lsvm

51 w288 freq default none 0.98 >0 rf

52 w126 td-idf default porter 0.98 >0 ld

53 w96 td-idf default none 0.98 >0 rf

54 w111 td-idf default porter 0.99 >0 lsvm

55 w14 td-idf none none 0.99 >0 ld

56 w47 td-idf none porter 0.99 >0 lsvm

57 w160 td-idf smart none 0.98 >0 rf

58 w367 freq smart porter 0.99 >0 lsvm

59 w32 td-idf none none 0.98 >0 rf

60 w303 freq default porter 0.99 >0 lsvm

61 w224 freq none none 0.98 >0 rf

62 w62 td-idf none porter 0.98 >0 ld
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63 w335 freq smart none 0.99 >0 lsvm

64 w127 td-idf default porter 0.98 >0 lsvm

65 w239 freq none porter 0.99 >0 lsvm

66 w143 td-idf smart none 0.99 >0 lsvm

67 w158 td-idf smart none 0.98 >0 ld

68 w79 td-idf default none 0.99 >0 lsvm

69 w191 td-idf smart porter 0.98 >0 lsvm

70 w15 td-idf none none 0.99 >0 lsvm

71 w63 td-idf none porter 0.98 >0 lsvm

72 w94 td-idf default none 0.98 >0 ld

73 w319 freq default porter 0.98 >0 lsvm

74 w383 freq smart porter 0.98 >0 lsvm

75 w271 freq default none 0.99 >0 lsvm

76 w207 freq none none 0.99 >0 lsvm

77 w255 freq none porter 0.98 >0 lsvm

78 w30 td-idf none none 0.98 >0 ld

79 w31 td-idf none none 0.98 >0 lsvm

80 w159 td-idf smart none 0.98 >0 lsvm

81 w351 freq smart none 0.98 >0 lsvm

82 w95 td-idf default none 0.98 >0 lsvm

83 w9 td-idf none none 0.99 >0 nnet

84 w223 freq none none 0.98 >0 lsvm

85 w287 freq default none 0.98 >0 lsvm

86 w137 td-idf smart none 0.99 >0 nnet

87 w361 freq smart porter 0.99 >0 nnet

88 w73 td-idf default none 0.99 >0 nnet

89 w105 td-idf default porter 0.99 >0 nnet

90 w329 freq smart none 0.99 >0 nnet

91 w297 freq default porter 0.99 >0 nnet

92 w169 td-idf smart porter 0.99 >0 nnet

93 w185 td-idf smart porter 0.98 >0 nnet

94 w57 td-idf none porter 0.98 >0 nnet

95 w41 td-idf none porter 0.99 >0 nnet

96 w265 freq default none 0.99 >0 nnet

97 w121 td-idf default porter 0.98 >0 nnet

98 w103 td-idf default porter 0.99 none lsvm

99 w39 td-idf none porter 0.99 none lsvm

100 w25 td-idf none none 0.98 >0 nnet

101 w89 td-idf default none 0.98 >0 nnet
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102 w233 freq none porter 0.99 >0 nnet

103 w167 td-idf smart porter 0.99 none lsvm

104 w377 freq smart porter 0.98 >0 nnet

105 w1 td-idf none none 0.99 none nnet

106 w313 freq default porter 0.98 >0 nnet

107 w97 td-idf default porter 0.99 none nnet

108 w366 freq smart porter 0.99 >0 ld

109 w345 freq smart none 0.98 >0 nnet

110 w334 freq smart none 0.99 >0 ld

111 w7 td-idf none none 0.99 none lsvm

112 w302 freq default porter 0.99 >0 ld

113 w270 freq default none 0.99 >0 ld

114 w281 freq default none 0.98 >0 nnet

115 w238 freq none porter 0.99 >0 ld

116 w153 td-idf smart none 0.98 >0 nnet

117 w71 td-idf default none 0.99 none lsvm

118 w206 freq none none 0.99 >0 ld

119 w135 td-idf smart none 0.99 none lsvm

120 w249 freq none porter 0.98 >0 nnet

121 w65 td-idf default none 0.99 none nnet

122 w201 freq none none 0.99 >0 nnet

123 w362 freq smart porter 0.99 >0 c4.5

124 w129 td-idf smart none 0.99 none nnet

125 w33 td-idf none porter 0.99 none nnet

126 w237 freq none porter 0.99 >0 c5.0

127 w298 freq default porter 0.99 >0 c4.5

128 w301 freq default porter 0.99 >0 c5.0

129 w365 freq smart porter 0.99 >0 c5.0

130 w234 freq none porter 0.99 >0 c4.5

131 w378 freq smart porter 0.98 >0 c4.5

132 w173 td-idf smart porter 0.99 >0 c5.0

133 w109 td-idf default porter 0.99 >0 c5.0

134 w317 freq default porter 0.98 >0 c5.0

135 w353 freq smart porter 0.99 none nnet

136 w217 freq none none 0.98 >0 nnet

137 w381 freq smart porter 0.98 >0 c5.0

138 w314 freq default porter 0.98 >0 c4.5

139 w357 freq smart porter 0.99 none c5.0

140 w170 td-idf smart porter 0.99 >0 c4.5
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141 w253 freq none porter 0.98 >0 c5.0

142 w125 td-idf default porter 0.98 >0 c5.0

143 w189 td-idf smart porter 0.98 >0 c5.0

144 w382 freq smart porter 0.98 >0 ld

145 w321 freq smart none 0.99 none nnet

146 w106 td-idf default porter 0.99 >0 c4.5

147 w289 freq default porter 0.99 none nnet

148 w161 td-idf smart porter 0.99 none nnet

149 w318 freq default porter 0.98 >0 ld

150 w250 freq none porter 0.98 >0 c4.5

151 w45 td-idf none porter 0.99 >0 c5.0

152 w183 td-idf smart porter 0.98 none lsvm

153 w254 freq none porter 0.98 >0 ld

154 w186 td-idf smart porter 0.98 >0 c4.5

155 w119 td-idf default porter 0.98 none lsvm

156 w165 td-idf smart porter 0.99 none c5.0

157 w55 td-idf none porter 0.98 none lsvm

158 w350 freq smart none 0.98 >0 ld

159 w122 td-idf default porter 0.98 >0 c4.5

160 w293 freq default porter 0.99 none c5.0

161 w42 td-idf none porter 0.99 >0 c4.5

162 w373 freq smart porter 0.98 none c5.0

163 w61 td-idf none porter 0.98 >0 c5.0

164 w286 freq default none 0.98 >0 ld

165 w101 td-idf default porter 0.99 none c5.0

166 w229 freq none porter 0.99 none c5.0

167 w266 freq default none 0.99 >0 c4.5

168 w181 td-idf smart porter 0.98 none c5.0

169 w49 td-idf none porter 0.98 none nnet

170 w257 freq default none 0.99 none nnet

171 w269 freq default none 0.99 >0 c5.0

172 w222 freq none none 0.98 >0 ld

173 w333 freq smart none 0.99 >0 c5.0

174 w354 freq smart porter 0.99 none c4.5

175 w205 freq none none 0.99 >0 c5.0

176 w330 freq smart none 0.99 >0 c4.5

177 w285 freq default none 0.98 >0 c5.0

178 w349 freq smart none 0.98 >0 c5.0

179 w325 freq smart none 0.99 none c5.0
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180 w363 freq smart porter 0.99 >0 jrip

181 w282 freq default none 0.98 >0 c4.5

182 w37 td-idf none porter 0.99 none c5.0

183 w87 td-idf default none 0.98 none lsvm

184 w309 freq default porter 0.98 none c5.0

185 w151 td-idf smart none 0.98 none lsvm

186 w23 td-idf none none 0.98 none lsvm

187 w369 freq smart porter 0.98 none nnet

188 w113 td-idf default porter 0.98 none nnet

189 w299 freq default porter 0.99 >0 jrip

190 w221 freq none none 0.98 >0 c5.0

191 w379 freq smart porter 0.98 >0 jrip

192 w77 td-idf default none 0.99 >0 c5.0

193 w117 td-idf default porter 0.98 none c5.0

194 w245 freq none porter 0.98 none c5.0

195 w177 td-idf smart porter 0.98 none nnet

196 w346 freq smart none 0.98 >0 c4.5

197 w58 td-idf none porter 0.98 >0 c4.5

198 w182 td-idf smart porter 0.98 none ld

199 w141 td-idf smart none 0.99 >0 c5.0

200 w202 freq none none 0.99 >0 c4.5

201 w370 freq smart porter 0.98 none c4.5

202 w162 td-idf smart porter 0.99 none c4.5

203 w290 freq default porter 0.99 none c4.5

204 w235 freq none porter 0.99 >0 jrip

205 w93 td-idf default none 0.98 >0 c5.0

206 w359 freq smart porter 0.99 none lsvm

207 w331 freq smart none 0.99 >0 jrip

208 w261 freq default none 0.99 none c5.0

209 w74 td-idf default none 0.99 >0 c4.5

210 w315 freq default porter 0.98 >0 jrip

211 w53 td-idf none porter 0.98 none c5.0

212 w337 freq smart none 0.98 none nnet

213 w13 td-idf none none 0.99 >0 c5.0

214 w157 td-idf smart none 0.98 >0 c5.0

215 w295 freq default porter 0.99 none lsvm

216 w305 freq default porter 0.98 none nnet

217 w231 freq none porter 0.99 none lsvm

218 w133 td-idf smart none 0.99 none c5.0
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219 w138 td-idf smart none 0.99 >0 c4.5

220 w145 td-idf smart none 0.98 none nnet

221 w81 td-idf default none 0.98 none nnet

222 w341 freq smart none 0.98 none c5.0

223 w218 freq none none 0.98 >0 c4.5

224 w197 freq none none 0.99 none c5.0

225 w291 freq default porter 0.99 none jrip

226 w347 freq smart none 0.98 >0 jrip

227 w98 td-idf default porter 0.99 none c4.5

228 w17 td-idf none none 0.98 none nnet

229 w226 freq none porter 0.99 none c4.5

230 w375 freq smart porter 0.98 none lsvm

231 w150 td-idf smart none 0.98 none ld

232 w154 td-idf smart none 0.98 >0 c4.5

233 w355 freq smart porter 0.99 none jrip

234 w29 td-idf none none 0.98 >0 c5.0

235 w273 freq default none 0.98 none nnet

236 w251 freq none porter 0.98 >0 jrip

237 w90 td-idf default none 0.98 >0 c4.5

238 w267 freq default none 0.99 >0 jrip

239 w69 td-idf default none 0.99 none c5.0

240 w371 freq smart porter 0.98 none jrip

241 w327 freq smart none 0.99 none lsvm

242 w322 freq smart none 0.99 none c4.5

243 w178 td-idf smart porter 0.98 none c4.5

244 w306 freq default porter 0.98 none c4.5

245 w199 freq none none 0.99 none lsvm

246 w263 freq default none 0.99 none lsvm

247 w149 td-idf smart none 0.98 none c5.0

248 w225 freq none porter 0.99 none nnet

249 w187 td-idf smart porter 0.98 >0 jrip

250 w5 td-idf none none 0.99 none c5.0

251 w277 freq default none 0.98 none c5.0

252 w242 freq none porter 0.98 none c4.5

253 w10 td-idf none none 0.99 >0 c4.5

254 w171 td-idf smart porter 0.99 >0 jrip

255 w311 freq default porter 0.98 none lsvm

256 w85 td-idf default none 0.98 none c5.0

257 w364 freq smart porter 0.99 >0 knn
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258 w343 freq smart none 0.98 none lsvm

259 w44 td-idf none porter 0.99 >0 knn

260 w34 td-idf none porter 0.99 none c4.5

261 w323 freq smart none 0.99 none jrip

262 w114 td-idf default porter 0.98 none c4.5

263 w247 freq none porter 0.98 none lsvm

264 w107 td-idf default porter 0.99 >0 jrip

265 w26 td-idf none none 0.98 >0 c4.5

266 w283 freq default none 0.98 >0 jrip

267 w130 td-idf smart none 0.99 none c4.5

268 w307 freq default porter 0.98 none jrip

269 w213 freq none none 0.98 none c5.0

270 w203 freq none none 0.99 >0 jrip

271 w118 td-idf default porter 0.98 none ld

272 w338 freq smart none 0.98 none c4.5

273 w172 td-idf smart porter 0.99 >0 knn

274 w193 freq none none 0.99 none nnet

275 w332 freq smart none 0.99 >0 knn

276 w108 td-idf default porter 0.99 >0 knn

277 w163 td-idf smart porter 0.99 none jrip

278 w259 freq default none 0.99 none jrip

279 w50 td-idf none porter 0.98 none c4.5

280 w123 td-idf default porter 0.98 >0 jrip

281 w179 td-idf smart porter 0.98 none jrip

282 w279 freq default none 0.98 none lsvm

283 w146 td-idf smart none 0.98 none c4.5

284 w21 td-idf none none 0.98 none c5.0

285 w227 freq none porter 0.99 none jrip

286 w258 freq default none 0.99 none c4.5

287 w300 freq default porter 0.99 >0 knn

288 w66 td-idf default none 0.99 none c4.5

289 w12 td-idf none none 0.99 >0 knn

290 w241 freq none porter 0.98 none nnet

291 w215 freq none none 0.98 none lsvm

292 w339 freq smart none 0.98 none jrip

293 w243 freq none porter 0.98 none jrip

294 w43 td-idf none porter 0.99 >0 jrip

295 w380 freq smart porter 0.98 >0 knn

296 w139 td-idf smart none 0.99 >0 jrip
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297 w99 td-idf default porter 0.99 none jrip

298 w2 td-idf none none 0.99 none c4.5

299 w194 freq none none 0.99 none c4.5

300 w219 freq none none 0.98 >0 jrip

301 w140 td-idf smart none 0.99 >0 knn

302 w274 freq default none 0.98 none c4.5

303 w275 freq default none 0.98 none jrip

304 w86 td-idf default none 0.98 none ld

305 w115 td-idf default porter 0.98 none jrip

306 w76 td-idf default none 0.99 >0 knn

307 w268 freq default none 0.99 >0 knn

308 w75 td-idf default none 0.99 >0 jrip

309 w54 td-idf none porter 0.98 none ld

310 w60 td-idf none porter 0.98 >0 knn

311 w18 td-idf none none 0.98 none c4.5

312 w82 td-idf default none 0.98 none c4.5

313 w188 td-idf smart porter 0.98 >0 knn

314 w348 freq smart none 0.98 >0 knn

315 w210 freq none none 0.98 none c4.5

316 w59 td-idf none porter 0.98 >0 jrip

317 w209 freq none none 0.98 none nnet

318 w147 td-idf smart none 0.98 none jrip

319 w91 td-idf default none 0.98 >0 jrip

320 w155 td-idf smart none 0.98 >0 jrip

321 w195 freq none none 0.99 none jrip

322 w131 td-idf smart none 0.99 none jrip

323 w67 td-idf default none 0.99 none jrip

324 w316 freq default porter 0.98 >0 knn

325 w28 td-idf none none 0.98 >0 knn

326 w124 td-idf default porter 0.98 >0 knn

327 w35 td-idf none porter 0.99 none jrip

328 w284 freq default none 0.98 >0 knn

329 w156 td-idf smart none 0.98 >0 knn

330 w211 freq none none 0.98 none jrip

331 w83 td-idf default none 0.98 none jrip

332 w22 td-idf none none 0.98 none ld

333 w11 td-idf none none 0.99 >0 jrip

334 w51 td-idf none porter 0.98 none jrip

335 w166 td-idf smart porter 0.99 none ld
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336 w92 td-idf default none 0.98 >0 knn

337 w27 td-idf none none 0.98 >0 jrip

338 w3 td-idf none none 0.99 none jrip

339 w236 freq none porter 0.99 >0 knn

340 w374 freq smart porter 0.98 none ld

341 w19 td-idf none none 0.98 none jrip

342 w102 td-idf default porter 0.99 none ld

343 w134 td-idf smart none 0.99 none ld

344 w342 freq smart none 0.98 none ld

345 w372 freq smart porter 0.98 none knn

346 w310 freq default porter 0.98 none ld

347 w252 freq none porter 0.98 >0 knn

348 w356 freq smart porter 0.99 none knn

349 w38 td-idf none porter 0.99 none ld

350 w204 freq none none 0.99 >0 knn

351 w70 td-idf default none 0.99 none ld

352 w340 freq smart none 0.98 none knn

353 w246 freq none porter 0.98 none ld

354 w308 freq default porter 0.98 none knn

355 w324 freq smart none 0.99 none knn

356 w278 freq default none 0.98 none ld

357 w292 freq default porter 0.99 none knn

358 w180 td-idf smart porter 0.98 none knn

359 w358 freq smart porter 0.99 none ld

360 w6 td-idf none none 0.99 none ld

361 w220 freq none none 0.98 >0 knn

362 w52 td-idf none porter 0.98 none knn

363 w214 freq none none 0.98 none ld

364 w116 td-idf default porter 0.98 none knn

365 w260 freq default none 0.99 none knn

366 w294 freq default porter 0.99 none ld

367 w164 td-idf smart porter 0.99 none knn

368 w276 freq default none 0.98 none knn

369 w326 freq smart none 0.99 none ld

370 w148 td-idf smart none 0.98 none knn

371 w36 td-idf none porter 0.99 none knn

372 w230 freq none porter 0.99 none ld

373 w20 td-idf none none 0.98 none knn

374 w100 td-idf default porter 0.99 none knn
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375 w262 freq default none 0.99 none ld

376 w228 freq none porter 0.99 none knn

377 w84 td-idf default none 0.98 none knn

378 w198 freq none none 0.99 none ld

379 w132 td-idf smart none 0.99 none knn

380 w244 freq none porter 0.98 none knn

381 w4 td-idf none none 0.99 none knn

382 w68 td-idf default none 0.99 none knn

383 w196 freq none none 0.99 none knn

384 w212 freq none none 0.98 none knn
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