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The methodology adopted by Michaelis and Menten in 1913 is still routinely used to 

characterize the catalytic power and selectivity of enzymes. These kinetic measurements 

must be performed soon after the purified enzyme is mixed with a large excess of substrate. 

Other time scales and solution compositions are no less physiologically relevant, but fall 

outside the range of applicability of the classical formalism. Here we show that the complete 

picture of an enzyme’s mode of function is critically obscured by the limited scope of 

conventional kinetic analysis, even in the simplest case of a single active site without 

inhibition. This picture is now unveiled in a mathematically closed form that remains valid 

over the reaction time for all combinations of enzyme/substrate concentrations and rate 

constants. Algebraic simplicity is maintained in the new formalism when stationary reaction 

phases are considered. By achieving this century-old objective, the otherwise hidden role of 

the reversible binding step is revealed and atypical kinetic profiles are explained. Most 

singular kinetic behaviors are identified in a critical region of conditions that coincide with 

typical cell conditions. Because it is not covered by the Michaelis–Menten model,  the  

critical region has been missed until now by low- and high-throughput screenings  of new 

drugs. New possibilities are therefore raised for novel and once- promising inhibitors to 

therapeutically target enzymes. 

 

 

Introduction 

One hundred years since it was first proposed, the Michaelis–Menten (MM) equation [1,2] 

has received renewed interest in areas such as drug discovery [3,4], systems biology [5–7] 

and single-molecule enzymology [8–10]. Despite the controversy about who else should be 

credited with its authorship [11], this formalism is today  recognized  as  the  steady-state  

approximation of the mechanism proposed 12 years later by Briggs and Haldane, comprising 

reversible formation of an enzyme–substrate complex (binding step) followed by its  

irreversible  transformation  into  product  and  free enzyme (catalytic step) [8,12]. In a 

recognizable form of the MM equation, the hyperbolic dependence of the initial reaction rate 

v0 on the initial substrate concentration S0  is given as: 
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 where vmax is the limit reaction rate for a given enzyme concentration E0, and KM is 

the Michaelis constant. The rate constants associated with the reversible binding  step  

(k1  and  k-1)  and  the  catalytic  step  (k2)  are condensed in the two MM parameters as 

vmax = k2 E0 and   KM  = (k-1  + k2)/k1.   The   simplifying   hypotheses required to derive 

Eqn 1 confine its applicability to the initial phases of reactions that start with enzyme 

concentrations much lower than the sum (S0 + KM) [13–15]. However, as kinetic 

experiments should include S0 values well below KM, the practical rule is that S0 >> E0 for  

the  MM  equation  to  hold  true.  If this region of validity is considered the ‘white’ region,  

it is as if we are ignoring the ‘gray’ and ‘dark’ zones    of conditions for which S0 ~ E0 and 

S0 « E0, respectively. Expanding the analogy to reaction time scales other than the initial 

phases, it is as if we are ignoring    a whole palette of gradations in our picture. This was 

necessary in order to render  manageable  a  problem that in its simplest form involves three 

rate constants  and four species changing over time [13,15–19]. Even so, one of the merits of 

the classical formalism is to summarize the influence of initial  conditions  (S0  and E0) on a 

pivotal variable (v0) that is easily measured     by the accumulation of product over time 

given by a progress curve. By selecting the equally accessible pivotal variable (S0 – P)/v, in 

which (S0 – P) is the con- centration of product still to be formed, and v is the instant reaction 

rate, we provide the complete portrayal of enzyme kinetics in a mathematically closed form. 

 

Results  and Discussion 

Although the system of first-order differential equations describing the Briggs and Haldane 

mechanism does not have a known analytical solution, it becomes solvable   after   

introducing   the   pivotal    variable   (S0 – P)/v. Derived in Doc. S1, the final solution  is 

given in Experimental procedures by Eqn 4, and plotted in normalized units in Fig. 1A. The 

adopted simplifying hypotheses do not confine the validity of the new model to any limited 

conditions whatsoever (see discussion of approximations 1 and 2 in Doc. S1, and Figs  S1 

and S2). In the following form 

 

 
 

the pivotal variable is defined in terms  of the Lambert  function [14,20], whose argument 

includes the time dimension t and MM parameters incorporated in s0 = S0/ KM   and   = 

KM/vmax.  The  expression  C   is  a  time- dependent correction factor to account for  

the ‘gray’ and ‘dark’ regions. Its  full definition  is  given  by Eqn S23 (Doc. S1) as a 

function of s0, t/, e0 = E0/KM and the enzyme–substrate dissociation constant KS  = k-

1/k1  (a  non-MM  parameter).  In  Fig. 1A,  the model  equation  is  normalized  by  e0  

(=k-2 
1),  while  in Fig. 1B, only the definition of C(t) is plotted. 

Before discussing novel kinetic aspects that are beyond the MM border, we discuss those 
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that may be misleading within the MM border. In particular, we show how to avoid deceptive 

v0(S0) profiles that result from disregarding the various time scales of product accumulation. 

This is illustrated for hydrolysis of the fluorogenic substrate 4–methylumbelliferyl-

galactoside (MUG) by the enzyme  –galactosidase. 

In our kinetic measurements, the enzyme was mixed with a large excess of MUG so that 

the MM conditions are respected. In the ‘white’ region of conditions (s0 >> e0), no 

‘gray’/’dark’ corrections are required in Eqn 2  (c  is  approximately  1  in  Fig. 1B).  During  

the initial moments of the reaction, Eqn 2 is further simplified to the Hanes–Woolf 

linearization of the MM equation, S0/v0 = (1 + s0), provided that it may be assumed that 

t/ is approximately 0 (and P0 = 0). In practice, however, reactions start to be effectively 

monitored after elapsed the lag time (tlag) comprising   the time required to mix the solutions, 

the dead time of the instrument, and the period over which reaction rates are measured. For 

higher enzyme concentrations, tlag/ overtakes the value of s0, and the equivalence between 

Eqn 2 and the Hanes–Woolf equation is lost. Figure 2A illustrates how the linearity is broken 

as the concentration of –galactosidase increases from 0.052 g-mL-1 (top  panel)  to  

5.236 g-mL-1  (bottom panel) (see also Fig. S3B). The supposedly hyperbolic   vi (S0) 

relationship is confirmed for lower E0 (Fig. 2B, top panel) but becomes increasingly 

sigmoidal  as  E0 and   tlag   increase   (Fig.  2B,   bottom    panel,    and  Fig. S3A), wrongly 

suggesting allosteric regulation properties similar to those that are characteristic of 

cytochrome P450, for example [4,21]. 

The reason why the MM equation cannot be applied is that, by missing the first moments 

of the reactions, we  also  miss  the  period  of  constant  rate, particularly under conditions 

of low S0 and high E0. In such cases, the measured initial rates vi are lower than the true 

initial rate v0. A possible solution to this problem would  be to adopt rapid-reaction set-ups 

[22,23]. Other alter- natives that do not require experimental reconfiguration include (a) 

progress curve fitting, and (b) Eqn 2 fitting. However, both non-linear regressions should be 

adopted parsimoniously; in the first case, the numerical fit is easily biased towards one of the 

constants vmax  or s, depending of the substrate concentration under investigation [24]. In 

the case of Eqn 2, the numerical fit is greatly affected by uncertainties associated with 

estimation of tlag preceding each measurement. Instead, we propose a straightforward 

alternative based on an additional simplification of Eqn 2 under conditions of   s0 >> e0: in 

that region alone, the (S0 – P) term and the Lambert x term correspond to the direct and 

normalized definitions of the  instant  substrate  concentration (S and s, respectively), thus 

reducing Eqn 2 to a Hanes–Woolf linearization relating S/v  and  S.  Subtle as it may seem, 

using measured substrate concentrations instead of initial concentrations is sufficient to 

recover the linearity of the modified Hanes–Woolf plot (Fig.  2A, bottom panel) and the 

hyperbolic  relationship (Fig. 2B, bottom panel). As shown in Fig. 2C,D,  the new formalism 

produced estimates of vmax and KM that were within the experimental error even for 

concentrations of b–galactosidase as high as 10.471 g-mL-1, the limit above which 

product accumulation for t > tlag is hardly discernible. 

Only a slight modification to the MM equation is therefore required to account for the time 

dimension under the ‘white’ region of conditions, but what about the ‘gray’ and  ‘dark’ 

regions involving s0  values around and below e0? This is where the dissociation constant 
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of the enzyme–substrate complex (KS) may  play its hitherto obscured role. As indicated  by  

the solid and dashed lines in Fig. 1A,B and Fig. S4, the major differences between extremely 

low and extremely high substrate affinities are principally confined to enzyme concentrations 

around KM  (e0  of approximately 1), here called the critical region of conditions, and to the 

early reaction phases when the enzyme is in excess over substrate (e0 > s0). Under these 

conditions, affinity-based mechanisms of enzyme  regulation  may be anticipated that do not 

necessarily involve inactivated enzyme–inhibitor complexes; these are not considered here. 

In the search for a universal, algebraically simple formalism [5,18,25], we chose the 

stationary instant  t*  at  which the pivotal  variable (S0 – P*)/v* is independent of KS (as 

demonstrated during derivation of Eqns S19 and S24 in Doc. S1): 

 

 

 

The additional simplifying hypothesis required to derive this equation does not compromise 

its applicability even in the worst-case scenario discussed in Doc. S1 for approximation 3. 

Because the stationary instant corresponds to the moment of highest reaction rate, it is 

unmistakably present in a full progress curve, and is not subject to the ambiguities of  

instantaneous  reaction rate methods such as  low  signal-to-noise  ratios. As shown below, 

the highest reaction rates may differ from initial reaction rates under non-MM conditions. 

Equation 3, the stationary version of the more generic model equation, may be used to 

estimate MM parameters by trivial linear regressions and without major experimental 

constraints other than the instrumental resolution required to access the stationary moments 

[22,26]. As an example, we studied the hydrolysis of   the fluorogenic substrate 4–

methylumbelliferyl-b–D-N, N’,N’’-triacetylchitotrioside (MUF-triNAG) by hen egg-white 

lysozyme (EWL). Substrate concentrations above and below the enzyme concentration were 

adopted in order to understand the peculiar ‘gray’/ ’dark’   regions   (Figs   S4   and   S5).   

When substrate concentrations lower than E0 are adopted, the reaction rates are 

advantageously measured at various enzyme concentrations and fixed S0. As illustrated in 

Fig. 3A,  in   addition   to   being   strongly   affected   by   E0, the pivotal  variable  is  

linearly  dependent  on  E-0 
1,  in  conformity with Eqn 3 (note that s is alternatively defined 

as  = KM/k2E0). In contrast, the stationary-state Hanes–Woolf plots (Fig. 3B) show a 

relatively weaker influence of S0 at fixed enzyme concentrations. The reasons are twofold. 

First, and as suggested by Eqn 3, the pivotal variable (S0 – P*)/v* is independent of the 

substrate concentration for  S0  < E0.  Second,  the  span of substrate concentrations above 

E0 was too small to have pronounced effects for S0 > E0. A single linear fit  in Fig. 3A was 

sufficient to produce valid estimations over critical and transient conditions such as those in 

Fig. 3B (solid lines). This confirms that Eqn 3 is an adequate representation of the stationary 

pivotal variable,    subject    to    diptych    linear   influences of   (a) E0
-1 for S0\E0  

conditions (and fixed S0), and (b) S0  for S0  > E0  conditions  (and fixed E0). 

While the problem of simple and universal estimation of MM parameters is solved, we 

have still ignored how to estimate the dissociation constant KS. In fact, KS is indirectly 

present in Eqn 3 as it determines the reaction rate and product concentration under 
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stationary conditions. If the scaled dissociation constant reaches its maximal value 

(KS/KM = 1), then v* = v0 and P* = 0, thus reducing Eqn 3 to a MM- like equation for 

S0 > E0, and to the simplified Bajzer and Strehler equation [17] for S0 < E0. In  all  other 

cases, product accumulation curves  are expected  to  show  an  inflection  point  at  an  

instant t* 0 that becomes more noticeable for lower concentrations of enzyme and substrate 

(Fig. S6). Under KS-sensitive conditions (e0 and s0 ≤ 1), clearly hyperbolic progress curves 

(Fig. 3C,  top  panel)  or  invariant pivotal variable values during the initial reaction phases 

(Fig. 3C, bottom panel, and Fig. S4) immediately   suggest   that   KS  = KM   (11.1 M),   

which   compares well with literature KS values between 5 and 33 M  obtained  for  the  

non-fluorogenic  lysozyme–tri- NAG complex using advanced mass-spectrometry techniques 

[27]. If the progress curves were scenario, the value of KS could be calculated from Eqn S26  

in Doc. S1 using the (S0 – P)/v  values  measured  after long reaction times. The usefulness 

of this kind of late-stage analysis may also be extended to  single-assay estimations of the 

time constant   in  cases where the enzyme concentration  is  very  low  (e « 1) or unknown, 

such as in cell extracts (Fig. S5). 

Besides triggering most singular kinetic behaviors, the critical region of concentrations 

around the KM value is also biologically important for both enzyme and substrate 

[20,28–31]. Additionally, it is recommended that high-throughput screenings of lead 

compounds adopt substrate  concentrations  around or  below  KM  for  optimal  

sensitivity  to competitive inhibitors [32,33]. Whilst the chiaroscuro of an enzyme’s 

clockwork is revealed by Eqn 2 (which is equivalent, in its extended form, to Eqn 4), we 

expect that Eqn 3 will help researchers unveil regulation mechanisms that remain hidden by 

the steady-state constraints. The critical region of conditions is here suggested as a favourable 

pathway to therapeutically target enzymes, and may justify taking rejected inhibitors back 

from the  laboratory  shelf. 

In conclusion, in addition to filling all the  major  gaps left by the steady-state 

approximation, the  present work opens new perspectives and opportunities for future kinetic 

studies in enzymology. First, a complete picture of non-inhibited, single active-site enzyme 

kinetics is unveiled for the first time in a mathematically closed form that is valid over all 

experimental conditions and not only conditions of great substrate excess (Eqns 2 or 4, and 

Fig. 1). Second, the new theoretical model is also valid over all reaction time scales, not only 

during the initial phases. Third, non-linear Hanes–Woolf plots (Fig. 2A, red, and Fig. S3B) 

or non-hyperbolic MM relationships (Fig. 2B, red, and  Fig. S3A) may solely represent the 

inability  of  the  MM equation to describe later  reaction  phases,  even for conditions of 

great substrate excess. A method is proposed to promptly   overcome   this   limitation  (Fig. 

2A,B, blue). Fourth, algebraic simplicity, a key aspect for the success of the MM equation, 

is maintained by the new formalism when stationary instants are considered (Eqn 3). This 

allows for simple and condition-independent determination of kinetic parameters. Fifth, the 

hitherto obscure role of the dissociation constant KS is revealed (Fig. 1A,B and  Fig. S4), 

thus completing the puzzle originally set by the Briggs and Haldane mechanism. When the 

initial enzyme concentration is around KM, the dissociation constant influences all reaction 

phases; when the initial enzyme concentration is in excess over substrate, only early reaction 

phases are affected; under conditions of substrate excess, the KS  constant has no visible 

effect on the progress curves (in accordance with the MM equation). Six, two methods are 

proposed to estimate the value of KS  when  initial  (Fig. 3C)  or  later  stages (Fig. S5 and 
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Eqn S26, Doc. S1) are  analyzed.  Seven, the most singular kinetic behaviors are found to 

take place in a critical region of conditions where the con- centration of enzyme and substrate  

are  both  close to KM (Fig. 1A,B and Figs S4 and S5). It is not totally surprising that these 

conditions coincide with those usually considered as representative of the cell. Finally, the 

preceding conclusion, together with the possibility raised by the fourth conclusion, give 

support to a gradual    change    in    compound    libraries  screening towards equimolar 

enzyme–substrate assays. By systematically adopting conditions  of substrate excess,  it is 

conceivable that in vitro drug discovery research has failed to identify therapeutically 

relevant inhibition/ regulation effects. 

 

 

Experimental procedures 

 

Reagents 

Enzymes –galactosidase from Escherichia coli and  egg- white lysozyme (EWL) were 

obtained from Merck (Darmstadt, Germany) and used without further purification. The 

fluorogenic substrates 4–methylumbelliferyl-galactoside (MUG) and 4–methylumbelliferyl-

b–D-N,N’,N’’-triacetylchi- totrioside (MUF-triNAG) were purchased from  Sigma-  Aldrich  

(Sintra,  Portugal)   and   Carbosynth   (Berkshire, UK), respectively. 2–mercaptoethanol was 

purchased from Sigma-Aldrich. All water used was double-distilled. 

 

 

–galactosidase enzymatic assay 

Time progress curves were measured  during  hydrolysis  of  the non-fluorescent substrate 

MUG to the fluorescent product 4–methylumbelliferone by –galactosidase. Fluorescence 

was detected using a Hidex (Turku,  Finland)  CHAME- LEON V plate reader at an  

excitation  wavelength  of  315– 395 nm and an emission wavelength of 440–480 nm. Stock 

solutions  of  –galactosidase  (52.356 g-mL-1)  and  MUG (0.591  mM)   were   

prepared   in   100 mM   sodium phosphate buffer, pH 7.0, containing  1 mM magnesium 

chloride and   50 mM mercaptoethanol. The stock solutions were further diluted with the 

buffer solution to obtain assay concentrations of 0.026, 0.052, 0.262, 0.524, 1.047, 

2.618, 5.236 and 10.471 g-mL-1   b–galactosidase,  and  0.473,  0.236,  0.118, 0.059 

and 0.047 mM MUG. Triplicate or quadruplicate kinetic assays were performed 

separately at 25 °C in 96- well microplates (black Cliniplate; Thermo Fischer Scien- tific,  

Waltham,  MA,  USA)  by  adding  20 L  of  substrate solution  to  180  L  of  enzyme  

solution.  All  solutions  were thermostatized before use. Fluorescence readings were 

started approximately 5–6 s after mixing the solutions, and were taken every 2 s 

throughout the period of constant reaction rate. This period was increasingly shorter as 

higher enzyme  concentrations  were  investigated:  > 16 s  for  –galactosidase   

concentrations   lower   than   1.047 g-mL-1, approximately 16  s for 2.618 and 5.236 

g-mL-1  b–galactosidase,  and  approximately  8 s  for  10.471 g-mL-1  –

galactosidase. Measurements were affected by the inner filter effect, which is noticeable 

as attenuated fluorescence intensities for higher optical densities. The inner filter effect  

correction factor that ensures a linear response to the concentration of fluorophore was 
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determined empirically and then applied to all progress  curves. 

 

Egg-white lysozyme enzymatic assay 

Time progress curves were measured during hydrolysis of the non-fluorescent substrate 

MUF-triNAG to  the  fluorescent product 4–methylumbelliferone by EWL. Fluorescence was 

detected using  a  Hidex  CHAMELEON V  plate  reader at an excitation wavelength of 315–

395 nm and an emission wavelength of 440–480 nm. Stock solutions of EWL (17.64  M)   

and   MUF-triNAG   (30 M)   were   prepared   in 50 mM citrate buffer, pH 5.2. The 

stock solutions were  further diluted with the  buffer  solution  in  order  to  obtain  assay  

concentrations  of  8.82,  4.41,  2.65,  1.76,  0.88  and 0.18  M   EWL   and   15.0,   10.0,   

5.0,   2.5,   1.0   and   0.5 M MUF-triNAG. EWL concentrations were determined by  

UV absorbance measurements at 280 nm taking  into account the presence of 2% 

contaminants with high molecular-weight estimated by SDS/PAGE analysis. Kinetic 

assays were performed at 37 °C in 96-well microplates (black Cliniplate; Thermo 

Scientific) by adding 100  L substrate  solution  to  100  L  enzyme  solution,  and  

then  covering  the  well  with  100  L  paraffin  oil  to  avoid  evaporation. All solutions 

and paraffin oil were thermostatized before use. Fluorescence readings were taken every 

30 min throughout the period of constant reaction rate. Lower enzyme concentrations 

required longer periods for significant product concentration build-up: approximately 2 

days for 0.88  M  EWL  and  approximately  3.6  days  for  0.18 M EWL. 

Instantaneous product concentrations were deter- mined using a linear calibration curve. 

No inner filter effect was detectable for the studied range of fluorophore concentrations. 

 

 

Theoretical calculations 

In the present work, a whole picture of single active-site enzyme kinetics without 

inhibition is given in terms of the influence of the model parameters  KM,  vmax  and  

KS,  and the model variables time (t), initial enzyme concentration (E0) and initial 

substrate concentration (S0) on the pivotal variable (S0 – P)/v. This picture is more 

clearly seen using the  scaled  variables   = KM/vmax,  e0  = E0/KM,  s0  = S0/KM,  

= t/(e0 ) and  = (1 – KS/KM). The following analytical solution is derived in Doc. S1 

and used to plot  Fig.  1A: 
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with * corresponding to the value of 𝜆~ calculated by Eqn 4c for �̅� = 𝑠∗. 
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Fig. S1. Validation of the theoretical model. 

Fig. S2. Worst-case correlation between numeric and theoretical solutions. 

Fig. S3. Deviations from the hyperbolic and linear relationships  under  MM conditions. 

Fig. S4. Early reaction phases are KS/KM-sensitive for high e0. 

Fig. S5. Later reaction phases are KS/KM-sensitive for e0  of  approximately 1. 

Fig.  S6.  Time  needed  to  reach  the  stationary  point. Fig. S7. Model predictions in a 

different perspective. Fig. S8. Early reaction phases are sensitive to small variations of 

KS/KM  for e0  >  1. 

Doc. S1. Derivation of equations presented in the text. 
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Fig. 1. The complete picture of single active-site enzyme kinetics without inhibition. 

Log–log plots of model  Eqn 2:  (A)  in  its extended form (equivalent to Eqn 4), and 

(B) focusing on the definition of correction factor C  (Eqn S23, Doc. S1). The 

influence of the KM-normalized initial concentration of substrate (s0) on (A) the k2 

pivotal variable product k2 (S0 – P)/v, and (B) the correction factor C  is shown for 

limiting values of KS/KM = 0 (solid lines) and KS/KM = 1 (dashed lines). Italic numbers 

indicate characteristic values of the KM-normalized initial concentration of free enzyme   

(e0) used to calculate the series of curves. The gradation of colors represents the time 
progression of the enzymatic reaction relative   to the stationary instant t0* calculated 

for KS/KM = 0 using Eqn S17 (Doc. S1). Earlier reaction phases  are  not  represented  

for  KS/  KM = 0 to avoid superposition of curves calculated for different e0 values. 

Figs S4, S7 and S8 provide a more detailed analysis of earlier   reaction   phases.   In   

addition,   C   curves   calculated   for e0 ≤ 10-1   are  not  shown  in  (B)  as  their  

values  do  not  differ considerably from 1. Figs S1 and S2 show the validation of the 
model against the exact numeric  solution.
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Fig. 2. Estimating vmax and KM parameters under MM conditions. Illustrative example for hydrolysis of MUG substrate by the enzyme –

galactosidase at 25 °C and pH 7.0. The typical method (red) analyses the effect of true initial concentrations of substrate (S0) on the initial 
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reaction rate (vi), while the modified method (blue) analyses the effect of measured initial concentrations of substrate (Si) on vi. Differences 

between true concentrations (subscript 0) and measured concentrations (subscript i) arise from the time lag (tlag) preceding each measurement.  

The  typical  method  did  not  provide  reliable  estimations  of  the  kinetic  constants  for  E0 > 2.618 g-mL-1.  (A)  Examples  of Hanes–

Woolf plots for initial concentrations of free enzyme E0 = 0.052 g-mL-1  (top) and 5.236 g-mL-1  (bottom). Symbols and error bars 

are means ± standard deviations of triplicate or quadruplicate measurements. Solid lines represent valid linear fits. Dotted lines represent 

theoretical  S0/vi  versus  S0  plots predicted by  Eqn 2  under MM  conditions (C  = 1)  for  the lag  time  indicated  by  italic  numbers,  and  

using vmax and KM parameters obtained by the modified method. (B) Same data as in (A) represented as vi versus substrate concentration 

plots. (C) Fitted KM parameters (closed symbols) represented on semi-log scale as a function  of E0. The dotted blue line represents mean KM  

values. Error bars represent 95% confidence intervals. (D) Fitted vmax parameters (closed symbols) represented on a log–log scale as a 

function of E0. The dotted blue line represents the linear fit with intercept set to 0. Open red symbols in (C) and (D) are examples of invalid 

results (for which the 95% confidence intervals include 0). 
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Fig. 3. Estimating k2, KM and KS parameters under non-MM conditions. Illustrative example for hydrolysis of MUF-triNAG substrate by 
hen egg-white lysozyme at 37 °C and pH 5.2. (A) Open diamonds represent the measured stationary pivotal variable (S0 – P*)/v* as a 

function of the  reciprocal  of  the  free  enzyme  concentration  E0-1  for  S0 = 15.0 M  (black  diamond),  10.0 M  (blue  diamond),  5.0 

M  (brown  diamond), 2.5 M  (green  diamond),  1.0 M  (gray  diamond)  and  0.5 M  (red  diamond).  Closed  circles  represent  mean  
(S0 – P*)/v*  values  measured under S0 < E0 conditions for each enzyme concentration. The solid blue line represents the linear fit of Eqn 

3 to the data represented by the closed  symbols.  Fitting  results:  k2 = vmax/E0 = 16.1 ± 2.0 x 10-6 s-1;  KM = 11.1 ± 1.5 M.  Inset:  

use  of  an  expanded  axis  for  regions  of E-1  > 0.88-1 M-1.  The  light  blue  line  represents  the  linear  fit  extrapolated  to  S0 > E0  

conditions.  (B)  Closed  circles  represent  measured (S0 – P*)/v*  values  as  a  function  of  S0  for  E0 = 8.82 M  (black  circle),  4.41 M  

(blue  circle),  2.65 M  (purple  circle),  1.76 M  (green  circle), 0.88 M  (gray  circle)  and  0.18 M  (red  circle).  A  log–log  plot  is  used  
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for  clarity.  Solid  lines  represent  theoretically  predicted  curves  using Eqn 3 and the fitted parameters determined in (A). Vertical dotted lines 
represent boundaries at S0 = E0. (C) Examples of progress curves measured at E0 = 8.82 M (s = 21.7 h) under KS-sensitive conditions, 

i.e. for values of e0  (0.79) and s0  (italic numbers) close to or < 1. Top panel: product accumulation curves showing no inflection points (v* = 

v0 and P* = 0) independently of the value of S0. Bottom panel: concentration of product still to be formed (S0 – P) represented in a log–linear 

plot as a function of time; instantaneous slopes correspond to the reciprocal of the pivotal variable v/(S0 – P). The hyperbolic trend (top panel) 

and linear trend (bottom panel) are indicators that KS = KM (11.1 M). 

 

 

 


