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Abstract 

The Langmuir equation is one of the most successful adsorption isotherm equations, 

being widely used to fit Type I adsorption isotherms. In this article we show that the kinetic 

approach originally used by Langmuir for 2D monolayer surface adsorption can also be 

used to derive a 1D analogue of the equation, applicable in ultramicropores with single-

file diffusion systems. It is hoped that such a demonstration helps dispel the idea that the 
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Langmuir isotherm equation cannot apply to some micropores as more than a 

mathematical correlation. We furthermore seek to extend the intuitive insight provided by 

the simple kinetic derivation of the Langmuir equation to other isotherm equations capable 

of modelling Type I isotherms. The kinetic approach is thus also used to derive the 

Volmer, Fowler-Guggenheim and Hill-de Boer equations, both for surface (2D adsorbed 

phase) and micropore adsorption (1D and 3D adsorbed phases). It is hoped that this will 

help make it more intuitively clear that these equations can be used as phenomenological 

models in some instances of adsorption in micropores. 
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Introduction 

Langmuir pioneered the kinetic approach to the derivation of adsorption isotherms in 

1918 [1], by deriving an expression that considers adsorption of gas-phase molecules on 

specific sites of the surface, upon hitting on it at a rate given by the Kinetic Gas Theory. 

This approach had scant sequence, being used only in the derivation of the BET and GAB 

equations [2]. The more powerful and simple thermodynamic (classic and statistical) 

approaches proved much more attractive and productive. In porous solids, even the 

kinetics of adsorption could not be appropriately described using the kinetic approach of 

Langmuir, since diffusion through the pores is typically the rate-controlling mechanism. 

With the discovery of the distributed nature of London forces and the development of 

the concept of adsorption potential, it was realised that purely localised adsorption very 
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seldom exists for physical sorption [3]. Nonetheless, the elegance, simplicity and ability 

to produce fitting parameters with clear physical meaning made the Langmuir equation 

one of the most widely used adsorption isotherm equations. So much so that Type I 

adsorption isotherms are often called “Langmuir-like”, or simply “Langmuir” [4-6]. We 

therefore believe that other adsorption isotherm equations would greatly benefit from the 

insight gained from a kinetic derivation. 

The simplest thermodynamic approach to adsorption is expressed by the Gibbs 

adsorption isotherm. In another article [7] we proposed that the Gibbs adsorption 

isotherm, and the equations derived from it, can be accurately applied to some 

micropores, besides surfaces, by considering one- (1D) and three-dimensional (3D) 

adsorbed phases. 1D systems represent ultramicrpores with single-file diffusion, while 3D 

systems represent large ultramicropores and small supermicropores where merging of 

adsorption potentials from opposite walls creates an adsorption potential that is radially 

uniform [8]. The simplest equations derived from the Gibbs adsorption isotherm are 

represented in Table 1. These five equations represent the most basic types of adsorption; 

localised or distributed, with or without lateral interactions. All can generate Type I 

isotherms, and the Hill-de Boer and Fowler-Guggenheim equations can also generate 

Type V isotherms. For 3D adsorbed phases, the concept of localised adsorption does not 

apply, and, thus, the Langmuir and Fowler-Guggenheim equations are only considered 

for localised 1D and 2D adsorbed phases. 

 

Table 1. Different adsorption isotherm equations obtained from the Gibbs equation, for gases, and Type 
of Adsorption it models. Type of Adsorption can be localised or distributed and with lateral interactions or 
without lateral interactions. For adsorption of solutes from liquid solutions, pressure is replaced by 
concentration. The variables in the equations are defined in the text. 
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Name of Isotherm Isotherm Equation Type of Adsorption 

Henry 𝑏𝑃 = 𝜃 Any 

Langmuir [1] 𝑏𝑃 =
𝜃

1 − 𝜃
 

Localised, without lateral 
interactions 

Fowler-Guggenheim [9] 𝑏𝑃 =
𝜃

1 − 𝜃
exp(−𝑐 𝜃) 

Localised, with lateral 
interactions 

Volmer [10] 𝑏𝑃 =
𝜃

1 − 𝜃
exp (

𝜃

1 − 𝜃
) 

Distributed, without 
lateral interactions 

Hill-de Boer [11-13] 𝑏𝑃 =
𝜃

1 − 𝜃
exp (

𝜃

1 − 𝜃
) exp(−𝑐 𝜃) 

Distributed, with lateral 
interactions 

 

The kinetic derivation of the five isotherm equations of Table 1 will be given below, for 

1D, 2D and 3D systems. We hope that by exemplifying a kinetic derivation of the Langmuir 

equations for 1D systems we may help dispel the idea that it can never represent a 

physical model of micropore adsorption. To perform these derivations, kinetic arguments 

as those of Langmuir [1] and de Boer [14, 15] will be used. It will be assumed that 

adsorbed molecules are hard spheres, behaving according to Newtonian kinematics, and 

that impacting molecules only interact with the solid upon hitting the surface (2D) or 

entering the pore (1D and 3D). It should be noted that these crude simplifications are 

already implicit in the thermodynamic derivations [7]. They will prove to be very powerful 

in promoting insight into some of the physical realities behind the isotherm equations 

under consideration, in the same way it occurred with the Langmuir equation. 

We should emphasise that we are not proposing that adsorption occurs necessarily or 

exactly according to the mechanisms proposed in the models. This is especially the case 

in micropores, where adsorption around the pore mouth plays a decisive role in promoting 

in-pore adsorption. We seek only to show that simple models such as that originally used 
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by Langmuir can be used to derive other simple isotherm equations, and that they can be 

used as easily in micropore adsorption as in monolayer surface adsorption. 

 

 

Adsorption on a Planar Surface – 2D 

Localised Adsorption – The classic Langmuir model 

The classic Langmuir model describes adsorption on a surface with discrete adsorption 

sites. It has been described many times before [14, 16], but a small recapitulation will be 

very helpful in setting the conceptual framework used for the derivations that follow. 

The rate of adsorption is equal to the rate of impact of gas-phase molecules on 

unoccupied adsorption sites. The rate of impact on a surface is given by the Kinetic Gas 

Theory, having SI units of mol·m-2·s-1. If the units desired for the adsorption rate are 

mol·kg-1·s-1, the rate of impact must be multiplied by the specific surface area, with SI 

units m2·kg-1. The surface is not entirely covered by adsorption sites and not all impacts 

on these are successful, so an extra term, 𝛼, is included, representing the fraction of 

successful impacts on the surface. Finally, not all adsorption sites are free, so the rate of 

adsorption will be proportional to the fraction of those that are. This fraction is given by 

(1 − 𝜃), where 𝜃  represents the total amount adsorbed relative to the maximum that can 

be adsorbed (monolayer coverage). Thus, the equation for the rate of adsorption is 

 𝑟𝑎 =  
𝑃

√2𝜋𝑀𝑅𝑇
· 𝛼 · (1 − 𝜃) · 𝐴 (1) 
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where 𝑟𝑎 represents the rate of adsorption, 𝐴 represents the specific surface area of the 

adsorbent, 𝑃 represents pressure, 𝑀 represents molar mass, 𝑅 represents the ideal-gas 

constant and 𝑇 represents absolute temperature. 

Desorption is an activated phenomenon, the rate of which is proportional to the amount 

adsorbed. Therefore, the rate of desorption can be expressed as: 

 𝑟𝑑 =  𝑘𝑑 · 𝑛 
(2) 

where 𝑟𝑑 represents the rate of desorption (SI units of mol·kg-1·s-1), 𝑘𝑑 represents the 

frequency of desorption (s-1) and 𝑛 represents the specific amount adsorbed (mol·kg-1). 

The frequency of desorption is given by, 

 𝑘𝑑 = 𝑘0 · exp (−
𝐸𝑎

𝑅𝑇
) (3) 

where  𝐸𝑎 is the activation energy of desorption and  𝑘0 is the maximum frequency of 

desorption, reached at infinite temperature. The activation energy of desorption is 

basically the heat of adsorption, that is,  𝐸𝑎 = (−∆𝐻)𝑎𝑑𝑠. 

Equating the rate of adsorption with the rate of desorption, and considering that 𝜃 =

𝑛 𝑛𝑚𝑎𝑥⁄ , results in the Langmuir equation, 

 𝑟𝑎 = 𝑟𝑑 ⇔ 𝑏𝑃 =
𝜃

1 − 𝜃
 (4) 

where  𝑏 is the so-called affinity constant, and, 

 𝑏 =
𝐾𝐻

𝑛𝑚𝑎𝑥
 (5) 

where 𝑛𝑚𝑎𝑥 represents the maximum specific amount that can be adsorbed and 𝐾𝐻 is 

Henry’s constant, which can be expressed as 
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 𝐾𝐻 =
𝛼 · 𝐴

𝑘𝑑√2𝜋𝑀𝑅𝑇
 (6) 

 

Distributed Adsorption – Volmer Equation for Surfaces 

The derivation of an equation for distributed monolayer adsorption will now be 

described, using the same kinetic approach as for localised adsorption. From the 

thermodynamic derivation [13, 16], we know the Volmer equation is the correct final result. 

As a starting point, it must be considered, as for the thermodynamic derivation, that 

adsorption occurs on a uniform adsorption potential on the surface of the adsorbent. This 

means that, when in the adsorbed phase, the molecules are free to slide through the 

surface and bump into each other, as a two-dimensional gas [15]. One of the key variables 

used for the characterisation of the adsorbed phase is the molar area of the system, 

defined as: 

 𝑎 ≡
𝐴

𝑛
 (7) 

When a monolayer has been formed, the specific amount adsorbed is at its maximum, 

𝑛𝑚𝑎𝑥, and the molar area at its minimum, 𝑎0. The minimum molar area is approximately 

the molar area of a single adsorbed molecule, 𝑎0 = 𝑎𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒. 

The desorption rate is modelled in the same manner as for localised (Langmuir) 

adsorption, 

 𝑟𝑑 =  𝑘𝑑 · 𝑛 (8) 

where 
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 𝑘𝑑 = 𝑘0 · exp (−
𝐸𝑎

𝑅𝑇
) ,     𝐸𝑎 = (−∆𝐻)𝑎𝑑𝑠 (9) 

However, the adsorption rate cannot be described by Eq. (1). The fraction of 

unoccupied surface, (1 − 𝜃), does not correspond to the surface available for impact of 

incoming gas molecules, as it occurs for localised adsorption. The freedom of movement 

leads to the existence of a random distribution of intermolecular distances, unlike the 

uniform distribution of localised adsorption.  An impact is successful, or not, depending 

on the presence of molecules within the area of impact, as represented in Figure 1. This 

area is exactly the same as the area of an adsorbed molecule, A0, or, in molar terms, 𝑎0. 

Let us define a variable 𝑎𝑠, the area of the circle centred on the centre of the impact site, 

and touching the nearest adsorbed molecule, where the s stands for “site”. Figure 1 

shows 𝑎𝑠 for a successful impact and an unsuccessful impact. The probability that the 

available intermolecular area between the adsorbed molecules at the point of impact is 

large enough for the incoming molecule to hit the surface is therefore p(𝑎𝑠 > 𝑎0). The 

adsorption rate equation can thus be written as, 

 𝑟𝑎 =  
𝑃

√2𝜋𝑀𝑅𝑇
· 𝛼 · (1 − 𝜃) · 𝐴 · p(𝑎𝑠 > 𝑎0) (10) 

To determine the new probability, it is now only necessary to know the probability 

distribution function of 𝑎𝑠. This non-negative continuous random variable, 𝑎𝑠 ≥ 0, has a 

density distribution function, f(𝑎𝑠), such that, 

 p(𝑎𝑠 > 𝑎0) = 1 − F(𝑎0) (11) 

where F(𝑎0) is the cumulative distribution function of 𝑎𝑠 for the molecular area,  𝑎0. 
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Figure 1. Representation of successful and unsuccessful impacts on the surface, 

depending on the absence, 𝑎𝑠 > 𝑎0, or presence, 𝑎𝑠 < 𝑎0, of an adsorbed molecule on 

the impact area of the incoming molecule. 

 

It must be considered that, under the model of the two-dimensional gas [15], the 

adsorbed molecules are randomly distributed on the surface. Therefore, the probability 

that there is a molecule at a given site is always the same, equal to the fraction of surface 

area occupied, θ, and independent from the presence of other molecules nearby. The 

presence of a molecule anywhere on the surface can therefore be seen as a Bernoulli 

trial, where a given site on the surface either has, or has not, molecules on it, with 

probability θ. The site area as needed to encounter the closest molecule to the impact site 

(Figure 1) can be seen as a first “success” in successive Bernoulli trials. For continuous 

random variables, the variable counting the number of Bernoulli trials until the first 
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success has an exponential distribution [17-19]. The corresponding cumulative function 

of as is given by: 

 F(𝑎0) = 1 − exp(−𝜆 · 𝑎0) (12) 

where the distribution parameter 𝜆 is given by the relationship 

 𝜆 =  
1

〈𝑎𝑠〉
 (13) 

where 〈𝑎𝑠〉 is the average of 𝑎𝑠. It is possible to see 𝑎𝑠 as the free area at the site of impact, 

which means its average will be (𝑎 − 𝑎0), the total free molar area at the surface. Hence, 

Eq. (13) can be rewritten as, 

 𝜆 =  
1

𝑎 − 𝑎0
 (14) 

and, from Eq. (12), 

 F(𝑎0) = 1 − exp (−
𝑎0

𝑎 − 𝑎0
) (15) 

Given that, 

 𝜃 =
𝑎0

𝑎
 ⇒ 

𝑎0

𝑎 − 𝑎0
=

𝜃

1 − 𝜃
 (16) 

substitution of Eq. (16) into Eq. (15) yields, 

 F(𝑎0) = 1 − exp (−
𝜃

1 − 𝜃
) (17) 

Substituting back into the probability equation, Eq. (11), and into the equation for the 

adsorption rate, Eq. (10), and equating to the desorption rate, Eq. (8), the equation 

describing the Volmer Isotherm is obtained, 
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 𝑏𝑃 =
𝜃

1 − 𝜃
 exp (

𝜃

1 − 𝜃
) (18) 

where b is the same as for the Langmuir isotherm, Eqs. (5) and (6). 

The Volmer isotherm is significantly less concave than the Langmuir isotherm. This 

reflects the need for the existence of space between the molecules already adsorbed for 

new adsorption of gas-phase molecules to take place. 

 

Henry Equation for Surfaces 

The Henry isotherm can be obtained directly from the rate equations, Eqs. (1), (2), (8), 

and (10) by considering that, for low coverage, (1 − 𝜃) ≈ 1. That is, the adsorption rate is 

independent of coverage. The Henry isotherm easily follows from equating the two rates, 

 𝐾𝐻𝑃 = 𝑛 (19) 

Applying the (1 − 𝜃) ≈ 1 condition directly to the Langmuir and Volmer isotherm 

equations, the same result is obtained. 

 

 

1D and 3D Adsorbed phases – Adsorption in Micropores 

Application of the kinetic approach to the derivation of adsorption isotherm equations 

for micropores has one significant difference regarding 2D adsorption; the interface 

between the two phases is available only to a small fraction of the adsorbate, present at 

the pore mouths. This influences fundamentally the modelling of both adsorption and 
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desorption, as the rates of both are now dependent exclusively on concentration at the 

pore mouths, not the entire adsorbed phase. 

It is worth emphasising that, just as for the thermodynamic derivations [7], not all 

microporous adsorption systems are appropriately represented by the models described 

below. There are two kinds of micropore adsorption that we propose can sometimes be 

modelled using the equations in Table 1; ultramicropores with single-file diffusion (1D 

adsorbed phase) and ultra and supermicropores with a uniform adsorption potential (3D 

adsorbed phase) adsorbed phases. As mentioned before, only distributed adsorption will 

be considered for 3D phases. 

 

3D adsorbed phases - Distributed Adsorption 

The key variables relevant for describing a 3D system are the specific pore volume of 

the adsorbent, 𝑉 (SI units of m3∙kg-1), the molar volume of the adsorbent/adsorbate 

system, 𝑣 ≡ 𝑉/𝑛 (m3∙mol-1), the average pore mouth area, 𝐴𝑚𝑜𝑢𝑡ℎ (m2∙mouth-1), the total 

specific number of pores, 𝑁𝑝𝑜𝑟𝑒 (pore∙kg-1) and the average number of mouths per pore, 

𝑁𝑚𝑜𝑢𝑡ℎ (mouth∙pore-1). As with 𝑎 and 𝑎0, for 𝑣, when 𝑛 = 𝑛𝑚𝑎𝑥, 𝑣 = 𝑣0. 

The rate of adsorption on a 3D phase is modelled very similarly to that of a distributed 

2D phase, but the area available for adsorption is now only that of the pore mouths. That 

is, 

 𝑟𝑎 =  
𝑃

√2𝜋𝑀𝑅𝑇
· 𝐴𝑚𝑜𝑢𝑡ℎ · 𝑁𝑝𝑜𝑟𝑒 · 𝑁𝑚𝑜𝑢𝑡ℎ · p(𝑒𝑛𝑡𝑟𝑦) (20) 

where p(𝑒𝑛𝑡𝑟𝑦) is the probability of entry of each gas molecule upon hitting the pore 

mouth. p(𝑒𝑛𝑡𝑟𝑦) is determined by conditions at the interface, the “surface” of the 
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adsorbed phase inside the pore. In order to model this probability, a new variable is 

introduced for the 3D system: the interfacial molar area, 𝑎𝑝𝑜𝑟𝑒. A visual representation of 

the concept of 3D adsorbed phase “surface” can be seen in Figure 2. 

At equilibrium, the interfacial molar area and pore molar volume are related by 

 𝑎0

𝑎𝑝𝑜𝑟𝑒
=

𝑣0

𝑣
= 𝜃 (21) 

As for 2D, the fraction of molecules not being deflected at the interface is given by 

 p(𝑒𝑛𝑡𝑟𝑦) = (1 − 𝜃) · p(𝑎𝑆 > 𝑎0) ⇔ p(𝑒𝑛𝑡𝑟𝑦) = (1 − 𝜃) exp (−
𝜃

1 − 𝜃
) (22) 

which can then be substituted into Eq. (20). 

 

 

Figure 2. Representation of a 3D adsorbed phase and an incoming gas phase molecule. 

The dotted line represents the limit of the “surface” of the adsorbed phase, being 

distanced from the limit of the pore by one molecular diameter. Molecules inside the pore 

are under the influence of a uniform adsorption potential field. 
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The desorption rate can also be modelled equivalently to what has been done for 2D. 

However, in this case, the desorption frequency is not multiplied by the total amount 

adsorbed, but by the total amount at the interface, 

 𝑟𝑑 =  𝑘𝑑 ·
1

𝑎𝑝𝑜𝑟𝑒
· 𝐴𝑚𝑜𝑢𝑡ℎ · 𝑁𝑝𝑜𝑟𝑒 · 𝑁𝑚𝑜𝑢𝑡ℎ (23) 

Equating 𝑟𝑎 and 𝑟𝑑, solving for P and multiplying by a0 on both sides, the Volmer 

isotherm equation is obtained, 

 𝑏𝑃 =
𝜃

1 − 𝜃
 exp (

𝜃

1 − 𝜃
) (24) 

with, 

 𝑏 =
𝐾𝐻

𝑛𝑚𝑎𝑥
 (25) 

and, 

 
𝐾𝐻 =

𝑎0 𝑛𝑚𝑎𝑥

𝑘𝑑√2𝜋𝑀𝑅𝑇
=

𝑎0

𝑣0
· 𝑉

𝑘𝑑 · √2𝜋𝑀𝑅𝑇
 (26) 

As for 2D, the probability that an incoming molecule is adsorbed in a 3D adsorbed phase 

(i.e., enters the pore) decreases for increasing 𝜃 (Eq. (22)). At high fillings, it is very 

difficult for molecules to enter the pore, even if it is not completely filled. 

 

Henry Equation for 3D Adsorbed Phases 

For 3D adsorbed phases, as for 2D, at low 𝜃, the Volmer isotherm reduces to the Henry 

equation, Eq. (19). This corresponds to having an adsorption rate that is independent of 

𝜃, with so few molecules inside the pores that entry of incoming gas molecules is, 

effectively, unimpeded. At higher fillings, the limitations to adsorption arising from the 
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presence of other molecules in the pore become apparent, and Volmer behaviour is 

established. 

 

 

1D adsorbed phases 

In single-file diffusion systems, when pores are so small that it becomes impossible for 

molecules to bypass each other (so-called “single-file diffusion” systems), the concept of 

interfacial “surface” introduced in the previous section no longer applies. This means 

occupancy limitations to the adsorption rate will depend on the presence of a single 

adsorbed molecule close to the pore mouth. Such a system is represented in Figure 3. If 

there is an adsorbed molecule within a certain distance of the pore mouth, adsorption will 

not be possible. Similarly, for desorption, there will not be a molecule always available to 

desorb close to the pore mouth. The molecule closest to it will, instead, move towards 

and away from it successively, having a given probability of exiting the pore every time it 

comes close to the pore mouth. 

 

 

Figure 3. Representation of a single-file diffusion 1D adsorbed phase and an incoming 

gas molecule. The dotted line represents the minimum distance from the pore mouth to 

the adsorbed molecule closest to it, 𝑑𝑎𝑑𝑠, that allows adsorption to take place. 
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The key new variables used to characterise the system are total specific pore length, 𝐿, 

with SI units of m∙kg-1, and molar length, 𝑙, with SI units of m∙mol-1. Similarly to molar area 

and molar volume, the molar length is defined as: 

 
𝑙 ≡

𝐿

𝑛
 (27) 

 

Localised Adsorption in 1D Adsorbed Phases 

In 1D systems, the concept of localised adsorption is perfectly reasonable. Despite this, 

the adsorption rate is calculated similarly to that of distributed adsorption in 3D pores, 

 𝑟𝑎 =  
𝑃

√2𝜋𝑀𝑅𝑇
· 𝛼 · 𝐴𝑚𝑜𝑢𝑡ℎ · 𝑁𝑝𝑜𝑟𝑒 · 𝑁𝑚𝑜𝑢𝑡ℎ · p(𝑒𝑛𝑡𝑟𝑦) (28) 

where  represents the fraction of impacts with an angle that allows the molecule to enter 

the pore. 

Since adsorption is localised, p(𝑒𝑛𝑡𝑟𝑦) is the probability that a molecule that has 

entered the pore adsorbs in a free adsorption site. That is, it is equal to the probability of 

the adsorption site closest to the pore mouth being free, 1 − 𝜃. 

The desorption rate also depends on the occupancy of the site closest to pore mouth, 

but on the probability that the site is occupied. When this happens, a characteristic 

desorption frequency determines the rate at which molecules leave the mouth of the pore. 

Therefore, the desorption rate is given by, 

 𝑟𝑑 = 𝑘𝑑 · 𝑁𝑝𝑜𝑟𝑒 · 𝑁𝑚𝑜𝑢𝑡ℎ · p(𝑠𝑖𝑡𝑒 𝑖𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑) (29) 

where 𝑘𝑑 is given by Eq. (3). 
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At equilibrium, the probability that the site closest to the pore mouth is occupied is equal 

to the fraction of occupied adsorption sites, 𝜃. Equating 𝑟𝑎 and 𝑟𝑑, 

 𝑏𝑃 =
𝜃

1 − 𝜃
 (30) 

with, 

 𝑏 =
𝐾𝐻

𝑛𝑚𝑎𝑥
 (31) 

and, 

 𝐾𝐻 =
𝛼 · 𝐴𝑚𝑜𝑢𝑡ℎ · 1 𝑙0⁄ · 𝐿

𝑘𝑑 · √2𝜋𝑀𝑅𝑇
 (32) 

The kinetic approach thus confirms the result already obtained with the thermodynamic 

approach [7]. 

 

Distributed Adsorption in 1D Adsorbed Phases 

For 1D distributed adsorption, the adsorption rate initial formula is exactly the same as 

for localised adsorption, 

 
𝑟𝑎 =  

𝑃

√2𝜋𝑀𝑅𝑇
· 𝛼 · 𝐴𝑚𝑜𝑢𝑡ℎ · 𝑁𝑝𝑜𝑟𝑒 · 𝑁𝑚𝑜𝑢𝑡ℎ · p(𝑒𝑛𝑡𝑟𝑦) (33) 

where  represents the fraction of impacts with an angle that allows the molecule to enter 

the pore. 

In this case, p(𝑒𝑛𝑡𝑟𝑦) is the probability of a molecule existing close enough to the pore 

mouth so that it prevents an incoming molecule from entering. If the critical distance 

allowing adsorption is 𝑑𝑎𝑑𝑠, then, 

 p(𝑒𝑛𝑡𝑟𝑦) = p(𝑑 > 𝑑𝑎𝑑𝑠) (34) 
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where 𝑑 represents the distance between the pore mouth and the adsorbed molecule 

closest to it. 

Using a similar reasoning as that used with areas for 2D surfaces, it can easily be 

concluded that the distance between adsorbed molecules is well expressed by an 

exponential distribution. Assuming that, at equilibrium, the distance to the pore mouth is 

equivalent to the distance between two adsorbed molecules, it is possible to write, 

 f(𝑑) = 𝜆 exp(−𝜆 𝑑) (35) 

 F(𝑑) = 1 − exp(−𝜆 𝑑) (36) 

and 

 
𝜆 =

1

〈𝑑〉
=

1

𝑙 − 𝑙0
 (37) 

giving 

 
f(𝑑) =

1

𝑙 − 𝑙0
exp (−

𝑑

𝑙 − 𝑙0
) (38) 

 
F(𝑑) = 1 − exp (−

𝑑

𝑙 − 𝑙0
) (39) 

where frequency f(𝑑) is given in mol·m-1 and F(𝑑) is dimensionless. p(𝑒𝑛𝑡𝑟𝑦) can now be 

expressed in terms of 𝑑𝑎𝑑𝑠. From Eqs. (34) and (39), 

 
p(𝑒𝑛𝑡𝑟𝑦) = 1 − F(𝑑𝑎𝑑𝑠) = exp (−

𝑑𝑎𝑑𝑠

𝑙 − 𝑙0
) (40) 

where 𝑑𝑎𝑑𝑠 will be considered to correspond to the length of a single molecule, that is, 𝑙0. 

Therefore, 

 
p(𝑒𝑛𝑡𝑟𝑦) = exp (−

𝑙0

𝑙 − 𝑙0
) = exp (−

𝜃

1 − 𝜃
) (41) 

The adsorption rate equation can now be rewritten as, 
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𝑟𝑎 =  𝐴𝑚𝑜𝑢𝑡ℎ · 𝑁𝑝𝑜𝑟𝑒 · 𝑁𝑚𝑜𝑢𝑡ℎ ·

𝛼 · 𝑃

√2𝜋𝑀𝑅𝑇
· exp (−

𝜃

1 − 𝜃
) (42) 

The desorption rate depends on the frequency with which the molecule closest to the 

exit “hits” the pore mouth (i.e., is available for adsorption), 𝑘ℎ𝑖𝑡, and the probability of 

desorption upon each “hit”, p(𝑑𝑒𝑠𝑜𝑟𝑏). Hence, 

 𝑟𝑑 = 𝑁𝑝𝑜𝑟𝑒 · 𝑁𝑚𝑜𝑢𝑡ℎ · 𝑘ℎ𝑖𝑡 · p(𝑑𝑒𝑠𝑜𝑟𝑏) (43) 

Considering the pore has a smooth and homogeneous internal surface, the “hitting” 

frequency of adsorbed molecules with the pore mouth is given by 

 𝑘ℎ𝑖𝑡 = �̅� · f(𝑑 = 0) (44) 

where �̅� is the mean speed of adsorbed molecules and f(𝑑 = 0) is the “frequency” (mol·m-

1) with which molecules hit each other inside the pores. 

From Eq. (38), 

 
f(𝑑 = 0) =

1

𝑙 − 𝑙0
=

1

𝑙0
·

𝜃

1 − 𝜃
 (45) 

Therefore, from Eqs. (43), (44) and (45), 

 
𝑟𝑑 = 𝑁𝑝𝑜𝑟𝑒 · 𝑁𝑚𝑜𝑢𝑡ℎ ·

�̅� · p(𝑑𝑒𝑠𝑜𝑟𝑏)

𝑙0
·

𝜃

1 − 𝜃
 (46) 

Thus, the initially hidden frequency of desorption can now be represented explicitly, 

 
𝑘𝑑 =

�̅� · p(𝑑𝑒𝑠𝑜𝑟𝑏)

𝑙0
⇔ 𝑘𝑑 = 𝑘0· exp (−

𝐸𝑎

𝑅𝑇
) (47) 

given in mol·s-1·mouth-1. 

Equating ra and rd, multiplying by 𝑙0 on both sides, and solving for 𝑏𝑃, it results that, 

 
𝑏𝑃 =

𝜃

1 − 𝜃
 exp (

𝜃

1 − 𝜃
) (48) 

with, 
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𝑏 =

𝐾𝐻

𝑛𝑚𝑎𝑥
 (49) 

and, 

 
𝐾𝐻 =

𝛼 · 𝐴𝑚𝑜𝑢𝑡ℎ · 𝑛𝑚𝑎𝑥

𝑘𝑑 · √2𝜋𝑀𝑅𝑇
=

𝛼 · 𝐴𝑚𝑜𝑢𝑡ℎ · 1 𝑙0⁄ · 𝐿

𝑘𝑑 · √2𝜋𝑀𝑅𝑇
 (50) 

The expression for 𝐾𝐻 is, as expected, exactly the same as the one determined for the 

Langmuir equation. The geometric factor present in 𝐾𝐻 for 3D phases, 𝑎0 𝑣0⁄ , is now 1 𝑙0⁄ , 

given that only pore length occupied by the adsorbed molecule influences equilibrium. 

 

Henry Equation for 1D Adsorbed Phases 

For 1D adsorbed phases, as in 2D and 3D, the Henry isotherm is obtained, both for 

localised and distributed adsorption, by considering the effect of low values of 𝜃 on the 

rate of adsorption. In this case, the rate of adsorption is essentially independent of the 

amount adsorbed, since the probability of a molecule being close to the pore mouth is 

very small. 

 

 
Interactions between adsorbed molecules – The Hill-de Boer and 

Fowler-Guggenheim equations 

Adsorbate-adsorbate interactions (so-called “lateral interactions”) cause changes in the 

heat of adsorption. The activation energy needed to pull an adsorbed molecule away from 

the surface (or pore) is now the energy associated with interactions between the adsorbed 

molecule and the surface (or pore) plus the energy associated with the interactions 

between adsorbed molecules 
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 𝐸𝑎 = (−∆𝐻)𝑎𝑑𝑠 =  𝑄𝑎𝑑𝑠 + (−∆𝐻𝑖𝑛𝑡𝑒𝑟) (51) 

where 𝑄𝑎𝑑𝑠 represents the energy associated with adsorbate-adsorbent interactions and 

(−∆𝐻𝑖𝑛𝑡𝑒𝑟) represents the energy associated with lateral interactions. (−∆𝐻𝑖𝑛𝑡𝑒𝑟) depends 

on the number of molecules next to each adsorbed molecule, and can therefore be 

approximated as, 

 (−∆𝐻𝑖𝑛𝑡𝑒𝑟) = 𝑧 · 𝑤 · 𝜃 (52) 

where 𝑧 is the number of positions, adjacent to the molecule, that other molecules can 

occupy and 𝑤 is the energy associated with interactions between two adsorbed 

molecules. 𝜃 is equal to the fraction of positions 𝑧 that are occupied. From Eq. (3), it is 

possible to write that, 

 𝑘𝑑 = 𝑘0· exp (−
𝑄𝑎𝑑𝑠

𝑅𝑇
) · exp (−

𝑧𝑤𝜃

𝑅𝑇
) ⇔ 𝑘𝑑 = 𝑘𝑑

′ · exp (−
𝑧𝑤𝜃

𝑅𝑇
) (53) 

Replacing this expression in Eqs. (2), (8), (23), (29) and (46), the desorption rate 

considering interactions between adsorbed molecules is obtained. The Fowler-

Guggenheim and Hill-de Boer equations follow naturally from there, 

 
𝑏𝑃 =

𝜃

1 − 𝜃
 exp(−𝑐 𝜃) (54) 

 
𝑏𝑃 =

𝜃

1 − 𝜃
 𝑒𝑥𝑝 (

𝜃

1 − 𝜃
) 𝑒𝑥𝑝(−𝑐 𝜃) (55) 

with, 

  𝑐 =
𝑧𝑤

𝑅𝑇
 (56) 

where 𝑐 is a system-specific constant. 
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It should be pointed out that Eq. (51) does not imply that 𝑄𝑎𝑑𝑠 must be constant 

regarding 𝜃. In fact, 𝑄𝑎𝑑𝑠 typically decreases with 𝜃 [16, 20], and may actually hide the 

influence of lateral interactions on the heat of adsorption. If the variation is linear, or can 

be approximated as such, this dependence can be incorporated into an experimentally 

determined linearity constant, which would also incorporate, but not be equal to, 𝑐. If the 

variation is not linear, the Fowler-Guggenheim and Hill-de Boer equations (as well as the 

associated equations of state) do not apply to the system in question. 

 

 

Conclusions 

The Henry, Langmuir, Volmer, Fowler-Guggenheim and Hill-de Boer equations were 

derived using a kinetic approach. The adsorption systems considered were surfaces (2D 

adsorbed phase), ultramicropores with single-file diffusion (1D adsorbed phase) and 

micropores with a radially uniform adsorption potential (3D adsorbed phase). The Kinetic 

Gas Theory was used as a starting point to determine the rate of adsorption, while the 

rate of desorption was modelled by considering desorption to be an activated process 

with an activated energy equal to the heat of adsorption. The exponential term that 

distinguishes equations for localised and distributed adsorption emerges considering a 

random distribution of intermolecular distances. This distance influences (in different 

ways for 1D, 2D and 3D phases) the probability of adsorption occurring upon impact of a 

gas-phase molecule. Considering localised adsorption in 1D and 2D systems leads to the 

Langmuir equation. When interactions between adsorbed molecules are considered, 

through their influence on the heat of adsorption, the Fowler-Guggenheim equation is 
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obtained. Localised adsorption in 3D adsorption systems was considered to be unrealistic 

and was not modelled. For distributed adsorption in 1D, 2D and 3D systems, the Volmer 

isotherm equation was obtained. Incorporating interactions between adsorbed molecules 

leads to the Hill-de Boer equation. The Henry isotherm can be obtained for 1D, 2D and 

3D adsorption phases, from both the Langmuir and the Volmer isotherms, by considering 

the adsorption rate to be independent from the amount adsorbed. These results are in 

agreement with those obtained with a thermodynamic approach [7], and show that simple 

isotherm equations may, in some cases, be applied to micropore adsorption as more than 

mathematical correlations. 
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