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Abstract. It is easy to show that a pseudovariety which is reducible
with respect to an implicit signature σ for the equation x = y can also
be defined by σ-identities. We present several negative examples for the
converse using signatures in which the pseudovarieties are usually de-
fined. An ordered example issue from the extended Straubing-Thérien
hierarchy of regular languages is also shown to provide a positive exam-
ple for the inequality x ≤ y.

1. Introduction

Drawing motivation and problems from theoretical computer science, spe-
cially from the theory of finite automata and regular languages, the study
of finite semigroups has led to substantial developments since the 1960’s.
The connections between the two areas were formalized in seminal work of
Eilenberg [18, 19] where, in particular, the relevant classification of finite
semigroups that emerged is in terms of the so-called pseudovarieties. In-
deed, through Eilenberg’s correspondence, pseudovarieties of semigroups are
associated, via syntactical recognition, to classes of languages (varieties) with
natural closure properties. Several combinatorial operations on varieties of
languages have been shown to correspond to algebraic constructions on pseu-
dovarieties of semigroups and the general aim is to decide membership in a
variety by deciding membership in the corresponding pseudovariety. Run-
ning through this general program, pseudovarieties of semigroups are often
defined as smallest pseudovarieties generated by a given class of semigroups,
constructed by applying some algebraic operator on semigroups from given
pseudovarieties. While this process does not in general preserve decidability
of the membership problem [1, 14], the search for stronger hypotheses on the
given pseudovarieties to guarantee decidability for the resulting pseudovari-
ety seems a worthwhile endeavor. Many works in this direction have been
developed, starting with deep results of Ash [13] on the pseudovariety of all
finite groups and various attempts of extending it [3, 10], more or less suc-
cessful depending on the algebraic operator under consideration. The case
of the semidirect product was initially based on a result [12] in whose proof
a gap was found and which remains to be filled (see the discussion in [28,
Chapter 3]).

In the approach considered in [10], several properties of pseudovarieties of
semigroups are considered depending on an enriched algebraic signature for
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finite semigroups given by an implicit signature: besides multiplication, a set
of other operations commuting with homomorphisms is taken into account.
A basic property is whether the signature is sufficiently rich to define the
pseudovariety (definability). Another important property, which is related
with the work of Ash [13], is whether the signature is sufficient to witness
solutions, modulo the given pseudovariety, of systems of equations with con-
straints in finite semigroups (reducibility). Even for the system of equations
consisting of the single equation x = y, where x and y are variables, it is easy
to show that reducibility implies definability [10]. Prior to this work, nowhere
in the literature seems to be an example showing that the converse does not
hold. Many pseudovarieties have been shown to be reducible [6, 17, 7] with
respect to the signature in which they are naturally defined, but proofs are
very much dependent on the properties of the specific pseudovarieties.

The aim of this paper is to understand the relationship between definabil-
ity and reducibility. We show, that for simple pseudovarieties of semigroups
usually defined within a certain signature, reducibility also holds. In con-
trast, we present several negative examples, of pseudovarieties which are
definable in a natural signature but not reducible with respect to it. The
examples are drawn from three natural classes of semigroups: commutative
semigroups, groups, and completely regular semigroups. The technique to
establish the negative results involves choosing a suitable regular language
for which the syntactic congruence is tight enough to have simple to handle
classes and allow a combinatorial analysis of the desired witnesses.

2. Preliminaries

The reader is referred to standard references [2, 5, 23, 28] for background
on semigroups, pseudovarieties, and profinite semigroups. Most of what we
write about semigroups may equally well be established for monoids but we
usually stick with semigroups. We also consider the extension of the theory
of pseudovarieties of semigroups to ordered semigroups [25].

Given a pseudovariety of (ordered or not) semigroups V, the pro-V semi-
group freely generated by a set A is denoted ΩAV. The pseudovarieties of
all finite semigroups and of all finite monoids are denoted, respectively, S
and M.

An implicit signature is a set in which each element belongs to some free
profinite semigroup ΩAS, where A is a finite set, including binary multipli-
cation. The elements w of ΩAS may be seen as A-ary (implicit) operations
with a natural interpretation wS : SA → S on each profinite semigroup S:
for each function ϕ : A → S, we put wS(ϕ) = ϕ̂(w), where ϕ̂ is the unique
extension of ϕ to a continuous homomorphism ΩAS → S, the existence of
which amounts to the universal property defining free profinite semigroups.
Even when restricted to finite semigroups, this interpretation is injective and
produces exactly those operations that commute with homomorphisms. In
particular, for an implicit signature σ, finite semigroups and ΩAS are nat-
urally viewed as σ-algebras and this is always the structure of σ-algebras
that we will consider on them. The σ-subalgebra of ΩAS generated by the
set A of free generators, denoted Ωσ

AS, is easily seen to be the free σ-algebra
in the Birkhoff variety of σ-algebras generated by S. The elements of Ωσ

AS
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are called σ-words. Note that, when σ is reduced to binary multiplication,
σ-words are simply words, meaning elements of the free semigroup A+. In
general, elements of ΩAS are called pseudowords. The set A+ is topologically
dense in the metric space ΩAS, that is, every pseudoword is the limit of some
sequence of words.

Some relevant and frequently encountered examples of pseudowords may
be described as follows:

xω+k = lim
n→∞

xn!+k (k ∈ Z) and xp
ω

= lim
n→∞

xp
n!
.

These are just a few examples of pseudowords in one variable, of which there
are uncountably many. More precisely, let N̂ denote the profinite comple-
tion of the semiring (N,+, ·) of non-negative integers. The “logarithmic”
mapping Ω{x}M → N̂ sending the generator x to 1 extends uniquely to an
isomorphism of Ω{x}M with the additive semigroup of the profinite semir-
ing N̂. Composition in Ω{x}M, given by (u ◦ v)S = uS ◦ vS “logarithmically”
translates to multiplication in N̂. Note that the pseudoword xω corresponds
to the only nonzero additive idempotent of N̂. The additive semigroup ideal
it generates is a subsemiring isomorphic with the profinite completion Ẑ of
the usual ring of integers (Z,+, ·), under an isomorphism sending ω+ 1 to 1;
it should therefore lead to no confusion to abuse notation and denote the
inverse isomorphism by γ 7→ ω + γ.

Further abusing notation, we will also denote by the same symbols the im-
plicit signatures consisting of pseudowords determined by a set of exponents
in N̂ and binary multiplication. For instance, we write ω = {_ω, _ ·_}. In
case it is stated that γ ∈ Ẑ, the notation is interpreted as γ = {_ω+γ , _ ·_}.

By a pseudoidentity we mean a formal equality u = v of pseudowords
u, v ∈ ΩAS for some finite set A. In case u, v ∈ Ωσ

AS, we call u = v a
σ-identity. A finite semigroup S satisfies the pseudoidentity u = v and we
write S |= u = v if uS = vS ; this notion and notation are extended to
classes of finite semigroups and sets of pseudoidentities by requiring that
every semigroup in the class satisfy every pseudoidentity in the set. Some-
times, it is convenient to use the abbreviation u = 1 to stand for the pair
of pseudoidentities ux = x = xu, where x does not occur in u. The class
of all finite semigroups that satisfy all pseudoidentities in a given set Σ of
pseudoidentities is denoted JΣK and is easily seen to be a pseudovariety. In
fact, every pseudovariety is of this form [27]. Pseudoinequalities and satis-
faction by finite ordered semigroups are defined similarly. Pseudovarieties of
ordered semigroups are also defined by pseudoinequalities [22, 25]. A pseu-
dovariety that may be defined by σ-identities is said to be σ-equational or
simply equational in case σ consists only of binary multiplication.

We recall some notions, simplified to the context that interests us here.
They are taken from [10], a paper to which the reader is also referred for
further motivation. Given a pseudovariety V, a finite semigroup S, ele-
ments s, t ∈ S, and an onto continuous homomorphism ϕ : ΩAS → S, by
a V-solution of the equation x = y for the triple (S, s, t) we mean a pair
u, v ∈ ΩAS such that V |= u = v, ϕ(u) = s, and ϕ(v) = t. For an implicit
signature σ, the pseudovariety V is said to be σ-reducible (for the equation
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x = y) if, whenever there is a V-solution for a triple (S, s, t), there is some
V-solution consisting of σ-words. This property is independent of the chosen
onto continuous homomorphism ϕ : ΩAS → S (cf. [10, Proposition 4.1]).
In case σ is reduced to binary multiplication, we call word reducible a σ-
reducible pseudovariety. Similar notions may be considered for pseudovari-
eties of ordered semigroups by replacing the equation x = y by the inequality
x ≤ y and the condition V |= u = v by V |= u ≤ v.

It is easy to see that, if a pseudovariety V is σ-reducible, then it is σ-
equational (see [10, Proposition 4.2] for the unordered case, the ordered case
being handled similarly).

3. Positive examples

In this section, we exhibit some examples of pseudovarieties that are usu-
ally defined by σ-identities that turn out also to be σ-reducible.

The simplest example is that of locally finite pseudovarieties V, in which,
for each positive integer n, there is a bound on the size of n-generated mem-
bers of V, that is, ΩAV is finite for every finite set A. Such pseudovarieties
are clearly equational, being defined for instance by all word identities de-
scribing the multiplication of a word representative of each element by each
generator in each semigroup ΩAV with A finite. The following result may
be considered a simple exercise and is presented here as a warmup.

Proposition 1. Every locally finite pseudovariety is word reducible.

Proof. Consider a finite semigroup S, s, t ∈ S, and a continuous homomor-
phism ϕ : ΩAS→ S. Assume that the pair (u, v) is a V-solution of the equa-
tion x = y for the triple (S, s, t). Let (un)n and (vn)n be sequences of words
converging to the pseudowords u and v, respectively. Let ψ : ΩAS→ ΩAV be
the natural projection, mapping each generator to itself. Since the topologies
considered in S and ΩAV are discrete, for all sufficiently large n, we have
ϕ(un) = ϕ(u), ψ(un) = ψ(u), and similarly for vn and v. As V |= u = v if
and only if ψ(u) = ψ(v), it follows that the pair (un, vn) is a V-solution of
the equation x = y for the triple (S, s, t) whenever n is large enough. �

The argument of the preceding proof may be similarly applied to handle
arbitrary systems of equations. Except for the fact that only a special type
of systems, determined by finite directed graphs, were considered in [10], a
much stronger result is [10, Theorem 4.18].

The pseudovariety J+ = J1 ≤ xK corresponds to the one-half level in
the Straubing-Thérien hierarchy [26, Proposition 8.4].1 Since the basis is
equational, our goal is to prove that the pseudovariety is word-reducible (for
x ≤ y). First we must recall that u ≤ v is satisfied in J+ if and only if every
finite subword of u is also a subword of v. More precisely, if we define, for
any pseudoword w ∈ ΩAM, the set of all finite subwords Sub(w) by

Sub(w) = {a1a2 . . . an ∈ A∗ | a1, a2, . . . , an ∈ A,
∃w0, w1, . . . , wn ∈ ΩAM : w = w0a1w1a2 . . . anwn},

1The syntactic order that we consider for a language L ⊆ A+ is u ≤L v if, for all
x, y ∈ A∗, xuy ∈ L implies xvy ∈ L. Some authors [24] consider the opposite order, which
naturally leads to reversed pseudoinequalities.
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then we have J+ |= u ≤ v if and only if Sub(u) ⊆ Sub(v).

Lemma 2. Given a finite monoid M , a homomorphism ϕ : ΩAM → M
and a pseudoword w ∈ ΩAM, there exists a finite subword v of w such that
ϕ(v) = ϕ(w).

Proof. There is a sequence of words (wn)n converging to w in ΩAM such that
ϕ(wn) = ϕ(w), n ≥ 1. We consider the Cayley graph ofM with respect to A,
in which vertices are elements from M and, for every m ∈ M and a ∈ A,
we have an edge from m to m · ϕ(a) labeled by the letter a. Thus, every wn
labels a path from 1 to ϕ(wn) = ϕ(w) and one can extract a simple path from
this path also starting in 1 and ending in ϕ(w). If the sequence of labels
of the edges in this simple path is (a1, . . . , ak), then the considered word
wn can be written as wn = u0a1u1 . . . akuk for some words u0, . . . , uk. The
assumptions concerning the extracted simple path also imply that k < |M |
and ϕ(a1 . . . ak) = ϕ(w). Since there are only finitely many simple paths in
the Cayley graph of M , in infinitely many cases the extracted simple paths
for words wn are the same. In this way we obtain a word a1 . . . ak, a label of
a simple path from 1 to ϕ(w), and a subsequence (wni) of the sequence (wn),
such that wni = ui,0a1ui,1 . . . akui,k for some appropriate words ui,j . Now,
by compactness, there is a strictly increasing sequence (i`)` such that, for
each j = 0, . . . , k, (ui`,j)` converges to some pseudoword ūj . We thus obtain
a final subsequence of (wn)n converging to w which shows that w can be
factorized as w = ū0a1ū1a2 . . . akūk. Hence, v = a1 . . . ak is a finite subword
of w satisfying the required equality ϕ(v) = ϕ(w). �

Proposition 3. The pseudovariety J+ is word-reducible (for x ≤ y).

Proof. Let u, v ∈ ΩAM be such that J+ |= u ≤ v, and let ϕ : ΩAM → M
be a homomorphism to a finite monoid. By Lemma 2, there is a finite word
u′ = a1a2 . . . an, with a1, a2, . . . , an ∈ A, such that u′ is a subword of u
satisfying ϕ(u′) = ϕ(u). Since J+ |= u′ ≤ u and consequently J+ |= u′ ≤ v,
there is a factorization v = v0a1v1a2 . . . anvn with v0, v1, . . . , vn ∈ ΩAM.
Now, if we replace each vi by a finite word v′i such that ϕ(v′i) = ϕ(vi), then
we obtain the finite word v′ = v′0a1v

′
1a2 . . . anv

′
n. The constructed pair of

words u′ and v′ have the following properties: ϕ(u′) = ϕ(u), ϕ(v′) = ϕ(v),
and u′ ∈ Sub(v′), whence J+ |= u′ ≤ v′. �

The remainder of the paper presents several examples of pseudovarieties
that are σ-equational but not σ-reducible, sometimes even not σ′-reducible
for a larger signature σ′.

4. Commutative semigroups

Our first negative example is that of the equational pseudovariety Com =
Jxy = yxK of all finite commutative semigroups. It is shown in [8] that Com
is (ω − 1)-reducible, in fact for all finite systems of (ω − 1)-word equations.
We show that it is not ω-reducible, whence also not word reducible (for the
equation x = y). Let Ab stand for the pseudovariety of all finite Abelian
groups.

Theorem 4. No pseudovariety in the interval [Ab,Com] is ω-reducible.
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Proof. Let V be a pseudovariety such that Ab ⊆ V ⊆ Com. We exhibit a
finite semigroup S, elements s, t ∈ S and an onto continuous homomorphism
ϕ : Ω{x,y}S→ S such that there is a Com-solution of the equation x = y for
the triple (S, s, t) but no V-solution exists in ω-words. Let X = {x, y} and
A = {a, b}. We take S to be the syntactic semigroup over the alphabet A of
the language L =

(
(a2b)2

)∗ ∪ (
(ab2)2

)∗ and we denote by [w] the syntactic
class of a word w ∈ {a, b}+. Let s = [bab2], and t = [a2ba]. A standard
calculation shows that s = bab2

(
(ab2)2

)∗, t =
(
(a2b)2

)∗
a2ba, and

(1) [ab2]ω−1 = [ab2], [a2b]ω−1 = [a2b].

The continuous homomorphism ϕ is defined by letting ϕ(x) = [a] and ϕ(y) =
[b]. Note that, for a word w ∈ {a, b}+, the set ϕ−1([w]) is the topological
closure of η−1([w]), where η is the restriction of ϕ to X+, that is, essentially
the syntactic homomorphism of the language L up to the change of letters
x↔ a, y ↔ b.

We claim that there is no V-solution of the equation x = y for the triple
(S, s, t) in ω-words. Let u, v ∈ ΩXS be pseudowords such that ϕ(u) = s
and ϕ(v) = t. The above description of the syntactic class s shows that u ∈
yxy2

(
(xy2)2

)∗
= yxy2〈(xy2)2〉1, where 〈w〉 denotes the closed subsemigroup

of ΩXS generated by w; similarly, we have v ∈ 〈(x2y)2〉1x2yx.
Let π : ΩXS→ ΩXAb be the natural continuous homomorphism, mapping

each free generator to itself. It is well known that the profinite group ΩXAb
is isomorphic with the product of two copies of the additive group Ẑ and we
identify it with this product.

Note that, for w ∈ ΩXS, since π(wω) is an idempotent, it is the identity
element of the group Ẑ× Ẑ. By induction on the construction of an ω-word
from the generators, it follows that π(Ωω

XS) ⊆ N × N, the reverse inclusion
being obvious.

For each w ∈ ΩXS, we let (|w|x, |w|y) = π(w). By the above discussion,
there exist α, β ∈ Ẑ such that

|u|x = 2α+ 1, |u|y = 4α+ 3, |v|x = 4β + 3, |v|y = 2β + 1.

Assuming that α, β ∈ Z and Ab |= u = v, which entails |u|x = |v|x and
|u|y = |v|y, we obtain the system of equations β = 2α + 1 and α = 2β + 1,
whose only integer solution is α = β = −1. Hence, u and v cannot both
be ω-words, which establishes the claim. On the other hand, in view of the
preceding calculations and (1), the pair

(
y(xy2)ω−1, (x2y)ω−1x

)
is a Com-

solution of the equation x = y for the triple (S, s, t). Hence, V is not ω-
reducible. �

5. Groups

We say that a pseudovariety V has infinite exponent if it satisfies no pseu-
doidentity of the form xω+n = xω, where n is a positive integer. Given a
non-empty set σ of pseudowords, we let Hσ = Jw = 1 : w ∈ σK, which is a
pseudovariety of groups.
Theorem 5. Let σ be a non-empty set of binary implicit operations on the
alphabet X = {x, y} in which every element w satisfies one of the following
properties:
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(1) either x3 or y3 is a suffix of w;
(2) both xyx and yxy are subwords of w.

Suppose further that the pseudovariety Hσ has infinite exponent. Then, no
pseudovariety in the interval [Hσ ∩ Ab,Hσ] is σ ∪ {ω}-reducible.
Proof. Let H be a pseudovariety in the interval [Hσ ∩Ab,Hσ]. Note that the
pseudovariety G of all finite groups satisfies the pseudoidentity xω−1yωx2 =
x. We exhibit a semigroup S and a pair of its elements s, t such that
(xω−1yωx2, x) is an H-solution of the equation x = y for the triple (S, s, t),
which has no H-solution consisting of σ ∪ {ω}-words. We take S to be
the syntactic semigroup of the language L = a2a+b+a2 over the alphabet
A = {a, b}. For each w ∈ L, a pair (p, q) ∈ A∗×A∗ is a context of w, that is,
pwq ∈ L, if and only if p ∈ a∗ and q is the empty word. This means that all
words from L form one syntactic class L = [w], for any w ∈ L, for instance
for w = a3ba2. Since a pair (a3ba, 1) is a context of the word a and it is not
a context of any other word, we get [a] = {a}. Similarly, we can also see
that [a4] = [a3] and [b2] = [b].

Now, consider the onto continuous homomorphism ϕ̂ : ΩXS→ S, which is
the extension of the homomorphism ϕ : X+ → S uniquely given by ϕ(x) =
[a] and ϕ(y) = [b]. Further, we put s = ϕ̂(xω−1yωx2) = [a]ω−1[b]ω[a]2 =
[a3ba2] and t = ϕ̂(x) = [a], so that the pair (xω−1yωx2, x) is a G-solution
of the equation x = y for the triple (S, s, t), whence also an H-solution. We
show that there is no H-solution of the equation x = y for the triple (S, s, t)
in σ ∪ {ω}-words.

Suppose that u, v ∈ ΩXS are such that ϕ̂(u) = s, ϕ̂(v) = t and H |= u = v.
Since t = [a] = {a} implies ϕ−1(t) = {x}, we have also ϕ̂−1(t) = {x} and,
consequently, v = x. Now, we see that ϕ−1(s) = {xmynx2 | m ≥ 3, n ≥ 1},
because s = [a3ba2] = L. The pseudoword u must, therefore, be a limit
of words from the set {xmynx2 | m ≥ 3, n ≥ 1}; in particular, u does not
contain yxy as a subword. Hence, u is equal (as an element of ΩXS) to a
pseudoword of the form xαyβx2, where α, β ∈ N̂ \ {0}. Thus, H satisfies the
pseudoidentity xαyβx2 = x.

Now, suppose that u is a σ ∪ {ω}-word. We claim that this assumption
leads to a contradiction, namely that Hσ satisfies some identity of the form
xk+2 = x, where k ∈ N, which is contrary to the hypothesis that Hσ has
infinite exponent and thereby concludes the proof. To prove the claim, con-
sider an expression of u as a σ ∪ {ω}-word. Since u is not a word, such an
expression must be of the form u = u0ψ(w)u1, where u0 is another σ ∪ {ω}-
word, u1 is a word, w ∈ σ ∪ {xω}, and ψ is a continuous endomorphism
of ΩXS. If |u1| ≥ 2, then x2 is a suffix of u1 and the claim holds since
H |= u0ψ(w) = u2 for some word u2 which, upon identification of the vari-
ables x and y, reduces the pseudoidentity u = v to an identity of the form
xk+2 = x. Since the pseudovarieties Hσ ∩ Ab, H and Hσ contain the same
cyclic groups, they also satisfy the same unary pseudoidentities. In partic-
ular we get Hσ |= xk+2 = x. Hence, we may assume that |u1| ≤ 1, so that
ψ(w) must end with the letter x.

Let z be the last letter of w, which entails that x is the last letter of ψ(z).
Note that w cannot be zω for, otherwise, x3 would be a suffix of u = xαyβx2

or yxy would be a subword of u = xαyβx2, which is clearly not the case.
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Suppose first that w satisfies the condition (1) of the hypothesis, so that z3 is
a suffix of w. If both letters x and y appear in ψ(z) then, since ψ(z) ends
with x, yx is a subword of ψ(z), so yxy is a subword of ψ(z2), whence also
of ψ(w) and of u, which we know to be false. Hence, ψ(z) must be of the
form xγ , with γ ∈ N̂ \ {0}. Again, since z3 is a suffix of w, it follows that x3
is a suffix of u, which is not the case. It remains to consider the case where
w satisfies the condition (2) of the hypothesis. If ψ(w) is a power of x, then
again x3 is a suffix ψ(w), whence of u, which is false. Hence, both letters
x and y intervene in ψ(w). Since both xyx and yxy are subwords of w, it
follows that yxy is a subword of u, which is false. This concludes the proof
of the claim. �

Of course, the dual of the theorem, where “suffix” is replaced by “prefix”
in condition (1) is also valid. In case σ is a singleton set, we may combine
these two results to obtain a stronger result.

Corollary 6. Let u ∈ Ω{x,y}S be a pseudoword such that the group pseu-
dovariety Hu = Ju = 1K has infinite exponent. Then no pseudovariety in the
interval [Hu ∩ Ab,Hu] is {u, ω}-reducible.

Proof. If any of the conditions (1), or its dual, or (2) of Theorem 5 is satisfied
by u, then we may apply the theorem to obtain the desired non-reducibility
property. Otherwise, up to exchanging variables, we may assume that u is a
pseudoword of the form xmyαxn, wherem,n ∈ {1, 2}. But then, substituting
y by xω in the pseudoidentity u = 1, we see that Hu |= xm+n = 1, which
contradicts the assumption that Hu has infinite exponent. �

In particular, the pseudovarieties G and Gp = Jxpω = 1K, where p is prime,
are not ω-reducible: take σ = {xω} for the first of these pseudovarieties
and σ = {xpω} for the latter, which is in fact not {ω, pω}-reducible. Many
other examples can be considered. By [9, Theorem 3.2], every extension-
closed pseudovariety of groups is of the form Hu for some u ∈ Ω{x,y}S, and
therefore Corollary 6 yields that, if nontrivial, then the pseudovariety Hu
is not {u, ω}-reducible. Note that, for the pseudovariety Gsol of all finite
solvable groups, concrete pseudowords u ∈ Ω{x,y}S such that Hu = Gsol have
been hard to construct, with arguments that depend on the classification of
finite simple groups [15, 16]. Another important pseudovariety of the form
Hu is Gnil, of all finite nilpotent groups, where u = [x,ω y] = limn→∞[x,n y],
with the iterated commutator defined recursively by [s, t] = sω−1tω−1st and
[s,n+1 t] = [[s,n t], t]. In this case, it is easy to see that one may apply
Theorem 5 directly.

6. Completely regular semigroups

The aim of this section is to prove that the pseudovariety CR = Jxω+1 =
xK, consisting of all completely regular semigroups, is not ω-reducible. Since
our proof technique is similar to the case of groups, we consider the more gen-
eral case of the pseudovarieties CR(Hσ) = CR ∩ H̄σ of all completely regular
semigroups whose subgroups belong to Hσ, where Hσ has infinite exponent
and σ satisfies some suitable combinatorial hypothesis to be specified below.
Note that CR can be obtained as CR(Hω), because Hω = G.
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We say that a pseudoword w has two disjoint occurrences of another pseu-
doword u if there is a factorization of w in which u appears twice as a factor.
A word u is said to appear as a factor of w within bounded distance from the
end if some finite suffix of w admits u as a factor.

Theorem 7. Let σ be a non-empty set of binary implicit operations on the
alphabet X = {x, y} in which every element satisfies one of the following
properties:

(1) either x3 or y3 is a suffix of w;
(2) each factor of length 4 of w within bounded distance from the end has

two disjoint occurrences in w.
Suppose further that the pseudovariety Hσ has infinite exponent. Then, no
pseudovariety in the interval [Hσ ∩ Ab,CR(Hσ)] is σ ∪ {ω}-reducible.

Proof. Let V be an arbitrary pseudovariety in the interval [Hσ∩Ab,CR(Hσ)].
We claim that the pseudoidentity (x2y)ω−1(xy2)ω(x2y)2 = x2y is valid in CR.
To prove the claim without invoking the general solution of the (ω−1)-word
problem for CR [20, 11], let T be a finite completely regular semigroup and
ϕ : ΩXS → T be a continuous homomorphism. We let p = ϕ(x) and
q = ϕ(y). Note that the elements qp and q2p are L-equivalent. Therefore,
(q2p)ω, an idempotent L-equivalent to qp, is right neutral to qp. Thus we
obtain qp(q2p)ω = qp, where the left hand side can be written as q(pq2)ωp.
It follows that (p2q)ω−1(pq2)ω(p2q)2 = (p2q)ω−1(p2q)2, where the right hand
side is equal to p2q in the completely regular semigroup T . Finally, since the
pseudoidentity is valid in CR, it is valid also in V.

We proceed in a similar way as in the proof of Theorem 5. Let S be the
syntactic semigroup of the language L = (a2b)2(a2b)+(ab2)+(a2b)2 over the
alphabet A = {a, b}. Note that each word w from the language L has a
unique occurrence of the factor b2a2. Hence, if a word w ∈ L is a factor of
another word w′ ∈ L, then w is a suffix of w′. Therefore, for each w ∈ L,
a pair (p, q) ∈ A∗ × A∗ is a context of w, if and only if p ∈ (a2b)∗ and q is
the empty word. This means that L forms one syntactic class. Since a pair
((a2b)3(ab2)(a2b), 1) is a context of the word a2b and it is not a context of
any other word, we get [a2b] = {a2b}. One can also check that [a2b]4 = [a2b]3

and [ab2]2 = [ab2].
For X = {x, y}, we consider an onto continuous homomorphism ϕ̂ :

ΩXS → S, which is the extension of ϕ : X+ → S uniquely given by
ϕ(x) = [a] and ϕ(y) = [b]. We put

s = ϕ̂((x2y)ω−1(xy2)ω(x2y)2) = [a2b]ω−1[ab2]ω[a2b]2 = [(a2b)3(ab2)(a2b)2]

and t = ϕ̂(x2y) = [a2b]. Assume that there are σ∪{ω}-words u, v ∈ Ω
σ∪{ω}
X S

such that ϕ̂(u) = s, ϕ̂(v) = t and V |= u = v.
We have t = [a2b] = {a2b}, which implies (ϕ̂)−1(t) = {x2y}. So, we have

v = x2y. Furthermore, we see that

ϕ−1(s) = {(x2y)m(xy2)n(x2y)2 | m ≥ 3, n ≥ 1} ,

because s = [(a2b)3(ab2)(a2b)2] = L. The pseudoword u must be a limit of
words from the set ϕ−1(s). Therefore, u is of the form (x2y)α(xy2)β(x2y)2,
where α, β ∈ N̂.
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Consider an expression of u as a σ ∪ {ω}-word. Since u is not a word,
such an expression must be of the form u = u0ψ(w)u1, where u0 is another
σ ∪ {ω}-word, u1 ∈ X∗ is a word, w ∈ σ ∪ {xω}, and ψ is a continuous
endomorphism of ΩXS. We claim that |u1| ≥ 4, in which case we are able
to proceed as in the proof of Theorem 5.

Assume for a moment, that |u1| < 4. In other words, we have u1 ∈
{1, y, xy, x2y}. First, we discuss the case when w satisfies condition (1). Let
z ∈ X be the last letter of w, so that z3 is a suffix of w. We can see that
|ψ(z)| ≥ 2, because u does not contain a cube of a letter as a factor. In
case |ψ(z)| = 2, one can easily check that none of the possible alternatives
ψ(z) = x2, ψ(z) = xy, ψ(z) = yx, or ψ(z) = y2 can hold as ψ(z)ψ(z)u1 is
a suffix of yx2yx2y. Thus, we have |ψ(z)| ≥ 3 and, therefore, |ψ(z3)u1| ≥ 9.
This means that (ψ(z))3 contains as a factor the word y2x2. Since this factor
has length 4 and the length of ψ(z) is at least 3, we deduce that y2x2 is even
a factor of ψ(z)2. However, in such a case the factor y2x2 has at least two
disjoint occurrences in ψ(z)3, which is not possible, as u contains just one
occurrence of the factor y2x2.

Now, assume that w satisfies condition (2) and recall that w is not a word.
As in the first case, under the assumption that |u1| < 4, one can show that
the word y2x2 is a factor of ψ(w). This means that it is a factor of some
ψ(w′) where w′ is a factor of w of length 4 within bounded distance from the
end. Since w satisfies condition (2), we deduce that ψ(w) contains another
disjoint occurrence of y2x2, which is a contradiction. This completes the
proof of the claim that |u1| ≥ 4.

We can reformulate the previous claim as follows. The pseudoword u
is a product of a certain σ ∪ {ω}-word u′ of the form (x2y)α(xy2)βx2 and
the finite word yx2y. Next, we consider the continuous homomorphism ϕ :
ΩXS → ΩXS given by ϕ(x) = ϕ(y) = x. Since V |= u = v, we obtain
V |= ϕ(u) = ϕ(v). Since Hσ ∩ Ab ⊆ V ⊆ CR(Hσ), the pseudoidentity
ϕ(u) = ϕ(v) must be valid in Hσ ∩ Ab. The prefix of the left hand side,
corresponding to the prefix ϕ(u′) of ϕ(u), is equivalent over Hσ ∩ Ab to
xk for some non-negative integer k. This means that, over Hσ ∩ Ab, the
pseudoidentity ϕ(u) = ϕ(v) is equivalent to a certain identity xkx4 = x3 for
some non-negative integer k. However such pseudoidentity is not valid in
Hσ ∩ Ab, because Hσ ∩ Ab and Hσ satisfy the same unary pseudoidentities
and the pseudovariety Hσ has infinite exponent, a contradiction.

This means that the equation x = y does not have a V-solution for the
triple (S, s, t) consisting of σ ∪ {ω}-words. On the other hand, we saw that
the equation x = y has a V-solution consisting of (ω− 1)-words for the same
triple (S, s, t). We conclude that V is not σ ∪ {ω}-reducible. �

Note that Theorem 7 has some overlap with Theorem 5 but does not quite
supersede it. We have not succeeded in finding an analog of Corollary 6 for
Theorem 7.

Examples of application of Theorem 7 include CR, CR(Gp), and CR(Gnil),
where σ = {u}, respectively with u = xω, u = xp

ω , and u = [x,ω y].
Another example is obtained by taking u = µω(x) = limn→∞ µ

n!(x), where
µ is the Prouhet-Thue-Morse substitution, defined as the endomorphism of
{x, y}+ such that µ(x) = xy and µ(y) = yx. The length of the word µn(x)



REDUCIBILITY VS. DEFINABILITY 11

is 2n. Hence, by identification of the variables x and y, we conclude that
Hu ⊆ G2. The reverse inclusion is a particular case of a general result,
namely [4, Proposition 5.6]. It is well know that each µn(x) is a cube-free
word, in the sense that no nonempty factor is a cube [21]. Hence, the same
is true of the pseudoword u. On the other hand, u is a regular element of the
semigroup ΩAS, which entails that it satisfies condition (2) of Theorem 7.
Thus, CR(G2) is neither {u, ω} nor {2ω, ω}-reducible.
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