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Abstract. The first author has associated in a natural way a profinite
group to each irreducible subshift. The group in question was initially
obtained as a maximal subgroup of a free profinite semigroup. In the
case of minimal subshifts, the same group is shown in the present paper
to also arise from geometric considerations involving the Rauzy graphs
of the subshift. Indeed, the group is shown to be isomorphic to the
inverse limit of the profinite completions of the fundamental groups of
the Rauzy graphs of the subshift. A further result involving geometric
arguments on Rauzy graphs is a criterion for freeness of the profinite
group of a minimal subshift based on the Return Theorem of Berthé
et. al.

1. Introduction

The importance of (relatively) free profinite semigroups in the study of
pseudovarieties of finite semigroups is well established since the 1980’s, which
provides a strong motivation to understand their structure. The algebraic-
topological structure of free profinite semigroups is far more complex than
that of free semigroups. For instance, Rhodes and Steinberg showed that
the (finitely generated) projective profinite groups are precisely the closed
subgroups of (finitely generated) free profinite semigroups [34].

In the last decade, a connection introduced by the first author with the
research field of symbolic dynamics provided new insight into the structure
of free profinite semigroups, notably in what concerns their maximal sub-
groups [5, 3, 6]. This connection is made via the languages of finite blocks
of symbolic dynamical systems, also known as subshifts [28]. In symbolic
dynamics, irreducible subshifts deserve special attention: they are the ones
which have a dense forward orbit. For each irreducible subshift X over a fi-
nite alphabet A, one may consider the topological closure in the A-generated
free profinite semigroup ΩAS of the language of finite blocks of X . This clo-
sure is a union of J -classes, among which there is a minimum one, J(X ), in
the J -ordering [7]. The J -class J(X ) contains (isomorphic) maximal sub-
groups, which, as an abstract profinite group, the authors called in [9] the
Schützenberger group of X , denoted G(X ).
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The approach used in [5, 9] consists in obtaining information about G(X )
using ideas, results and techniques borrowed from the theory of symbolic
dynamical systems. The minimal subshifts, considered in those papers, are
precisely the subshifts X for which the J -class J(X ) consists of J -maximal
regular elements of ΩAS [5].

The subshifts considered in [5, 9] are mostly substitutive systems [32, 24],
that is, subshifts defined by (weakly) primitive substitutions. Substitutive
subshifts are minimal subshifts which are described by a finite computable
amount of data, which leads to various decision problems. The authors
showed in [9] how to compute from a primitive substitution a finite profinite
presentation of the Schützenberger group of the subshift defined by the sub-
stitution, and used this to show that it is decidable whether or not a finite
group is a (continuous) homomorphic image of the subshift’s Schützenberger
group. The first examples of maximal subgroups of free profinite semigroups
that are not relatively free profinite groups were also found as Schützenberger
groups of substitutive systems [5, 9].

The Schützenberger group of the full shiftAZ is isomorphic to the maximal
subgroups of the minimum ideal of ΩAS and was first identified in [37],
with techniques that were later extended to the general sofic case in [19]
taking into account the invariance of G(X ) under conjugacy of symbolic
dynamical systems [17]. This led to the main result of [19] that G(X ) is a
free profinite group with rank ℵ0 when X is a non-periodic irreducible sofic
subshift.1 From the viewpoint of the structure of the group G(X ), the class
of irreducible sofic subshifts is thus quite different from that of substitutive
(minimal) subshifts.

Substitutive systems are a small part of the realm of minimal subshifts,
in the sense that substitutive systems have zero entropy [32], while there are
minimal subshifts of entropy arbitrarily close to that of the full shift [21].
Therefore, it would be interesting to explore other techniques giving insight
on the Schützenberger group of arbitrary minimal subshifts. That is one of
the main purposes of this paper. We do it by exploring the Rauzy graphs
of subshifts, a tool that has been extensively used in the theory of minimal
subshifts. For each subshift X and integer n, the Rauzy graph Σn(X ) is a
De Bruijn graph where the vertices (words of length n) and edges (words
of length n + 1) not in the language of the subshift have been removed.
This graph is connected if X is irreducible. In the irreducible case, we turn
our attention to the profinite completion Π̂n(X ) of the fundamental group of
Σn(X ). The subshift X can be seen in a natural way as an inverse limit of the
graphs of the form Σ2n(X ). The main result of this paper (Corollary 8.13)

is that the induced inverse limit of the profinite groups Π̂2n(X ) is G(X ),
provided X is minimal. We leave as an open problem whether this result
extends to arbitrary irreducible subshifts.

The study of Rauzy graphs of a minimal subshift often appears associ-
ated with the study of sets of return words, as in the proof of the Return
Theorem in [13]. We apply the Return Theorem, together with a techni-
cal result on return words giving a sufficient condition for freeness of the
Schützenberger group of a minimal subshift, to show that if the minimal

1Note that the minimal sofic subshifts are the periodic ones.
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subshift involves n letters and satisfies the so-called tree condition [13], then
its Schützenberger group is a free profinite group of rank n (Theorem 6.5).
This result was obtained in [5] for the important special case of Arnoux-
Rauzy subshifts, with a different approach: the result was there first proved
for substitutive Arnoux-Rauzy subshifts, and then extended to arbitrary
Arnoux-Rauzy subshifts using approximations by substitutive subshifts.

2. Profinite semigroups, semigroupoids, and groupoids

2.1. Free profinite semigroups. We refer to [6] as a useful introductory
text about the theory of profinite semigroups. In [2] one finds an introduction
to the subject via the more general concept of profinite algebra. We use
the notation ΩAS for the free profinite semigroup generated by the set A.
Recall that ΩAS is a profinite semigroup in which A embeds and which
is characterized by the property that every continuous mapping ϕ : A →
S into a profinite semigroup S extends in a unique way to a continuous
semigroup homomorphism ϕ̂ : ΩAS→ S. Replacing the word“semigroup”by
“group”, we get the characterization of the free profinite group with basis A,
which we denote by ΩAG. We shall use frequently the fact that the discrete
subsemigroup of ΩAS generated by A is the free semigroup A+, and that its
elements are the isolated elements of ΩAS (for which reason the elements
of A+ are said to be finite, while those in the subsemigroup ΩAS \ A+ are
infinite). The free group generated by A, denoted FG(A), also embeds
naturally into ΩAG, but its elements are not isolated.

2.2. Free profinite semigroupoids. Except when stated otherwise, by a
graph we mean a directed graph with possibly multiple edges. Formally: for
us a graph is a pair of disjoint sets V , of vertices, and E, of edges, together
with two incidence maps α and ω from E to V , the source and the target.
An edge s with source x and target y will sometimes be denoted s : x→ y.
Recall that a semigroupoid is a graph endowed with a partial associative
operation, defined on consecutive edges (cf. [38, 26, 11]): for s : x → y and
t : y → z, their composite is an edge st such that st : x → z. Alternatively,
a semigroupoid may be seen as a small category where some local identities
are possibly missing.

Semigroups can be seen as being the one-vertex semigroupoids. If the set
of loops of the semigroupoid S rooted at a vertex c is nonempty, then, for the
composition law, it is a semigroup (for us an empty set is not a semigroup),
the local semigroup of S at c, denoted S(c).

The theory of topological/profinite semigroups inspires a theory of topo-
logical/profinite semigroupoids, but as seen in [7], there are some differences
which have to be taken into account, namely in the case of semigroupoids
with an infinite number of vertices. To begin with, the very definition of
profinite semigroupoid is delicate. We use the following definition: a com-
pact semigroupoid S is profinite if, for every pair u, v of distinct elements of
S, there is a continuous semigroupoid homomorphism ϕ : S → F into a finite
semigroupoid such that ϕ(u) 6= ϕ(v). There is an unpublished example due
to G. Bergman (mentioned in [33]) of an infinite-vertex semigroupoid that is
profinite according to this definition, but that is not an inverse limit of finite
semigroupoids. On the other hand, it is known that a topological graph Γ
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is an inverse limit of finite graphs if and only if for every u, v ∈ Γ there
is a continuous homomorphism of graphs ϕ : Γ → F into a finite graph F
such that ϕ(u) 6= ϕ(v) (see [35] for a proof), in which case Γ is said to be
profinite.

For another delicate feature of infinite-vertex profinite semigroupoids,
let Γ be a subgraph of a topological semigroupoid S, and let dΓe be the
closed subsemigroupoid of S generated by Γ, that is, dΓe is the intersec-
tion of all closed subsemigroupoids of S that contain Γ. If S has a finite
number of vertices, then dΓe is the topological closure 〈Γ〉 of the discrete
subsemigroupoid 〈Γ〉 of S generated by Γ. But if S has an infinite number of

vertices, then 〈Γ〉 may not be a semigroupoid and thus it is strictly contained
in dΓe [7]. If Γ is a profinite graph, then the free profinite semigroupoid gen-
erated by Γ, denoted ΩΓSd, is a profinite semigroupoid, in which Γ embeds
as a closed subgraph, characterized by the property that every continuous
graph homomorphism ϕ : Γ → F into a finite semigroupoid F extends in
a unique way to a continuous semigroupoid homomorphism ϕ̂ : ΩΓSd → F .
It turns out that dΓe = ΩΓSd. The construction of ΩΓSd is given in [7]
(where some problems with the construction given in [11] are discussed),
and consists in a reduction to the case where Γ is finite, previously treated
in [26].

The free semigroupoid generated by Γ, denoted Γ+, is the graph whose
vertices are those of Γ, and whose edges are the paths of Γ with the obvious
composition and incidence laws. The semigroupoid Γ+ embeds naturally in
ΩΓSd, with its elements being topologically isolated in ΩΓSd. Moreover, if Γ
is an inverse limit lim←−Γi of finite graphs, then Γ+ = lim←−Γ+

i [7]. Also, one has

a natural embedding of ΩΓSd in lim←−ΩΓiSd [7]. A problem that we believe
remains open and is studied in [7], is whether there exists some example
where ΩΓSd 6= lim←−ΩΓiSd.

Everything we said about semigroupoids has an analog for categories. We
shall occasionally invoke the free category Γ∗, obtained from Γ+ by adding
an empty path 1v at each vertex v.

2.3. Profinite completions of finite-vertex semigroupoids. A congru-
ence on a semigroupoid S is an equivalence relation θ on the set of edges
of S such that u θ v implies that u and v are coterminal (that is, they have
the same source and the same target), and also that xu θ xv and uy θ vy
whenever the products xu, xv, uy, vy are defined. The quotient S/θ is the
semigroupoid with the same set of vertices of S and edges the classes u/θ
with the natural incidence and composition laws. The relation that identi-
fies coterminal edges is a congruence. Therefore, if S has a finite number of
vertices, the set Λ of congruences on S such that S/θ is finite is nonempty.
Note that if the congruences θ and ρ are such that θ ⊆ ρ, then one has
a natural semigroupoid homomorphism S/θ → S/ρ. Hence, when S has a

finite number of vertices, we may consider the inverse limit Ŝ = lim←−θ∈Λ
S/θ,

which is a profinite semigroupoid, called the profinite completion of S. Let
ι be the natural mapping S → Ŝ. Then ι(S) is a dense subsemigroupoid

of Ŝ and Ŝ has the property that for every continuous semigroupoid ho-
momorphism ϕ from S into a profinite semigroupoid T there is a unique
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continuous semigroupoid homomorphism ϕ̂ : Ŝ → T such that ϕ̂◦ ι = ϕ [26].
If Γ is a finite-vertex graph, then ΩΓSd is the profinite completion of the
free semigroupoid Γ+ [26].

2.4. Profinite groupoids. A groupoid is a (small) category in which every
morphism has an inverse. The parallelism between the definitions of profi-
nite semigroups and profinite groups carries on to an obvious parallelism
between the definitions of topological/profinite semigroupoids and topolog-
ical/profinite groupoids. As groupoids are special cases of semigroupoids
some care is sometimes needed when relating corresponding concepts. The
next lemma addresses one of such situations. For its proof, recall the well
known fact that if t is an element of a compact semigroup T , then the closed
subsemigroup 〈t〉 has a unique idempotent, denoted tω; in case T is profinite,

one has tω = lim tn! [2]. The inverse of t · tω in the maximal subgroup of 〈t〉
is denoted tω−1.

Lemma 2.1. Let G be a compact groupoid and suppose that A is a strongly
connected subgraph that generates G as a topological groupoid. Then A also
generates G as a topological semigroupoid.

Proof. Denote by VA and VG the vertex sets of A and G, respectively. Let H
be the subgraph of G with vertex set VA and whose edges are the edges of G
with source and target in VA. Clearly, H is closed and a subgroupoid. Since
H contains A and A generates G as a topological groupoid, we conclude
that H = G and thus VA = VG.

Consider an arbitrary closed subsemigroupoid S of G containing A. Let s
be an edge of S. Since VA = VG, there are nets (ai)i∈I and (bj)j∈J of
elements of VA respectively converging to α(s) and ω(s). Because A is
strongly connected, for each (i, j) ∈ I × J there is some path ui,j in A from
(bj)j∈J to (ai)i∈I . Take an accumulation point u of the net (ui,j)(i,j)∈I×J .
Then u is an element of S such that α(u) = ω(s) and ω(u) = α(s). In
particular, we may consider the element (su)ω−1 of the local semigroup
of S at α(s). We claim that u(su)ω−1 = s−1. Indeed, s · u(su)ω−1 =
(su)ω is the local identity of G at α(s), while u(su)ω−1 · s = (us)ω is the
local identity at ω(s). Hence s−1 ∈ S. Since S is an arbitrary closed
subsemigroupoid of G containing A, we conclude that s−1 belongs to the
closed subsemigroupoid K of G generated by A. Therefore, K is a closed
subgroupoid of G containing A. Since G is generated by A as a topological
groupoid, it follows that K = G. �

A groupoid congruence is a semigroupoid congruence θ on a groupoid
such that u θ v implies u−1 θ v−1. If S is a compact groupoid, then all
closed semigroupoid congruences on S are groupoid congruences. Indeed, if
u, v ∈ S are coterminal edges then v−1 = u−1(vu−1)ω−1, and if moreover
u θ v, then u−1(vu−1)k θ u−1 for every integer k ≥ 1, whence v−1 θ u−1.

Replacing semigroupoid congruences by groupoid congruences, one gets
the notion of profinite completion of a finite-vertex groupoid analogous to
the corresponding one for semigroupoids. These notions generalize the more
familiar ones of profinite completion of a group and of a semigroup, since
(semi)groups are the one-vertex (semi)groupoids. The following lemma re-
lates these concepts.
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Lemma 2.2. Let G be a connected groupoid with finitely many vertices.
Then the profinite completion of a local group of G is a local group of the
profinite completion of G.

Proof. Denote by Ĝ the profinite completion of G and let x be a vertex of G.

We must show that the local group Ĝ(x) is the profinite completion Ĝ(x) of
the local group G(x).

Consider the natural homomorphism λ : G→ Ĝ. Note that it maps G(x)

into the profinite group Ĝ(x), which is generated, as a topological group,
by λ(G(x)). Thus, the restriction κ = λ|G(x) induces a unique continuous

homomorphism ψ : Ĝ(x)→ Ĝ(x), which is onto.

Suppose that g ∈ Ĝ(x) \ {1}. Since Ĝ(x) is a profinite group, there exists

a continuous homomorphism θ : Ĝ(x)→ H onto a finite group H such that
θ(g) 6= 1. For each vertex y in G, let py : x → y be an edge from G. It is
easy to check that the following relation is a congruence on G: given two
edges u, v : y → z in G, u ∼ v if θ ◦ ι(pyup−1

z ) = θ ◦ ι(pyvp−1
z ). Moreover,

note that, in case u, v ∈ G(x), u ∼ v if and only if θ ◦ ι(u) = θ ◦ ι(v).
Therefore, if S = G/∼, then S(x) is finite, whence, since S is a connected

groupoid, S is finite. As Ĝ is the profinite completion of G, it follows that
the natural quotient mapping γ : G → S factors through λ as a continuous
homomorphism γ′ : Ĝ → S. The restriction Ĝ(x) → S(x) of γ′ is denoted
by γ′′.

Noting that θ ◦ ι is onto because the image of ι is dense, and since

θ ◦ ι(u) = θ ◦ ι(v) ⇐⇒ u ∼ v ⇐⇒ γ(u) = γ(v),

there is an isomorphism ϕ : H → S(x) such that ϕ◦θ◦ι = γ|G(x) = γ′′◦ψ◦ι.
Again because the image of ι is dense, we deduce that ϕ ◦ θ = γ′′ ◦ ψ.

All these morphisms are represented in Diagram (2.1).

G
λ

//

γ

��
Ĝ

γ′
// S

G(x)
?�

OO

κ //

ι ""

Ĝ(x)
?�

OO

γ′′ // S(x)
?�

OO

Ĝ(x)

ψ

OO

θ // H

ϕ

OO

(2.1)

As θ(g) 6= 1, we get γ′′ ◦ψ(g) = ϕ ◦ θ(g) 6= 1,whence ψ(g) 6= 1. Therefore, ψ
is an isomorphism of topological groups. �

2.5. The fundamental groupoid. For the reader’s convenience, we write
down a definition of the fundamental groupoid of a graph. Let Γ be a graph.

Extend Γ to a graph Γ̃ by injectively associating to each edge u a new formal
inverse edge u−1 with α(u−1) = ω(u) and ω(u−1) = α(u). One makes

(u−1)−1 = u. Graphs of the form Γ̃ endowed with the mapping u 7→ u−1 on
the edge set are precisely the graphs in the sense of J.-P. Serre. These are
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the graphs upon which the definition of fundamental groupoid of a graph is
built in [30], the supporting reference we give for the next lines. Consider

in the free category Γ̃∗ the congruence ∼ generated by the identification of
uu−1 with 1α(u) and u−1u with 1ω(u), where u runs over the set of edges of Γ.

The quotient Π(Γ) = Γ̃∗/∼ is a groupoid, called the fundamental groupoid
of Γ. Note that if ϕ : Γ1 → Γ2 is a homomorphism of graphs, then the
correspondence Π(ϕ) : Π(Γ1) → Π(Γ2) such that Π(ϕ)(x/∼) = ϕ(x)/∼ is a
well defined homomorphism of groupoids, and the correspondence ϕ 7→ Π(ϕ)
defines a functor from the category of graphs to the category of groupoids.

It is well known that the natural graph homomorphism from Γ∗ to Π(Γ)

(that is, the restriction to Γ∗ of the quotient mapping Γ̃∗ → Π(Γ)) is in-
jective. If Γ is connected (as an undirected graph), then the local groups
of Π(Γ) are isomorphic; their isomorphism class is the fundamental group
of Γ. It is also well known that if Γ is a connected (finite) graph, then its
fundamental group is a (finitely generated) free group.

Lemma 2.3. Let Γ be a strongly connected finite-vertex profinite graph.
Then the natural continuous homomorphism from the free profinite semi-
groupoid ΩΓSd to the profinite completion of Π(Γ), extending the natural
graph homomorphism from Γ to Π(Γ), is onto. �

To prove Lemma 2.3 one uses the following fact [7, Corollary 3.20].

Lemma 2.4. Let ψ : S → T be a countinuous homomorphism of compact
semigroupoids. Let X be a subgraph of S. Then ψ(dXe) ⊆ dψ(X)e. More-
over, ψ(dXe) = dψ(X)e if ψ is injective on the set of vertices of S.

Proof of Lemma 2.3. Denote by Π̂(Γ) the profinite completion of Π(Γ) and

by h the natural continuous semigroupoid homomorphism ΩΓSd → Π̂(Γ).

By Lemma 2.4, the image of h is the closed subsemigroupoid of Π̂(Γ) gen-

erated by h(Γ). Since Π̂(Γ) is generated by h(Γ) as a profinite groupoid, it
follows from Lemma 2.1, that h is onto. �

3. Subshifts and their connection with free profinite
semigroups

An element s of a semigroup S is said to be a factor of t if t belongs to the
ideal generated by s, in which case we also write t ≤J s; the element s is then
a proper factor of t if t is not a factor of s. If (two-sided) ideals are replaced
respectively by right ideals or left ideals, then the corresponding relations
are denoted ≤R and ≤L. For K ∈ {J ,L,R}, the so-defined relations ≤K
are quasi-orders determining equivalence relations ≤K ∩ ≥K, which is also
denoted K. These relations are known as Green’s relations on the semigroup
S (cf. [16]).

A subset X of a semigroup S is factorial if the factors of elements of X
also belong to X. A subset X of S is prolongable if for every x ∈ X there
are s, t ∈ S such that xs, tx ∈ X. It is irreducible if for every u, v ∈ X there
is w ∈ S such that uwv ∈ X. Using standard compactness arguments, one
can show (see [19] for a proof) that if S is a compact semigroup and X is
a nonempty, closed, factorial and irreducible subset of S, then X contains
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a regular J -class, called the apex of X and denoted J(X), such that every
element of X is a factor of every element of J(X).

Let A be a finite set. Endow AZ with the product topology, where A is
viewed as discrete space. Let σ be the homeomorphism AZ → AZ defined
by σ((xi)i∈Z) = (xi+1)i∈Z, the shift mapping on AZ. A subshift of AZ is
a nonempty closed subset X of AZ such that σ(X ) = X . A finite block of
an element x = (xi)i∈Z of AZ is a word of the form xixi+1 . . . xi+n (which
is also denoted by x[i,i+n]) for some n ≥ 0. For a subset X of AZ, denote
by L(X ) the set of finite blocks of elements of X . Then the correspondence
X 7→ L(X ) is an isomorphism between the poset of subshifts of AZ and the
poset of factorial, prolongable languages of A+ [28, Proposition 1.3.4]. A
subshift X is irreducible if L(X ) is irreducible. We are interested in studying
the topological closure of L(X ) in ΩAS, when X is a subshift of AZ. It was

noticed in [7] that L(X ) is a factorial and prolongable subset of ΩAS, and

that if X is irreducible then L(X ) is an irreducible subset of ΩAS. Therefore,

supposing X is irreducible, we can consider the apex J(X ) of L(X ). Since
J(X ) is regular, it has maximal subgroups, which are isomorphic as profinite
groups; we denote by G(X ) the corresponding abstract profinite group.

In this paper we concentrate our attention on an important class of irre-
ducible subshifts, the minimal subshifts, that is, those that do not contain
proper subshifts. This class includes the periodic subshifts, finite subshifts
X for which there is a positive integer n (called a period) and x ∈ AZ such
that σn(x) = x and X = {σk(x) | 0 ≤ k < n}. It is well known that a
subshift X is minimal if and only if L(X ) is uniformly recurrent, that is, if
and only if for every u ∈ L(X ) there is an integer n such that every word of
L(X ) with length at least n has u as a factor (cf. [29, Theorem 1.5.9]).

For a subshift X of AZ, denote by M(X ) the set of elements u of ΩAS

such that all finite factors of u belong to L(X ). One has L(X ) ⊆ M(X ),
and there are simple examples of irreducible subshifts where this inclusion
is strict [17]. In what follows, a maximal regular element of ΩAS is a regular
element of ΩAS that is J -equivalent with its regular factors. The maximal
regular elements of ΩAS are precisely the elements of ΩAS \A+ all of whose
proper factors belong to A+.

Theorem 3.1. Let X be a minimal subshift. Then L(X ) = M(X ) and

L(X ) \ A+ = J(X ). The correspondence X 7→ J(X ) is a bijection between
the set of minimal subshifts of AZ and the set of J -classes of maximal regular
elements of ΩAS.

Theorem 3.1 is from [5]. In [7], an approach whose tools are recalled in
the next section, distinct from that of [5], was used to deduce the equalities

L(X ) =M(X ) = J(X ) ∪ L(X ), when X is minimal.
A fact that we shall use quite often is that every element of ΩAS\A+ has

a unique prefix in A+ with length k, and a unique suffix in A+ with length k,
for every k ≥ 1 (cf. [1, Section 5.2]). Let Z+

0 and Z− be respectively the

sets of nonnegative integers and of negative integers. For u ∈ ΩAS \A+, we

denote by −→u the unique element (xi)i∈Z+
0

of AZ+
0 such that x[0,k] is a prefix

of u, for every k ≥ 0, and by ←−u the unique element (xi)i∈Z− of AZ− such
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that x[−k,−1] is a suffix of u, for every k ≥ 1. Finally, we denote by ←−u .−→u
the element of AZ that restricts in AZ− to ←−u and in AZ+

0 to −→u .
The part of the next lemma about Green’s relationsR and L was observed

in [4] and in [7, Lemma 6.6]. The second part, about the H relation, is an
easy consequence of the first part, and it is proved in a more general context
in [8, Lemma 5.3].

Lemma 3.2. Let X be a minimal subshift. Two elements u and v of J(X )
are R-equivalent (respectively, L-equivalent) if and only if −→u = −→v (respec-
tively, ←−u = ←−v ). Moreover, if x ∈ X , then the H-class Gx formed by the
elements u of J(X ) such that ←−u .−→u = x is a maximal subgroup of J(X ).

We retain for the rest of the paper the notation Gx given in Lemma 3.2.

4. Free profinite semigroupoids generated by Rauzy graphs

Let X be a subshift of AZ. The graph of X is the graph Σ(X ) having X
as the set of vertices and where the edges are precisely the pairs (x, σ(x)),
with source and target being respectively equal to x and σ(x). The graph
Σ(X ) is a compact graph, with the topology on the edge set being naturally
induced by that of X .

Denote by Ln(X ) the set of elements of L(X ) with length n. The Rauzy
graph of order n of X , denoted Σn(X ), is the graph defined by the following
data: the set of vertices is Ln(X ), the set of edges is Ln+1(X ), and incidence
of edges in vertices is given by

a1a2 · · · an
a1a2···anan+1−−−−−−−−→ a2 · · · anan+1,

where ai ∈ A.

Remark 4.1. If X is irreducible, then Σn(X ) is strongly connected.

In the case of a Rauzy graph of even order 2n, we consider a function µn,
called central labeling, assigning to each edge a1a2 · · · a2na2n+1 (ai ∈ A) its
middle letter an+1.

Remark 4.2. Extending the labeling µn as a semigroupoid homomorphism
Σ2n(X )+ → A+, one sees that the set of images of paths of Σ2n(X ) by that
homomorphism is the set of elements of A+ whose factors of length at most
2n+ 1 belong to L(X ).

For m ≥ n, we define a graph homomorphism pm,n : Σ2m(X ) → Σ2n(X )
as follows: if w ∈ L2m(X ) ∪ L2m+1(X ) and if w = vuv′ with v, v′ ∈ Am−n,
then pm,n(w) = u. Note that pn preserves the central labeling, that is,
µn ◦ pm,n(w) = µm(w) for every edge w of Σ2m(X ). The family of onto
graph homomorphisms {pm,n |n ≤ m} defines an inverse system of com-
pact graphs. The corresponding inverse limit lim←−Σ2n(X ) will be identified

with Σ(X ) since the mapping from Σ(X ) to lim←−Σ2n(X ) sending x ∈ X to

(x[−n,n−1])n and (x, σ(x)) to (x[−n,n])n is a continuous graph isomorphism.
The projection Σ(X ) → Σ2n(X ) is denoted by pn. Let µ be the mapping
defined on the set of edges of Σ(X ) by assigning x0 to (x, σ(x)). Then
µ = µn ◦ pn, for every n ≥ 1.
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We proceed with the setting of [7]. As in that paper, denote by Σ̂2n(X )

and by Σ̂(X ) the free profinite semigroupoids generated respectively by
Σ2n(X ) and by Σ(X ). The graph homomorphism pm,n : Σ2m(X )→ Σ2n(X )

extends uniquely to a continuous homomorphism p̂m,n : Σ̂2m(X )→ Σ̂2n(X )

of compact semigroupoids. This establishes an inverse limit lim←− Σ̂2n(X )

in the category of compact semigroupoids, in which the graph Σ(X ) =

lim←−Σ2n(X ) naturally embeds. The canonical projection lim←− Σ̂2n(X )→ Σ̂2k(X )

is denoted p̂k. Recall that the free profinite semigroupoid Σ̂(X ) also embeds

in lim←− Σ̂2n(X ), and that we do not know of any example where the inclusion
is strict.

Theorem 4.3 ([7]). If X is a minimal subshift then Σ̂(X ) = lim←− Σ̂2n(X ) =

Σ(X )+.

In [7] one finds examples of irreducible subshifts X for which one has

Σ(X )+ 6= Σ̂(X ).
Viewing A as a virtual one-vertex graph, whose edges are the elements

of A, the graph homomorphism µn : Σ2n(X ) → A extends in a unique

way to a continuous semigroupoid homomorphism µ̂n : Σ̂2n(X ) → ΩAS.
The equality µm = µn ◦ pm,n yields µ̂n ◦ p̂m,n = µ̂m, when m ≥ n ≥
1, and so we may consider the continuous semigroupoid homomorphism
µ̂ : lim←− Σ̂2n(X ) → ΩAS such that µ̂ = µ̂n ◦ p̂n for every n ≥ 1. Recall that
a graph homomorphism is faithful if distinct coterminal edges have distinct
images. It turns out that µ̂n is faithful (cf. [7, Proposition 4.6]) and therefore
so is µ̂.

Let us now turn our attention to the images of µ̂n and µ̂. For a positive
integer n, letMn(X ) be the set of all elements u of ΩAS such that all factors
of u with length at most n belong to L(X ).

Lemma 4.4. Let X be a subshift. For every positive integer n, the equality
µ̂n(Σ̂2n(X )) =M2n+1(X ) holds.

Proof. We clearly have µ̂n(Σ2n(X )+) = M2n+1(X ) ∩ A+ (cf. Remark 4.2).
Noting that M2n+1(X ) is closed and open, that A+ is dense in ΩAS, and

that Σ2n(X )+ is dense in Σ̂2n(X ), the lemma follows immediately. �

Note thatM1(X ) ⊇M2(X ) ⊇M3(X ) ⊇ · · · andM(X ) =
⋂
n≥1Mn(X ).

Therefore, the image of µ̂ is contained in M(X ), by Lemma 4.4. One actu-

ally has µ̂(lim←− Σ̂2n(X )) =M(X ) (cf. [7, Proposition 4.5]), but we shall not
need this fact.

The next two lemmas were observed in [7, Lemmas 4.2 and 4.3]. We
introduce some notation. We denote by |u| the length of a word in A+, and
let |u| = +∞ for u ∈ ΩAS \A+.

Lemma 4.5. Consider a subshift X . Let q : x[−n,n−1] → y[−n,n−1] be an edge

of Σ̂2n(X ), where x, y ∈ X . Let u = µ̂n(q). If k = min{|u|, n} then x[0,k−1]

is a prefix of u and y[−k,−1] is a suffix of u.

Lemma 4.6. Consider a subshift X . Let q : x→ y be an edge of lim←− Σ̂2n(X ).

Let u = µ̂(q). If u ∈ ΩAS \ A+ then −→u = (xi)i∈Z+
0

and ←−u = (yi)i∈Z−. If

u ∈ A+ then q is the unique edge of Σ(X )+ from x to σ|u|(x).
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We denote by Π2n(X ) the fundamental groupoid of Σ2n(X ), and by hn
the natural homomorphism Σ2n(X ) → Π2n(X ). The graph homomorphism
pm,n : Σ2m(X ) → Σ2n(X ) induces the groupoid homomorphism qm,n =
Π(pm,n) : Π2m(X ) → Π2n(X ), characterized by the equality qm,n ◦ hm =

hn ◦ pm,n. Let Π̂2n(X ) be the profinite completion of Π2n(X ), and let

ĥn : Σ̂2n(X ) → Π̂2n(X ) and q̂m,n : Π̂2m(X ) → Π̂2n(X ) be the natural ho-
momorphisms respectively induced by hn and qm,n. Then the following
diagram commutes:

Σ̂2m(X )

ĥm

��

p̂m,n // Σ̂2n(X )

ĥn

��

Π̂2m(X )
q̂m,n

// Π̂2n(X ).

(4.1)

The family (q̂m,n)m,n defines an inverse system of profinite groupoids. We

denote by ĥ the continuous semigroupoid homomorphism from lim←− Σ̂2n(X )

to lim←− Π̂2n(X ) established by the commutativity of Diagram (4.1).
For the remainder of this paper, we need to deal with the local semi-

groups of the various semigroupoids defined in this section. Given n, we
denote respectively by Σ2n(X , x)+, Σ̂2n(X , x), Π2n(X , x), Π̂2n(X , x) the lo-

cal semigroups at vertex p2n(x) = x[−n,n−1] of Σ2n(X )+, Σ̂2n(X ), Π2n(X )

and Π̂2n(X ).

Remark 4.7. If X is irreducible, then Π̂2n(X , x) is the profinite comple-
tion of the fundamental group of the strongly connected graph Σ2n(X )
(cf. Lemma 2.2).

5. Return words in the study of G(X ) in the minimal case

Consider a subshift X of AZ. Let u ∈ L(X ). The return words2 of
u in X are the elements of the set R(u) of words v ∈ A+ such that vu ∈
L(X )∩uA+ and such that u occurs in vu only as both prefix and suffix. The
characterization of minimal subshifts via the notion of uniform recurrence
yields that the subshift X is minimal if and only if, for every u ∈ L(X ), the
set R(u) is finite.

Let n ≥ 0 be such that |u| ≥ n. Consider words u1 and u2 with u = u1u2

and |u1| = n. Let R(u1, u2) be the set of words v such that u1vu2 ∈ L(X )
and u1v ∈ R(u)u1. In other words, we have R(u1, u2) = u−1

1 (R(u)u1). In
particular, R(u1, u2) and R(u) have the same cardinality. The elements of
R(u1, u2) are callled in [9] n-delayed return words of u in X , and return
words of u1.u2 in [23]. Note that R(u1, u2) is a code (actually, a circular
code [23, Lemma 17]).

Fix x ∈ X . Denote by Rn(x) the set R(x[−n,−1], x[0,n−1]). Clearly, if X is
a periodic subshift with period N , then the elements of Rn(x) have length
at most N . On the other hand, we have the following result.

2What we call return words is sometimes in the literature designated first return words,
as is the case of the article [13], which is further cited later in this paper. The terminology
that we adopt appears for instance in [22, 23, 12].
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Lemma 5.1 (cf. [22, Lemma 3.2]). If X is a minimal non-periodic subshift
then limn→∞min{|r| : r ∈ Rn(x)} =∞ for every x ∈ X .3

Let u ∈ Rn(x). The word w = x[−n,−1]ux[0,n−1] belongs to L(X ). Its pre-
fix and its suffix of length 2n is the word x[−n,n−1]. Hence, the graph Σ2n(X )
has a cycle s rooted at the vertex x[−n,n−1] such that µn(s) = u. Since µn is

faithful, we may therefore define a function λn : Rn(x) → Σ2n(X , x)+ such
that µn ◦ λn is the identity 1Rn(x) on Rn(x).

To extract consequences from these facts at the level of the free profinite
semigroup ΩAS, we use the following theorem from [31].

Theorem 5.2. If X is a finite code of A+, then the closed subsemigroup of
ΩAS generated by X is a profinite semigroup freely generated by X.

Assuming that X is a minimal subshift, as we do throughout this section,
the code Rn(x) is finite. Therefore it follows from Theorem 5.2 that the

profinite subsemigroup 〈Rn(x)〉 of ΩAS is freely generated by Rn(x), and so
the mapping λn extends in a unique way to a continuous homomorphism
λ̂n : 〈Rn(x)〉 → Σ̂2n(X , x) of profinite semigroups. Note that the following
equality holds by definition of λn:

(5.1) µ̂n ◦ λ̂n = 1〈Rn(x)〉.

If m ≥ n, then the inclusion Rm(x) ⊆ 〈Rn(x)〉 clearly holds.

Lemma 5.3. Let X be a minimal non-periodic subshift and let x ∈ X . Then
we have

⋂
n≥1 〈Rn(x)〉 = Gx.

Proof. Denote by I the intersection
⋂
n≥1 〈Rn(x)〉. The inclusion Gx ⊆ I

appears in [9, Lemma 5.1]. Let us show the reverse inclusion. If w is an
element of 〈Rn(x)〉, then it labels a closed path of Σ2n(X ) at x[−n,n−1].
Therefore, every factor of w of length at most 2n+1 belongs to L(X ). Since
w is an arbitrary element of 〈Rn(x)〉, this implies that every factor of length

at most 2n + 1 of an element of 〈Rn(x)〉 belongs to L(X ). Therefore, if
u ∈ I, then every finite factor of u belongs to L(X ). On the other hand,
by Lemma 5.1 the elements of I do not belong to A+. We conclude from
Theorem 3.1 that I ⊆ J(X ). Let n > 0. By Lemma 5.1, there is m > n
such that the length of every element of Rm(x) is greater than n. Since the
elements of Rm(x) label closed paths at x[−m,m−1], we know that Rm(x) ⊆
x[0,n−1]A

+ ∩ A+x[−n,−1]. Hence, we have I ⊆ 〈Rm(x)〉 ⊆ x[0,n−1]ΩAS ∩
ΩASx[−n,−1]. Since n is arbitrary, we deduce from the definition of Gx that
I ⊆ Gx. �

If X = {x} is the singleton periodic subshift given by x = · · · aaa.aaa · · · ,
then Rn(x) = {a} for all n, and Lemma 5.3 does not hold in this case.

However, denoting by 〈Rn(x)〉∞ the profinite semigroup 〈Rn(x)〉\A+, we get
the following result, which can be easily seen to apply to periodic subshifts.

3Lemma 5.1 is taken from [22, Lemma 3.2], but the limit which appears explicitly
in [22, Lemma 3.2] is limn→∞min{|r| : r ∈ R(x[0,n−1])} = ∞. However, R(z, t) is clearly

contained in the subsemigroup of A+ generated by R(t). In particular, min{|r| : u ∈ Rn} ≥
min{|r| : u ∈ R(x[0,n−1])}, and so our formulation of Lemma 5.1 follows immediately from

the one in [22, Lemma 3.2].
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Lemma 5.4. Let X be a minimal subshift and let x ∈ X . Then we have⋂
n≥1 〈Rn(x)〉∞ = Gx. �

We shall consider the inverse systems with connecting morphisms the
inclusions im,n : 〈Rm(x)〉 → 〈Rn(x)〉 and im,n| : 〈Rm(x)〉∞ → 〈Rn(x)〉∞.

Note that we can identify Gx with lim←−〈Rn(x)〉∞ via Lemma 5.4 (each g ∈ Gx
is identified with the sequence (g)n≥1). Also, one has Gx ⊆ lim←−〈Rn(x)〉, with
equality in the non-periodic case, as seen in Lemma 5.3.

Let m ≥ n, and let r ∈ 〈Rm(x)〉. Then, the equalities

µ̂n(p̂m,n ◦ λ̂m(r)) = µ̂m(λ̂m(r)) = r = µ̂n(λ̂n(r))

hold by (5.1). Since µ̂n is faithful, this shows that the following diagram
commutes:

〈Rm(x)〉

λ̂m

��

� � im,n // 〈Rn(x)〉

λ̂n

��

Σ̂2m(X , x)
p̂m,n

// Σ̂2n(X , x).

(5.2)

The commutativity of Diagram (5.2) yields the existence of the homomor-

phism λ̂ = lim←− λ̂n from lim←−〈Rn(x)〉 to lim←− Σ̂2n(X , x). Note that lim←− Σ̂2n(X , x)

is the local semigroup Σ̂(X , x) of Σ̂(X ) at vertex x (cf. Theorem 4.3).

Let Σ̂∞(X ) be the subgraph of Σ̂(X ) \ Σ(X )+ obtained by deleting the
edges in Σ(X )+.

Remark 5.5. When X is a minimal non-periodic subshift, the local semigroup
Σ̂∞(X , x) of Σ̂∞(X ) at x coincides with Σ̂(X , x).

It turns out that Σ̂∞(X , x) is a profinite group whenever X is minimal. In-
deed, the following theorem was announced in [3] and shown in [7, Theorem
6.7].

Theorem 5.6. Let X be a minimal subshift. Then Σ̂∞(X ) is a profinite
connected groupoid.

It should be noted that the notion of profiniteness for semigroupoids is
being taken as compactness plus residual finiteness in the category of semi-
groupoids. If the semigroupoid turns out to be a groupoid, one may ask
whether profiniteness in the category of groupoids is an equivalent prop-
erty. The answer is affirmative since it is easy to verify that, if ϕ : G → S
is a semigroupoid homomorphism and G is a groupoid, then the subsemi-
groupoid of S generated by ϕ(G) is a groupoid.

In the statement of [7, Theorem 6.7], it is only indicated that Σ̂∞(X )
is a connected groupoid but we note that, if a compact semigroupoid is a
groupoid, then edge inversion and the mapping associating to each vertex
the identity at that vertex are continuous operations. Thus, Σ̂∞(X ) is in
fact a topological groupoid.

A preliminary version of the next theorem was also announced in [3], and
a proof appears in the doctoral thesis [18]. We present here a different proof,
based on Lemma 5.3.
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Theorem 5.7. For every minimal subshift X and every x ∈ X , the restric-
tion λ̂| : Gx → Σ̂∞(X , x) is an isomorphism. Its inverse is the restriction

µ̂| : Σ̂∞(X , x)→ Gx.

Proof. By Lemma 5.4, we know thatGx =
⋂
n≥1 〈Rn(x)〉∞, and so from (5.1)

we deduce that µ̂ ◦ λ̂(g) = g for every g ∈ Gx. This shows in particular that

λ̂(g) must be an infinite path whenever g ∈ Gx, whence λ̂(Gx) is indeed

contained in Σ̂∞(X , x). It also shows that the restriction µ̂| : λ̂(Gx) → Gx
is onto. Such a restriction is also injective, as λ̂(Gx) ⊆ Σ̂(X , x) and µ̂ is

faithful. Therefore, all it remains to show is the equality λ̂(Gx) = Σ̂∞(X , x).

Let s ∈ Σ̂∞(X , x) and let g = µ̂(s). By Theorem 4.3, s is the limit
of a net of finite paths of the graph Σ(X ). Since the labeling µ̂ of finite

paths clearly belongs to L(X ), we have g = µ̂(s) ∈ L(X ) \A+ by continuity
of µ̂. It follows that µ̂(s) ∈ J(X ) by Theorem 3.1. Since s is a loop rooted
at x, applying Lemma 4.6, we conclude that µ̂(s) ∈ Gx. Hence, we have

µ̂(s) = g = µ̂(λ̂(g)). As µ̂ is faithful, we get s = λ̂(g), concluding the
proof. �

The notion of isomorphism between subshifts is called conjugacy. If X
and Y are conjugate subshifts, then Σ(X ) and Σ(Y) are isomorphic, which
combined Theorem 5.7 leads to the following result.

Corollary 5.8. If X and Y are conjugate minimal subshifts, then the profi-
nite groups G(X ) and G(Y) are isomorphic. �

Actually, a more general result was proved in [17] using different tech-
niques: if X and Y are conjugate irreducible subshifts, then the profinite
groups G(X ) and G(Y) are isomorphic.

6. An application: a sufficient condition for freeness

In this section, we establish the next theorem, where FG(A) denotes the
free group generated by A.

Theorem 6.1. Let X be a minimal non-periodic subshift, and take x ∈ X .
Let A be the set of letters occurring in X . Suppose there is a subgroup K of
FG(A) and an infinite set P of positive integers such that, for every n ∈ P ,
the set Rn(x) is a free basis of K. Let K be the topological closure of K in
ΩAG. Then the restriction to Gx of the canonical projection pG : ΩAS→ ΩAG
is a continuous isomorphism from Gx onto K.

The following proposition, taken from [9, Proposition 5.2], plays a key
role in the proof of Theorem 6.1.

Proposition 6.2. Let X be a minimal non-periodic subshift of AZ and let
x ∈ X . Suppose there are M ≥ 1 and strictly increasing sequences (pn)n
and (qn)n of positive integers such that R(x[−pn,−1], x[0,qn]) has exactly M el-
ements rn,1, . . . , rn,M , for every n. Let (r1, . . . , rM ) be an arbitrary accumu-

lation point of the sequence (rn,1, . . . , rn,M )n in (ΩAS)M . Then 〈r1, . . . , rM 〉
is the maximal subgroup Gx of J(X ).

In the proof of Theorem 6.1 we shall apply the following lemma, whose
proof is an easy and elementary exercise that we omit.
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Lemma 6.3. Let S1 ⊇ S2 ⊇ S3 ⊇ · · · be a descending sequence of compact
subspaces of a compact space S1. Suppose that ϕ : S1 → T is a continuous
mapping such that ϕ(Sn) = T for every n ≥ 1. If I =

⋂
n≥1 Sn, then we

have ϕ(I) = T .

We shall also use the following tool.

Proposition 6.4 ([20, Corollary 2.2]). Suppose that B is the basis of a
finitely generated subgroup K of FG(A). Let K be the topological closure of
K in ΩAG. Then K is a free profinite group with basis B.

We are ready to prove Theorem 6.1.

Proof of Theorem 6.1. By Lemma 5.3, we have Gx =
⋂
n∈P 〈Rn(x)〉. On the

other hand, for every n ∈ P , since by hypothesis the set pG(Rn(x)) = Rn(x)

is a basis of K, we have pG
(
〈Rn(x)〉

)
= K. It then follows from Lemma 6.3

that pG(Gx) = K.
By assumption, for every n ∈ P , the set Rn(x) has M elements, where

M is the rank of K. Therefore, by Proposition 6.2, we know that Gx is
generated by M elements. On the other hand, K is a free profinite group
of rank M , by Proposition 6.4. Hence, there is a continuous onto homo-
morphism ψ : K → Gx. We may then consider the continuous onto endo-
morphism ϕ of K such that ϕ(g) = pG(ψ(g)) for every g ∈ K. Every onto
continuous endomorphism of a finitely generated profinite group is an iso-
morphism [36, Proposition 2.5.2], whence ϕ is an isomorphism. Since ψ is
onto, we conclude that ψ is an isomorphism. This shows that the restriction
pG| : Gx → K is the continuous isomorphism ϕ ◦ ψ−1 : Gx → K. �

We proceed to apply Theorem 6.1 and two of the main results of [13] to
deduce the freeness of the Schützenberger group of the minimal subshifts
satisfying the tree condition, which we next describe.

Let X be a subshift of AZ. Given w ∈ L(X ) ∪ {1} ⊆ A∗, let

Lw = {a ∈ A | aw ∈ L(X )},
Rw = {a ∈ A | wa ∈ L(X )},
Ew = {(a, b) ∈ A×A | awb ∈ L(X )}.

The extension graph Gw is the bipartite undirected graph whose vertex set
is the union of disjoint copies of Lw and Rw, and whose edges are the pairs
(a, b) ∈ Ew, with incidence in a ∈ Lw and b ∈ Rw. The subshift X satisfies
the tree condition if Gw is a tree for every w ∈ L(X ) ∪ {1}.

The class of subshifts satisfying the tree condition contains two classes
that have received considerable attention in the literature: the class of
Arnoux-Rauzy subshifts4 (see the survey [25]), and the class of subshifts
defined by regular interval exchange transformations (see [13, 14]).

It is shown in [13, Theorem 4.5] that if the minimal subshift X satisfies
the tree condition, then, for every w ∈ L(X ), the set of return words R(w)

4The Arnoux-Rauzy subshifts over two-letter alphabets are the extensively studied
Sturmian subshifts, but we warn that in [13] the Arnoux-Rauzy subshifts are called
Sturmian.
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is a basis of the free group generated by the set of letters occurring in X .
This result is called the Return Theorem in [13]. Combining the Return
Theorem with Theorem 6.1, noting that, for every x ∈ X , the set Rn(x) is
conjugate to Rn(x[−n,n−1]), we immediately deduce the following theorem.

Theorem 6.5. If X is a minimal subshift satisfying the tree condition, then
G(X ) is a free profinite group with rank M , where M is the number of letters
occurring in X . �

There are other cases of minimal subshifts X , not satisfying the tree
condition, for which G(X ) is known to be a free profinite group. Indeed,
it is shown in [5] that if X is the subshift defined by a weakly primitive
substitution ϕ which is group invertible, then G(X ) is a free profinite group.
The weakly primitive substitution

ϕ(a) = ab, ϕ(b) = cda, ϕ(c) = cd, ϕ(d) = abc

is group invertible, but the minimal subshift defined by X is a subshift that
fails the tree condition [13, Example 3.4].

The special case of Theorem 6.5 in which the subshift is an Arnoux-Rauzy
subshift was previously established in [5] by the first author by extending
the case of substitution Arnoux-Rauzy subshifts, for which the substitutions
are group invertible.

7. The groupoids Kn(X )E

Let X be a subshift of AZ. For every positive integer n, if Xn is the subshift
of AZ consisting of those elements x of AZ such that x[k,k+n−1] ∈ L(X ) for

every k ∈ Z, then one clearly has L(Xn) = Mn(X ) ∩ A+. Since Mn(X )

is a clopen subset of ΩAS, it follows that L(Xn) = Mn(X ). From this fact
one deduces the following lemma. For the sake of uniformity, we denote
M(X ) =

⋂
n≥1Mn(X ) by M∞(X ).

Lemma 7.1. For every n ∈ Z+ ∪ {∞}, if the subshift X is irreducible then
so is the set Mn(X ).

Proof. Clearly, for every n ≥ 1, if X is irreducible then so is Xn, whence
Mn(X ) = L(Xn) is irreducible. Let u, v ∈ M∞(X ). For each n ≥ 1,
there is wn ∈ Mn(X ) such that uwnv ∈ Mn(X ). If w is an accumulation
point of (wn)n∈Z+ then w ∈Mn(X ) for every n, sinceMn(X ) is closed and
wm ∈Mn(X ) for every m ≥ n. This shows M∞(X ) is irreducible. �

In view of Lemma 7.1, and since clearly Mn(X ) is closed and factorial
(irrespectively of X being irreducible or not), we may consider the apex
Kn(X ) of Mn(X ) when X is irreducible.

The irreducibility of X also implies that, for every positive integer n,
the semigroupoid Σ̂2n(X ) is strongly connected, since Σ2n(X ) is then itself
strongly connected.

A subsemigroupoid T of a semigroupoid S is an ideal if for every t ∈ T
and every s ∈ S, ω(s) = α(t) implies st ∈ T , and ω(t) = α(s) implies ts ∈ T .
In a strongly connected compact semigroupoid S, there is a minimum ideal
KerS. This ideal KerS may be defined as follows. Consider any vertex v of
S and the local semigroup S(v) of S at v. Then S(v) is a compact semigroup,
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and therefore it has a minimum ideal Kv. Let KerS be the subsemigroupoid
of S with the same set of vertices as S and whose edges are those edges of S
that admit some (and therefore every) element of Kv as a factor. Note that
Kv = (KerS)(v).

The next lemma is folklore. The relations ≤J and J in semigroupoids
extend naturally the corresponding notions for semigroups, namely, in a
semigroupoid s ≤J t means the edge t is a factor of the edge s.

Lemma 7.2. If S is a strongly connected compact semigroupoid, then KerS
is a closed ideal of S that does not depend on the choice of v. Moreover,
the edges in KerS are J -equivalent in S; more precisely, they are ≤J -below
every edge of S.

We next relate Ker Σ̂2n(X ) with K2n+1(X ).

Lemma 7.3. Consider an irreducible subshift X and a positive integer n.
Then we have the equality µ̂n(Ker Σ̂2n(X )) = K2n+1(X ).

Proof. Let s ∈ Ker Σ̂2n(X ) and let w ∈ K2n+1(X ).

By Lemma 4.4, there is t ∈ Σ̂2n(X ) such that µ̂n(t) = w. But t is a factor
of s by Lemma 7.2, and so w is a factor of µ̂n(s). Again by Lemma 4.4,
we have µ̂n(s) ∈ M2n+1(X ). The ≤J -minimality of K2n+1(X ) then yields

µ̂n(s) ∈ K2n+1(X ), establishing the inclusion µ̂n(Ker Σ̂2n(X )) ⊆ K2n+1(X ).

On the other hand, since Σ̂2n(X ) is strongly connected, there is an edge

r in Σ̂2n(X ) having s has a factor and such that tr is a loop. Let ` = (tr)ω.

Since Ker Σ̂2n(X ) is an ideal, we have ` ∈ Ker Σ̂2n(X ), and so the idempotent
µ̂n(`) belongs toK2n+1(X ) by the already proved inclusion. But w = µ̂n(t) ∈
K2n+1(X ) is a prefix of the idempotent µ̂n(`), and so w R µ̂n(`) by stability

of ΩAS. Hence, we have w = µ̂n(`)w = µ̂n(`t). Since `t ∈ Ker Σ̂2n(X ), this

shows the reverse inclusion K2n+1(X ) ⊆ µ̂n(Ker Σ̂2n(X )). �

Corollary 7.4. Let X be an irreducible subshift. Fix a positive integer n.
For every vertex v of Σ̂2n(X ), there is an idempotent loop ` of Σ̂2n(X ) rooted
at v such that µ̂(`) ∈ K2n+1(X ).

Proof. The graph Σ̂2n(X ) is strongly connected, and so every element of

Ker Σ̂2n(X ) is a factor of a loop q rooted at v. The loop ` = qω then satisfies
the desired conditions, by Lemma 7.3. �

Let S be a semigroup. The category SE is defined by the following data:

(1) the vertex set is the set of idempotents of S;
(2) the edges from e to f are the triples (e, u, f) with u ∈ eSf ;
(3) the composition is defined by (e, u, f)(f, v, g) = (e, uv, g).

Note that (e, e, e) is a local identity at each idempotent e of S. This is the
instance for one-vertex semigroupoids of the so-called Karoubi envelope [27]
or Cauchy completion (cf. [15, Section 6.5]) of a semigroupoid. The cate-
gory SE was introduced in semigroup theory by Tilson in his fundamental
paper [38]. Since the construction S 7→ SE is functorial, if S is profinite,
then SE becomes a profinite category by considering the product topology
in S × S × S. In this paper we are interested in dealing with the profinite
category (ΩAS)E . For an irreducible subshift X and n ∈ Z+ ∪ {∞}, denote
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by Kn(X )E the subgraph of (ΩAS)E whose vertices are the idempotents of
Kn(X ) and whose edges are the edges (e, u, f) of (ΩAS)E with u ∈ Kn(X ).

Proposition 7.5. Let X be an irreducible subshift. For every n ∈ Z+∪{∞},
the graph Kn(X )E is a closed subcategory of (ΩAS)E. Moreover, Kn(X )E is
a profinite groupoid.

Proof. We know that Kn(X )E is topologically closed in (ΩAS)E because the
set of idempotents of ΩAS and every J -class of ΩAS are closed.

As shown in [10, Lemma 8.2], if w is a finite factor of a product pqr with
p, q, r ∈ ΩAS and q /∈ A+, then w is a factor of pq or of qr. Therefore, the
composition in (ΩAS)E of two edges of Kn(X )E belongs to Kn(X )E , and so
Kn(X )E is a subcategory of (ΩAS)E .

If (e, u, f) is an edge of Kn(X )E , then e R u L f by stability of ΩAS. It
follows from the basic properties of Green’s relations that there is some v in
Kn(X ) such that f R v L e, uv = e and vu = f . Hence (f, v, e) is an edge
of Kn(X )E that is an inverse of (e, u, f), thereby establishing that Kn(X )E
is a groupoid.

To conclude the proof, it remains to show that Kn(X )E is residually finite
as a topological groupoid. Since it is a subgroupoid of the category (ΩAS)E ,
which is residually finite as a topological category, the topological groupoid
Kn(X )E is residually finite as the subcategory generated by the image of a
homomorphism of a topological groupoid into a finite category is easily seen
to be a groupoid. �

In the minimal case, we may combine Proposition 7.5 and Theorem 5.7
to obtain an alternative characterization of the profinite groupoid Σ̂∞(X )
in terms of the local structure of the free profinite semigroup ΩAS. For this
purpose, we introduce some notation that is also useful in the next section.

Suppose X is a minimal subshift. For each x ∈ X , let `x be the identity
at x in the groupoid Σ̂∞(X ) (cf. Theorem 5.6). Let ex be the idempotent
µ̂(`x). Recall that ex is the identity element of Gx (cf. Theorem 5.7).

Remark 7.6. For every minimal subshift, the mapping x ∈ X 7→ `x ∈ Σ̂∞(X )
is continuous, and therefore so is the mapping x ∈ X 7→ ex ∈ J(X ).

By Theorem 3.1, we know that K∞(X ) = J(X ). By Proposition 7.5,
we know that J(X )E is a profinite groupoid. Note that for each x ∈ X ,
the profinite groups Gx and the local group of J(X )E are isomorphic, the
mapping u ∈ Gx 7→ (ex, u, ex) being a continuous isomorphism between
them. The following gives a sort of first geometric characterization of the
groupoid J(X )E .

Theorem 7.7. For every minimal subshift X , we have a continuous groupoid
isomorphism F : Σ̂∞(X )→ J(X )E defined on vertices by F (x) = ex and on
edges by F (s) = (eα(s), µ̂(s), eω(s)).

Proof. Note first that F is clearly a functor between categories, as µ̂ is
itself a semigroupoid homomorphism. The continuity of F follows from the
continuity of µ̂ and Remark 7.6. Let e be an idempotent of J(X ), and take
x = ←−e .−→e . Since ex ∈ Gx, we have ex = e in view of Lemma 3.2, whence
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F (x) = e. On the other hand, if F (x) = F (y), then x = y, also in view of
Lemma 3.2. This establishes that F is bijective on vertices.

Fix an element x ∈ X . Consider the isomorphism u ∈ Gx 7→ (ex, u, ex),
from Gx onto the local group of J(X )E at e. Composing it with the re-

striction of µ̂ to the local group Σ̂∞(X , x) we get, thanks to Theorem 5.7,
a continuous isomorphism, which is precisely the restriction of F mapping
Σ̂∞(X , x) onto the local group of J(X )E at e.

Finally, it is an easy exercise to show that if H is a functor between
two connected groupoids S and T that restricts to a bijection between the
corresponding sets of vertices and to a bijection between some local group
of S and some local group of T , then H is an isomorphism of groupoids. �

The following lemma is useful in the sequel.

Lemma 7.8. Let X be an irreducible subshift. If e is an idempotent in
K∞(X ), then there is a sequence (en)n of idempotents en ∈ Kn(X ) such
that lim en = e.

Proof. For each positive integer n, choose vn ∈ Kn(X ). Since e ∈ Mn(X )
and Mn(X ) is irreducible, there are zn, tn ∈ ΩAS such that eznvntne be-
longs to Mn(X ), whence (e, eznvntne, e) is a loop of Kn(X )E , and so is
(e, eznvntne, e)

ω in view of Proposition 7.5. Therefore, the idempotent en =
(eznvntne)

ω belongs to Kn(X ).
Let f be an accumulation point of the sequence (en)n. Note that f is an

idempotent such that f ≤R e and f ≤L e. As m ≥ n implies em ∈ Mn(X )
and becauseMn(X ) is closed, we have f ∈Mn(X ) for every n ≥ 1, whence
f ∈ M∞(X ). Therefore, since e ∈ K∞(X ) is a factor of f , we must have
f ∈ K∞(X ). As ΩAS is stable, we conclude that f = e. We have shown
that e is the unique accumulation point of (en)n, and so by compactness we
conclude that (en)n converges to e. �

8. A geometric interpretation of G(X ) when X is minimal

In this section we present a series of technical results that culminate, for
the case where X is a minimal subshift, in the geometric interpretation of
G(X ) as an inverse limit of the profinite completions of the fundamental
groups of the Rauzy graphs Σ2n(X ) (Corollary 8.13). While some prelimi-
nary results are valid for all irreducible subshifts, we leave open whether our
main result generalizes to that case.

By Corollary 7.4, if X is an irreducible subshift then, for each vertex w
of Σ2n(X ), we may choose an idempotent loop `w,n of Σ̂2n(X ) rooted at w
such that the idempotent ew,n = µ̂n(`w,n) belongs to K2n+1(X ).

Lemma 8.1. Suppose X is a minimal subshift. For every x ∈ X , the
sequence (ex[−n,n−1],n)n converges to ex.

Proof. SinceM(X ) is the intersection of the descending chain of closed sets
(M2n+1(X ))n, we know that every accumulation point e of (ex[−n,n−1],n)n
is an idempotent belonging to M(X ). We also know that, for a fixed a
positive integer k, the word x[0,k] is a prefix of ex[−n,n−1],n whenever n > k,
by Lemma 4.6. By continuity, we deduce that x[0,k] is a prefix of e. Similarly,
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x[−k,−1] is a suffix of e. Since k is arbitrary, we conclude from Lemma 3.2
that e = ex. Hence, by compactness, the sequence (ex[−n,n−1],n)n converges
to ex, as ex is its sole accumulation point. �

Let u ∈ ΩAS. Suppose z ∈ A+ is such that u ∈ z · ΩAS. Then there is a
unique w in ΩAS such that u = zw [1, Exercise 10.2.10]. We denote w by
z−1u. The product (z−1u)z is denoted simply by z−1uz, as there is no risk
of ambiguity. Observe that if u is idempotent then z−1uz is also idempotent.
In terms of the element x = (xi)i∈Z of the minimal subshift X , one sees that
ex ∈ x0 · ΩAS, and so we may consider the idempotent x−1

0 exx0.

Lemma 8.2. If X is a minimal subshift, then for every x ∈ X we have
eσ(x) = x−1

0 exx0.

Proof. Let w = x−1
0 exx0. Then we have ←−w .−→w = σ(x). Hence, w is an

idempotent in Gσ(x), that is, w = eσ(x). �

By the freeness of the profinite semigroupoid Σ̂(X ), we may consider the

unique continuous semigroupoid homomorphism Ψ: Σ̂(X )→ ΩAS such that
Ψ(s) = eα(s) · µ̂(s) · eω(s) for every edge s of Σ(X ).

Lemma 8.3. Suppose X is a minimal subshift. For every edge s of Σ̂(X ),
we have

(8.1) Ψ(s) = eα(s) · µ̂(s) · eω(s).

Moreover, if s is an infinite edge then Ψ(s) = µ̂(s).

Proof. We first establish equality (8.1) for finite paths s belonging to Σ(X )+,
by induction on the length of s. The base case holds by the definition of Ψ.

Suppose that (8.1) holds for paths in Σ(X ) of length k, where k ≥ 1,
and let s be a path in Σ(X ) of length k + 1. Factorize s as s = tr with t
being a path of length 1 and r a path of length k. Then, by the induction
hypothesis, and since Ψ is a semigroupoid homomorphism, we have,

(8.2) Ψ(s) = Ψ(t)Ψ(r) = eα(s) · µ̂(t) · eω(t) · µ̂(r) · eω(s).

Since t has length 1, there is x ∈ X such that t = (x, σ(x)). As α(s) = x,
ω(t) = σ(x) and µ̂(t) = x0, and taking into account Lemma 8.2, we obtain
eα(s) · µ̂(t) · eω(t) = ex · x0 · x−1

0 exx0 = eα(s) · µ̂(t). Hence, (8.2) simplifies to

Ψ(s) = eα(s) · µ̂(t) · µ̂(r) · eω(s) = eα(s) · µ̂(s) · eω(s),

which establishes the inductive step, and concludes the proof by induction
that (8.1) holds for finite paths.

Denote by Φ the mapping Σ̂(X )→ ΩAS such that Φ(s) = eα(s) · µ̂(s) ·eω(s)

for every edge s of Σ̂(X ). We proved that Ψ and Φ coincide in Σ(X )+. By
continuity of µ̂ and by Remark 7.6, we know that Φ is continuous. Hence,
as Σ(X )+ is dense in Σ̂(X ) by Theorem 4.3, we conclude that Ψ = Φ.

Suppose s is an infinite edge. Since s and `α(s) have the same source, µ̂(s)
and eα(s) have the same set of finite prefixes by Lemma 4.6. This means that
µ̂(s) and eα(s) are R-equivalent elements of J(X ), by Lemma 3.2. Similarly,
µ̂(s) and eω(s) are L-equivalent. This establishes Ψ(s) = µ̂(s). �
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We begin a series of technical lemmas preparing a result (Proposition 8.7)
about the approximation of Ψ by a special sequence of functions in the

function space (ΩAS)Σ̂(X ), endowed with the pointwise topology.

Lemma 8.4. Suppose X is a minimal subshift. Let ϕ be a continuous semi-
group homomorphism from ΩAS into a finite semigroup F . Then there is
an integer Nϕ such that if u is an element of MNϕ(X ) with length at least
Nϕ, then ϕ(u) ∈ ϕ(J(X )).

Proof. Since J(X ) ⊆ L(X ), there is z ∈ L(X ) such that ϕ(z) ∈ ϕ(J(X )).
By the uniform recurrence of L(X ), there is an integer M such that every
word of L(X ) of length at least M contains z as a factor.

Let e be an idempotent of J(X ). Since X is a minimal subshift, by
Theorem 3.1 we know that K∞(X ) = J(X ). Applying Lemma 7.8, we
conclude that there is a sequence (en)n of idempotents converging to e such
that en ∈ Kn(X ) for every n ≥ 1. Hence, there is an integer Nϕ with
Nϕ ≥M for which we have ϕ(en) = ϕ(e) whenever n ≥ Nϕ.

Let u ∈MNϕ(X ) be such that the length of u is at least Nϕ. Then z is a
factor of u. We also have eNϕ ≤J u by the definition of Kn(X ). Hence, we
obtain ϕ(eNϕ) ≤J ϕ(u) ≤J ϕ(z). But both ϕ(z) and ϕ(eNϕ) = ϕ(e) belong
to ϕ(J(X )), thus ϕ(u) ∈ ϕ(J(X )). �

Lemma 8.5. Let X , ϕ and Nϕ be as in Lemma 8.4. For all x ∈ X and
n ≥ Nϕ, the equality ϕ(ex) = ϕ(ex[−n,n−1],n) holds.

Proof. By Lemmas 4.5 and 4.6, the word x[0,n−1] is a common prefix of
ex[−n,n−1],n and ex. Note also that, for n ≥ Nϕ, x[0,n−1], ex[−n,n−1],n, and ex
belong to MNϕ(X ). In view of Lemma 8.4, we conclude that the elements
of the set

{ϕ(x[0,n−1]), ϕ(ex[−n,n−1],n), ϕ(ex)}

belong to ϕ(J(X )). By stability of F , we deduce that

ϕ(ex[−n,n−1],n) R ϕ(x[0,n−1]) R ϕ(ex).

Similarly, we have

ϕ(ex[−n,n−1],n) L ϕ(x[−n,−1]) L ϕ(ex).

Hence ϕ(ex[−n,n−1],n) H ϕ(ex), and since ex[−n,n−1],n and ex are idempotents,

we actually have ϕ(ex[−n,n−1],n) = ϕ(ex). �

Let X be an irreducible subshift. Consider the graph homomorphism
ψn : Σ2n(X )→ (ΩAS)E defined by

ψn(s) = (eα(s),n, eα(s),n · µ̂n(s) · eω(s),n, eω(s),n)

for each edge s of Σ2n(X ). By the freeness of the profinite semigroupoid

Σ̂2n(X ), the graph homomorphism ψn extends in a unique way to a contin-

uous semigroupoid homomorphism ψ̂n : Σ̂2n(X )→ (ΩAS)E .

Lemma 8.6. For every irreducible subshift X , the image of ψ̂n is contained
in the groupoid K2n+1(X )E.
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Proof. Let s be an edge of Σ2n(X ). By their definition, the idempotents
eα(s),n and eω(s),n belong to K2n+1(X ). Take u = eα(s),n · µ̂n(s) · eω(s),n. We

have u = µ̂n(`α(s),n · s · `ω(s),n). Since `α(s),n · s · `ω(s),n belongs to Σ̂2n(X ),
we must have u ∈ M2n+1(X ) by Lemma 4.4. But u = eα(s),n · u · eω(s),n,
and so u ∈ K2n+1(X ) by the ≤J -minimality of K2n+1(X ), establishing that

ψ̂n(s) belongs to K2n+1(X )E . Since K2n+1(X )E is a closed subcategory of

(ΩAS)E , applying Lemma 2.4 we conclude that the image of ψ̂n is contained
in K2n+1(X )E . �

Denote by γ the continuous semigroupoid homomorphism (ΩAS)E → ΩAS
defined by γ(e, u, f) = u. Consider the following sequence of continuous
semigroupoid homomorphisms:

Σ̂(X )
p̂n // Σ̂2n(X )

ψ̂n // (ΩAS)E
γ // ΩAS.

Let Ψn = γ ◦ ψ̂n ◦ p̂n be the resulting composite.
For the next proposition, we take into account the metric d of ΩAS such

that if u and v are distinct elements of ΩAS, then d(u, v) = 2−r(u,v), where
r(u, v) is the minimum possible cardinality of a finite semigroup F for which
there is a continuous homomorphism ϕ : ΩAS → F satisfying ϕ(u) 6= ϕ(v).
The hypothesis which we have been using that A is finite guarantees that
the metric d generates the topology of ΩAS [2, 3].

Proposition 8.7. Suppose X is a minimal subshift. Endow the function

space (ΩAS)Σ̂(X ) with the pointwise topology. Then the sequence (Ψn)n con-
verges uniformly to Ψ.

Proof. Fix a positive integer k. We want to show that there is a positive
integer Nk such that if n ≥ Nk then d(Ψn(s),Ψ(s)) < 1

2k
for every s ∈ Σ̂(X ).

For that purpose we use the following auxiliary lemma, whose proof is a
standard exercise. It appears implicitly in the first part of the proof of
Proposition 7.4 from [2].

Lemma 8.8. Fix a positive integer k. There is a continuous semigroup
homomorphism ϕ from ΩAS onto a finite semigroup F such that

(8.3) d(u, v) <
1

2k
⇐⇒ ϕ(u) = ϕ(v).

Proceeding with the proof of Proposition 8.7, let ϕ : ΩAS → F be a
continuous homomorphism onto a finite semigroup F such that the equiva-
lence (8.3) holds. Let Nϕ be an integer as in Lemmas 8.4 and 8.5. Consider
an integer n with n ≥ Nϕ. In view of equivalence (8.3), the proposition is

proved once we show that, for every edge s of Σ̂(X ), we have

(8.4) ϕ(Ψn(s)) = ϕ(Ψ(s)).

If s has length 1, that is, if s is an edge (x, σ(x)) of X , for some x ∈ X , then
we have

(8.5) Ψn(s) = eα(p̂n(s)),n · µ̂n(p̂n(s)) · eω(p̂n(s)),n.

Because n ≥ Nϕ, it follows from Lemma 8.5 that

(8.6) ϕ(eα(p̂n(s)),n) = ϕ(eα(s)) and ϕ(eω(p̂n(s)),n) = ϕ(eω(s)).
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Since µ̂n ◦ p̂n = µ̂, from (8.5) and (8.6) we obtain (8.4) in the case where
s has length 1. Hence, ϕ ◦ Ψn and ϕ ◦ Ψ are continuous semigroupoid
homomorphisms coinciding in Σ(X ). Since Σ(X )+ is dense in Σ̂(X ) by
Theorem 4.3, it follows that we actually have ϕ ◦ Ψn = ϕ ◦ Ψ, thereby
establishing (8.4). �

Suppose X is an irreducible subshift. As the graph Σ2n(X ) is strongly con-
nected, for each edge s : v1 → v2 of Σ2n(X ) one can choose a path s′ : v2 → v1

in Σ2n(X ). Denote by s∗ the edge (s′s)ω−1s′ of Σ̂2n(X ) from v2 to v1.

Remark 8.9. For every edge s of Σ2n(X ), the loops s∗ · s and s · s∗ are

idempotents. Therefore, if ϕ is a semigroupoid homomorphism from Σ̂2n(X )
into a groupoid, then ϕ(s∗) = ϕ(s)−1 for every edge s.

Recall how in Section 2.5 we defined the graph Γ̃ from a graph Γ, and

denote Σ̃2n(X ) by Σ̃2n(X ). Let tε be an edge of Σ̃2n(X ), where t is an edge
of Σ2n(X ), ε ∈ {−1, 1} and t1 = t. We define

(tε)+ =

{
t if ε = 1,

t∗ if ε = −1.

If s = s1s2 · · · sk is a path, where each si is an edge of Σ̃2n(X ), then we define

s+ = s+
1 s

+
2 · · · s

+
k . Note that s+ is an edge of Σ̂2n(X ) such that α(s+) = α(s)

and ω(s+) = ω(s). We also follow the usual definition s−1 = s−1
k · · · s

−1
2 s−1

1 .

If 1v is the empty path at some vertex v of Σ̃2n(X ), then one takes 1v =

1−1
v = 1∗v = 1+

v , and if ϕ is a semigroupoid homomorphism from Σ̂2n(X ) into
a groupoid, then one defines ϕ(1v) as being the local unit at ϕ(v).

Lemma 8.10. Consider an irreducible subshift X . Let ϕ be a semigroupoid
homomorphism from Σ̂2n(X ) into a groupoid, and let t be a (possible empty)

path of Σ̃2n(X ). Then we have

(8.7) ϕ(t+)−1 = ϕ((t−1)+).

Proof. The case where t is an empty path is immediate. We show (8.7) by
induction on the length of t. Suppose that t has length 1. Either t ∈ Σ2n(X )
or t−1 ∈ Σ2n(X ). In the first case we have t+ = t and (t−1)+ = t∗, while in
the second case we have t+ = (t−1)∗ and (t−1)+ = t−1. In either case, (8.7)
follows from Remark 8.9.

Suppose that (8.7) holds for paths of length less than k, where k > 1. Let

t be a path of Σ̃2n(X ) of length k, and consider a factorization in Σ̃2n(X )+

of the form t = rs with s an edge of Σ̃2n(X ).
Then t+ = r+s+. Therefore, applying the inductive hypothesis, we get

ϕ(t+)−1 = ϕ(s+)−1 · ϕ(r+)−1

= ϕ((s−1)+) · ϕ((r−1)+) = ϕ
(
(s−1r−1)+) = ϕ

(
(t−1)+),

which establishes the inductive step and concludes the proof. �

Recall that a spanning tree T of a graph Γ is a subgraph of Γ which, with
respect to inclusion, is maximal for the property that the undirected graph
underlying T is both connected and without cycles. In what follows, we say
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that a path t1 . . . tk of Γ̃ lies in T if for each i ∈ {1, . . . , k} we have ti ∈ T or
t−1
i ∈ T .

Fix an element x ∈ X and, for each n, fix a spanning tree T of the graph
Σ2n(X ). For each pair of vertices v1, v2 of Σ2n(X ), let Tv1,v2 be the unique

path of Σ̃2n(X ) from v1 to v2 that does not repeat vertices and lies in T .
Note that Tv1,v2 = T−1

v2,v1 , and that Tv,v is the empty path at v. For each
vertex v let γv = Tv,x[−n,n−1]

and δv = Tx[−n,n−1],v. In particular, we have

γv = δ−1
v .

For each edge s of Σ2n(X ), consider the element gs of the local group
Π2n(X , x) given by gs = (δα(s) · s · γω(s))/∼. Note that gs is the identity of
Π2n(X , x) if s belongs to T . Denote by Y the set of edges of Σ2n(X ) not
in T . It is a well known fact that the set B = {gs | s ∈ Y } is a free basis
of the fundamental group Π2n(X , x) [30]. Hence, B is a basis of the free

profinite group Π̂2n(X , x). In view of Lemma 8.6, we may therefore consider

the unique continuous group homomorphism ζn from Π̂2n(X , x) into the
local group of the profinite groupoid K2n+1(X )E at en = ex[−n,n−1],n such
that

ζn(gs) = ψ̂n

(
δ+
α(s) · s · γ

+
ω(s)

)
for every s ∈ Y .

Lemma 8.11. Consider an irreducible subshift X . Let u be a loop of Σ̂2n(X )

rooted at vertex x[−n,n−1]. Then we have ζn(ĥn(u)) = ψ̂n(u).

Proof. Since we are dealing with finite-vertex graphs, we have Σ2n(X )+ =

Σ̂2n(X ). And since the vertex space of Σ̂2n(X ) is discrete, it follows that

any loop of Σ̂2n(X ) rooted at x[−n,n−1] is the limit of a net of finite loops of

Σ̂2n(X ) rooted at x[−n,n−1]. Hence, since ζn ◦ ĥn and ψ̂n are continuous, the

lemma is proved once we show that the equality ζn(ĥn(u)) = ψ̂n(u) holds
whenever u is a finite loop rooted at x[−n,n−1]. For such a finite loop u, let

u = u0s1u1s2u2 · · ·uk−1skuk

be a factorization in Σ2n(X )+ such that u0, . . . , uk are (possibly empty)
paths that lie in T and s1, . . . , sk are edges belonging to Y . Let wi be the
longest common prefix of γ−1

ω(si)
and δα(si+1) and let zi and ti be such that

the equalities γω(si) = ziw
−1
i and δα(si+1) = witi hold in Σ̃2n(X ). Note that

(8.8) u0 = δα(s1), uk = γω(sk), and ui = ziti for i ∈ {1, . . . , k − 1}.

It follows that

ĥn(u) = gs1gs2 · · · gsk
and so

(8.9) ζn(ĥn(u)) = ψ̂n

(
δ+
α(s1) ·s1 ·γ+

ω(s1) ·δ
+
α(s2) ·s2 ·γ+

ω(s2) · · · δ
+
α(sk) ·sk ·γ

+
ω(sk)

)
.

On the other hand, by (8.8), we have δ+
α(s1) = u0, γ+

ω(sk) = uk and, in view of

Lemmas 8.6 and 8.10, for i ∈ {1, . . . , k−1}, the following chain of equalities
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holds:

ψ̂n(γ+
ω(si)

· δ+
α(si+1)) = ψ̂n

(
z+
i (w−1

i )+ · w+
i t

+
i

)
= ψ̂n(z+

i ) · ψ̂n
(
(w−1

i )+
)
· ψ̂n(w+

i ) · ψ̂n(t+i )

= ψ̂n(z+
i ) · ψ̂n(w+

i )−1 · ψ̂n(w+
i ) · ψ̂n(t+i )

= ψ̂n(z+
i ) · ψ̂n(t+i ) = ψ̂n(ui).

Therefore, (8.9) simplifies to ζn(ĥn(u)) = ψ̂n(u), as we wished to show. �

Theorem 8.12. Let X be a minimal subshift. Then, the restriction of
the mapping ĥ to Σ̂∞(X ) is an isomorphism of topological groupoids onto

lim←− Π̂2n(X ).

Proof. By Lemma 2.3, ĥn is onto for every n ≥ 1, which shows that ĥ is
onto (cf. [39, Theorem 29.13]). Therefore, by Theorem 4.3, the equality

ĥ(Σ̂(X )) = lim←− Π̂2n(X ) holds. If s is a finite edge in Σ̂(X ), then `α(s)s is an

edge in Σ̂∞(X ) such that ĥ(`α(s)s) = ĥ(s), whence ĥ(Σ̂∞(X )) = lim←− Π̂2n(X ).

Let s, t be elements of Σ̂∞(X ) such that ĥ(s) = ĥ(t). Since ĥ is the identity
mapping on vertices, we may assume that s and t are edges and, therefore,
they are coterminal edges. Then, for every n ≥ 1, we have ĥn(p̂n(ss−1)) =

ĥn(p̂n(ts−1)), and so from Lemma 8.11 we deduce the equality

ψ̂n(p̂n(ss−1)) = ψ̂n(p̂n(ts−1)).

This shows that Ψn(ss−1) = Ψn(ts−1) every n ≥ 1. From Proposition 8.7 we
then obtain Ψ(ss−1) = Ψ(ts−1). By Lemma 8.3, this means that µ̂(ss−1) =
µ̂(ts−1). Since µ̂ is faithful, we conclude that ss−1 = ts−1, whence s = t.

This establishes that ĥ is injective. �

In view of Theorem 5.7, we may now obtain our main result as an imme-
diate consequence of Theorem 8.12.

Corollary 8.13. If X is a minimal subshift then G(X ) is isomorphic with

lim←− Π̂2n(X , x) as a profinite group, for every x ∈ X . �
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12. L. Balková, E. Pelantová, and W. Steiner, Sequences with constant number of return
words, Monatsh. Math. 155 (2008), 251–263.
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33. J. Rhodes and B. Steinberg, Profinite semigroups, varieties, expansions and the struc-
ture of relatively free profinite semigroups, Int. J. Algebra Comput. 11 (2002), 627–672.

34. , Closed subgroups of free profinite monoids are projective profinite groups, Bull.
London Math. Soc. 40 (2008), 375–383.

35. L. Ribes, Grupos profinitos y grafos topológicos, Publicacions de la Secció de Matemà-
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