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We consider implicit signatures over finite semigroups ietieed by sets of pseudonatural numbers. We prove that,
under relatively simple hypotheses on a pseudovahetf semigroups, the finitely generated free algebra for the
largest such signature is closed under taking factors mithe free prov semigroup on the same set of generators.
Furthermore, we show that the natural analogue of the PuteRauer descriptive procedure for the closure of a
rational language in the free group with respect to the pitefitopology holds for the pseudovariety of all finite
semigroups. As an application, we establish that a psedéty@njoys this property if and only if it is full.
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1 Introduction

Context and motivations. This paper deals with the computation of the closure of argiagional
language within a relatively free algebra, with respect teudiable implicit signature and a profinite
topology. A motivation for this line of research is tlseparation problemwhich, given two rational
languageds and L, asks whether there is a rational language from a fixed dassntainingx” and
disjoint from L. The separation problem has several motivations. Firstptembership problem f&@
reduces to the separation problem@since a language belongs to the clagsand only if it is separable
from its complement by a language fra@n
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Furthermore, solving this problem gives more informatibowt the class under investigation, and is
more robust when applying transformations to the classiriance, is was proved by Steinberg (2001)
and Place and Zeitoun (2015) that the classical opekater V « D on pseudovarieties preserves decid-
ability of the separation problem, while it has been showrAbjnger (2010) that it does not preserve
decidability of the membership problem (on the other hahd,status with respect to separation is un-
known for other operators that do not preserve the decitialil membership, such as the power, as
shown by Auinger and Steinberg (2003)).

Finally, deciding separation for some class can be usedddelenembership for more involved classes:
this is for instance a generic result in the quantifier aléom hierarchy, established by Place and Zeitoun
(2014a), that deciding separation at leXglin this hierarchy entails a decision procedure for membprsh
atlevelX, ;1.

Almeida (1999) has related the separation problem with &lpuopological question, which is the
main topic of this paper: the separation problem has a negatiswer on an instande, L of rational
languages if and only if the closures Af and L in a suitable relatively free profinite semigroup, which
depends on the class of separator languages we startedifaoma nonempty intersection. Determining
whether such closures intersect can be in turn reformuliatéerms of computation of pointlike two-
element sets in a given semigroup.

Deciding whether closures of rational languages interisezften nontrivial, in particular because the
profinite semigroup in question is uncountable in generat, ¥everal classes of languages enjoy a prop-
erty calledreducibility’) that states that the closures of two rational languagessitein the suitable
relatively free profinite semigroup if and only if their texin a more manageable universe also intersect.
This more manageable universe may in particular be countaht is therefore amenable to algorithmic
treatment. In summary, reducibility is a property of thesslaf separators under investigation (or of the
class of semigroups recognizing these separators), whdtites the search of a witness in the intersection
into a simpler universe.

The most important example from the historical point of vievthe class of languages recognized by
finite groups. In this case, the relatively free algebra esftiee group over some sét of generators,
which is indisputably much better understood than the fredimite group overX. In particular, it is
countable. Since it is known that the closures in the freéiite group of two rational languages intersect
if and only if their traces in the free group also intersebgftis, the class of finite groups enjoys the
reducibility property), this justifies the quest for an aitfum computing the closure in the free group of
a rational language. Such an algorithm is known as the PiniéRauer procedure, which we describe
below, and has been developed along a successful line afrabsesee the work of Pin and Reutenauer
(1991); Pin (1991); Ash (1991); Henckell et al. (1991); Rilzad Zalesski(1993); Herwig and Lascar
(2000); Auinger (2004); Auinger and Steinberg (2005). Ascasequence, the separation problem by
group languages is decidable.

This framework can be generalized to classes consitinghardypes of semigroups than just groups.
Denote byx the signature consisting of the binary multiplication ane tinary(w — 1)-power, with their
usual interpretation in profinite semigroups. Note thatdbeof all x-terms overX is isomorphic to the
free group overX': the mapping sending each generator to itself and' to 2!, the inverse of: in the
free group, can be extended to a group isomorphism. Morergineagiven a pseudovariety of finite
semigroups, consider the semigrdf} V, which can be seen as the set of all interpretations bvef

@ More precisely and technically, reducibility for 2-poiké sets.
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k-terms overX. This subalgebra of the prd-semigroup overX is countable and thus, as said above,
amenable to algorithmic treatment. One central problerigidontext is the:-word problem: given two
k-terms overX, decide whether they represent the same element in thvedydtee profinite semigroup

in the pseudovariety under consideration. This problenalraady been investigated for several classical
pseudovarieties besides that of finite groups, for instéyc&imeida (1991, 1995) for the pseudovariety
J of all finite J-trivial semigroups, by Almeida and Zeitoun (2004, 2007%)tfee pseudovarieti of all
finite R-trivial semigroups, by Costa (2001) for the pseudovaii&tyof all finite semigroups whose local
monoids are semilattices and by Moura (2011) for the pseariity DA of all finite semigroups whose
regulard-classes are aperiodic semigroups. Moreover, redugilhiis been shown to hold for several
pseudovarieties, in particular by Almeida (2002) fiorby Almeida et al. (2005) foR, by Costa and
Teixeira (2004) forLS| and, as already mentioned, by Ash (1991); Almeida and Stegn(2000a) for
the pseudovariet¢ of all finite groups. A further example is the pseudovarigtyf aperiodic languages
which, in a forthcoming paper, will be derived from the workHenckell (1988), recently revisited by
Place and Zeitoun (2014b, 2016), from which one can derigeaiility of this class. In other words, for
these classes of languages, the separation problem reduesting that the intersection of the closures
of two given rational languages in the suitable countalkgiwely free algebra is empty. This motivates
designing algorithms to compute closures of rational laugs in these relatively free algebras. This is
one of the main contributions of this paper.

The Pin-Reutenauer procedure.In the core of the paper, we investigate how the profinitewle®f
rational languages in free unary algebras interacts witltatenation and iteration. The natural guide for
this work is provided by a procedure proposed by Pin and Reuter (1991) for the case of the free group.
This procedure gives a way to compute a representation afltisere of a rational language inductively
on the structure of the rational expression. Of course, libguce of a union is the union of the closures.
The other two rules of the Pin-Reutenauer procedure dehlagibcatenation and iteration. For instance,
when computing irf2% V, the smallest subalgebra of the prasemigroup closed under multiplication and
(w — 1)-power, establishing the Pin-Reutenauer procedure aradoishowing the following equalities:
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whereL is the topological closure af in Q% V, and(L), is the subalgebra ¢#% V generated by.. No-
tice that these equalities yield a recursive procedurenapete a finite algebraic representationloizhen

L is rational. Such a finite representation may not immediatilld algorithms to decide membership
in L for a given rational languagg, but it reduces the problem of computing topological clesur to
the problem of computing algebraic closufés .. Since the signature s finite, this representation also
provides a recursive enumeration of elements.oAdditionally, assume that the following two properties
hold:

(1) the word problem for-terms ovel is decidable,
(2) the pseudovariety is x-reducible.

Then one can decide the separation problem of two rationgllaged<, L by aV-recognizable language.
Indeed, Almeida (1999) has shown that this problem is edgiitdo checking whether the closuresiof
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andL in QxV intersect, which by reducibility is equivalent to checkimgetherk N L # . In turn, this
may be tested by running two semi-algorithms in parallel:

(1) one that enumerates elementg0fndL and checks, using the solution owéof the word problem
for k-terms, whether there is some common element;

(2) another one that enumerates all potentimeécognizable separators.

Thus, the Pin-Reutenauer procedure is one of the ingredieohderstand why a given class has decidable
separation problem.

Contributions. It has been established recently by Almeida et al. (2014)Tha Pin-Reutenauer pro-
cedure holds for a number of pseudovarieties. However,dhelts of this paper rely on independent,
technically nontrivial results for the pseudovaridtyof aperiodic semigroups: first, it was proved that
the Pin-Reutenauer procedure is valid fousing the solution of the word problem for the free aperiodic
r-algebra given by McCammond (2001); Huschenbett and Knée{2014); Aimeida et al. (2015). Then,
a transfer result was established to show that it is alsd ¥atisubpseudovarieties &f

In this paper, we revisit the Pin-Reutenauer procedureginioig general results with simpler argu-
ments. We consider unary signatures, made of multiplinadied operations of arity 1. Our main result,
Theorem 3.1, establishes that the Pin-Reutenauer preedublals for the pseudovariefy of all finite
semigroups, for unary signatures satisfying an additit@etinical condition, which is met fot. The
fact that rational languages are involved is crucial, siaseobserved by Almeida et al. (2014, p. 10), the
equality K L = K - L fails for some language&, L. C X+, where closures are taken with respec§to
and the signature.

This result is obtained by first investigating a property edfactoriality. Factoriality ofV with respect
to, say, the signature means thaf2%; V is closed under taking factors iy V. It was shown by Almeida
et al. (2014) that il is factorial, then the Pin-Reutenauer procedure holds sgibect to concatenation,
that is, KL = K L for arbitrary K, L (not just for rational ones). However, it was also noted that
pseudovarietyy cannot be factorial for nontrivial countable signatureshsasx. In contrast, we show
that any nontrivial pseudovariety of semigroipslosed under concatenation is factorial for the signature
1 consisting of multiplication andll unary operations. As an application, we obtain a new praatfttie
minimum ideal of the free pr&: semigroup on at least two generators containg-mmrd. This property
is a weaker version of a result obtained by Almeida and Volgn06). Besides the independent interest
of such results, the technical tool used to prove them, ndiaetdrization history is also the key to
establish that the Pin-Reutenauer is validSoiVe further characterize pseudovarieties in which the Pin-
Reutenauer procedure holds in terms of an abstract propanted fullness, introduced by Almeida and
Steinberg (2000a). The main idea is that the validity of tieeReutenauer procedure for a pseudovariety
V is inherited by a subpseudovaridty, as established by Almeida et al. (2014), provided hodndW
are full. Conversely, we prove that if the Pin-Reutenauecedure works fo¥, thenV is full. Since the
pseudovariety of all finite semigroups is full, this yieltiat a pseudovariety enjoys the Pin-Reutenauer
property if and only if it is full.

Finally, we show that a variation of the Pin-Reutenauer pdoce, known to hold in the case of all
groups, also holds for pseudovarieties of groups in whidrefinitely generated subgroup of the free
r-algebrais closed.
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Organization. The paper is organized as follows. In Section 2, we introdheenotion of history of
a factorization and we show that any nontrivial pseudotaitosed under concatenation productlis
factorial. In Section 3, we establish that the Pin-Reuteng@uoperty holds fo6 and unary signatures
satisfying an additional condition. In Section 4, we reldie Pin-Reutenauer property with fullness, in
the general case and in the case of pseudovarieties of groups

2 1-factoriality

We assume that the reader has some familiarity with profsiteigroups. For details, we refer the reader
to the books of Almeida (1995); Rhodes and Steinberg (2008}@the article of Almeida (2005). Here,
we briefly introduce the required notation and key notions.

Preliminaries. Throughout the paper, we work with a finite alphabét For a pseudovariety of
semigroups, we denote Yy V the free prov semigroup generated by. Elements of)xV are called
X-ary implicit operationsoverV. See the paper of Almeida (1995) for details.

An implicit signature as defined by Almeida and Steinberg (2000a), is a set of @iplperations of
finite arity including the formal binary multiplication. &-semigroupis an algebra in the signatuee
whose multiplication is associative. Thussemigroups form a Birkhoff variety. We call an element of
the frees-semigroup generated by ac-term For convenience, we allow the emptyterm.

Every proV semigroup has a natural structurerefemigroup. We denote 1§95 V the sube-semigroup
of QxV generated byX. A o-word overV is an element of2%, V. We denote by ]y the surjective homo-
morphism ofs-semigroups that associates te-dermt its interpretatiorjt]y in Q% V. Whent is a word
andV is clear from the context, we writeinstead oft]y .

Unary implicit signatures. Let N be the profinite completion diN, +), i.e,, the free profinite monoid
on one generator. We denote bythe implicit signature consisting of multiplication toget with all
implicit operations ® with « € N\ N. An implicit signature is callednaryif it is contained in1 and it
contains at least one unary implicit operation. For a unaylicit signatures, an elementy € N such
that thea-power operation® belongs tas is said to be ar-exponentNote that by definition ofi, every
o-exponent is infinite. An important example of a unary implégnature is the signature for which
w — 1 is the onlyx-exponent.

Theo-rank rank, (t) of ac-termt is the maximal nesting depth of elementsogfdisregarding mul-
tiplication, that occur int. It is defined inductively byank, (¢;t2) = max(rank,(¢1), rank,(¢2)) and
rank, (7(t1, ..., 1)) = 1 +maxy, . ,(rank,(¢;)) in caser is an operation frorr which is not multipli-
cation. For ar-term

.....

t= tos?ltl e Samt (2.1)

m m)

where thet;’s and thes;’s areo-terms such thatank, (¢;) < rank,(s;) = rank,(¢) — 1 and eachy; is
ao-exponent, we denote by, (¢) the numbern of subterms:; of t. Wheno is clear from the context,
we may writerank(t), v(t) instead ofrank, (), v, (t), respectively.

Complete unary implicit signatures. A unary implicit signaturer is said to becompletdf the set ofo-
exponents is stable under the mappings « — 1 anda — a+ 1. Note thatl is complete, whilex is not.
The intersection of a nonempty set of complete unary sigaateither consists of multiplication solely, or
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is again a complete unary signature. Therefore, the smalesplete unary signature containing a given
unary signature exists. It is called theompletionof o and it is denoted by. By definition, we have
o C &, and a signature is complete if and only it = o. Note that for everyl-exponeniv and every
u € QxS, the equalities* ! = u®u*~! andu®*! = u*u hold. This proves the following useful fact.

Remark 1. Leto be a unary signature containing ThenQ%V = Q% V.

2.1 Factorization sequences

Fora € N, we choose a sequentg, ()),, of natural integers converging te. One can assume that
(&n (), is constant ifo is finite, or strictly increasing otherwise. Letbe al-term. We denote by
&, (t) the word obtained by replacing each subterhwith « infinite by v¢ (), recursively. For instance,
& ((a®b)P) = (aé»(Db)én(8), The factorization§,, (t) = z-y with z € X* andy € X+ may be obtained
recursively as follows:

o if rank(t) = 0, then¢,, (t) = ¢ for all n and there ar| such factorizations of,, (¢);

o if rank(t) > 0 andt = ¢,s7'¢, ---s&mt,,, where thet;’s and thes;’s are o-terms such that
rank(?;) < rank(s;) = rank(¢) — 1 (where the;'s may be empty), then the factorizationsaft)
are those of the following forms:

En(t) = &nltosy™ 'tjfls?j) t;' ) t;'/ €n(s (;ﬁ-lltﬁrl Sy tm) (2.2)
whereg,, (t;) = tt/, and
Enlt) = EnltosS -+ 83771t 18h)s) - 8 En(s5tys5 T - somtm) (2.3)
wheret, (s;) = ss/, k, £ € N,andk + £ + 1 = &, ().

The conditiony € X T, forbiddingy to be empty, is used recursively to ensure that each faatawiz of
£,(t) is either of type (2.2) or (2.3), but not of both types: one earify that each factorization (,ffn( )
is obtained by exactly one of the equations (2.2) and (2.Bgreyj, ., t”/ (in case (2.2)), oy, k, ¢, s, s"!

7777 19527
(in case (2.3)) are uniquely determined. In particularféogorization

fn(tos?l . --tp71sgpt ) gn( p+1 tpg1 - S%mtm)

cannot be of type (2.2), since this would forgeto be empty, which is forbidden. This factorization is in
fact of type (2.3) withj = p + 1 andk = 0.

As an example, fot = a“ba”, the expression (2.1) is obtained far= 2, wheret, andts are empty,
while s{* = a“, t; = b, andsy? = a*. Assumingg,, (w) = n!, we obtain

— the factorizatiom™ - ba™ by (2.2), withj = 1, ¢, empty and} = b;

— the factorizatiom™'b - a™ by (2.3),j = 2,k = 0, £ = n! — 1, s, empty ands}j = a.

Thehistory h,, (t, z, y) of a factorizatiort,, (t) = zy is defined recursively as follows:

— if rank(t) = 0, thenh, (¢, z,y) = (x,y);
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— if rank(¢) > 0 and the factorization is of the form (2.2), thep(¢, z, y) is obtained by concatenat-
ing the pair(1, j) with h,,(t;,t},t7);
— if rank(¢) > 0 and the factorization is of the form (2.3), thep(¢, «, y) is obtained by concatenat-
ing the 4-tuple(2, j, k, £) with h, (s, 5%, s7/).
The historyh,, (¢, z, y) is thus aword on an alphabet that depends on the integénich gives information
on how the word;,, (¢) is split by the factorization:y. Note that the length of the histofy, (¢, x, y) is at
mostrank(t) + 1.

Thesimplified historyh., (¢, x, y) of the factorizatiory,, (¢) = xy is obtained from the history, (¢, z, y)
by replacing each 4-tupl@, j, k, ¢) by (2, 7). On the other hand, dropping the first two components of
each letter of the histori,, (¢, z,y), we obtain a word whose letters are pairs of nonnegativgénse
which we identify with an integer vector in even dimensioall@d theexponent vectorA factorization
of &, (t) can be recovered from its history but may not be recoverabta fts simplified history without
the extra information contained in the exponent vector.

Observe that¢,, (t)),, converges tdt]s in QxS. We will be interested in sequencdes,, y,,). such that
Tnyn = &, (t). We call such a sequencéactorization sequence for

It will be convenient in the proofs to work with factorizaticequences having additional properties.
Note that the set of simplified histories of factorizatiohg,q(t) is finite and depends only anMoreover,
the dimension of all exponent vectors is bounde@ bynk(¢). Therefore, any factorization sequence for
t has a subsequence whose

(a) induced sequence of simplified histories is constant,

(b) induced sequence of exponent vectors belongé'tor some constant and converges i \ N,

We callfiltered a sequence with these properties. An application of thinas the following simple
statement.

Lemma 2.1. Let (2, yn)n Ee a factorization sequence forlaterm. Then botH{x,,),, and(y,), have
subsequences converging(ir S to 1-words.

Proof: Let ¢ be thel-term of the statement. By the above, one may assume thattjuescez,,, y, ).
is filtered. We proceed by induction aank(¢). The caserank(t) = 0 is straightforward. Otherwise,
lett = tys7't, ---s&mt,, asin (2.1). There are two cases, according to the first lefteh,, (¢, z,y),
which can be of the fornil, j) or (2, j). Both cases are similar, so assume that it is of the farm).
Therefore, the factorization,y,, of &,(t) is given by (2.2), hence,, = &, (ty,s7" - - tj_lsjj)t.’j’n and
Yn =17, En(s513 iy - - s t,,) Whereg,, (t;) = t) ¢/ . By definition,; is al-term andrank(t;) <

rank(t), whence by inductioi’; ), and(t},,),, have subsequences converging {terms, respectively

t’ andt}. Therefore(z, ), (resp.(y)») has a subsequence converging tottiterm¢, s - - - tj_ls;‘j 1
(resp.ty - s34 g - 50t O
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2.2 Factoriality of some pseudovarieties

A pseudovariety of semigroups is said todlesed under concatenatiohthe corresponding variety of
rational languages has that property. A nontrivial pseadetyV is closed under concatenation if and
only if it containsA, the pseudovariety of aperiodic (or group-free) semigspapd the multiplication of
the profinite semigroufxV is an open mapping for every finite alphat¥étas proved by Almeida and
Costa (2009) based on results of Straubing (1979) (in theoidarase) and Chaubard et al. (2006) (in the
semigroup case) characterizing such pseudovarietiesnstef certain algebraic closure properties.

A pseudovariety is saido-factorial if, for every finite alphabek’, every factor i) x'V of a -word
overV is also ar-word overV. Note that the pseudovarieyis notx-factorial, since:® is a prefix ofz*
for everya € N.

Theorem 2.2. LetV be a pseudovariety closed under concatenation. Thet -factorial.

Proof: The statement is obvious ¥ is trivial. Otherwise, lets = vw be a factorization iflxV of an
arbitrary element of2%. V. Let¢ be al-term such thaftly = u. Since the sequencg, (t)),, converges
tou = vw in QxV and the multiplication is open i1 x V, for all sufficiently largen, eaché,, (t) may be
factorized ag,,(t) = v,w, in such a way thalim v,, = v andlim w,, = w.

By Lemma 2.1, both(v,,),, and (w, ), have subsequences converging{igS, to 1-words overs.
Therefore, iMxV, these subsequences convergé-tgords ovel, so thaty andw are actuallyl-words
overV. O

For a pseudovariety of groups H denotes the pseudovariety of all finite semigroups whosgrsuips
lie in H. In particular, wherH is the trivial pseudovariety, thet = A. It is a well-known and elementary
fact thatH is always closed under concatenation. Denot&pythe Burnside pseudovariety of all finite
groups of exponent dividing. The pseudovariet,, is thus defined by the pseudoidentityt™ = 2.

In the following result, the special cage= 1, corresponding to the pseudovariétywas first shown
by Almeida et al. (2015) with a much more involved proof.

Corollary 2.3. For every positive integer the pseudovarieti,, is x-factorial. In particular, the pseu-
dovarietyA is x-factorial.

Proof: We claim that the equalit%B,, = Q% B,, holds for| X | = 1 and so also for every finite alphabet
X. Therefore, the result follows from Theorem 2.2. To prowe ¢faim, we show tha@{w}B_n = {2V |
k€ NYU {zv, v+ ... 2z*+t(=D1 For this, leta be al-exponent and letay, ), be a sequence of
integers converging ta. One can assume that modulon is a constant, hencea;, = nb; + a with
bi € Nforall k. InQ,,B,, we then haver™ = 2“+ = limy, 2“7 = limy g Tnbrte = gota ¢
Q5 B,,. O

Another application of Theorem 2.2 is the following resulhich is a weaker version of one that was
established in (Almeida and Volkov, 2006, Corollary 8.1&though the original result was formulated
for the pseudovariety of all finite semigroups, the proofleggpunchanged to pseudovarieties containing
all finite local semilattices. Related results, under thmesdypothesis as the following corollary, have
been obtained by Steinberg (2010).

Corollary 2.4. If [X| > 2 andV is a nontrivial pseudovariety closed under concatenatiban there is
no 1-word in the minimum ideal d? x V.
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Proof: SinceV is 1-factorial by Theorem 2.2 and since every elememt gl is a factor of every element
of the minimum ideal, if there werelaword in the minimum ideal then every elementd{V would be
al-word. We claim that this is impossible under the hypothgss| X | > 2.

To prove the claim, observe that by definition, evérword of QxV which is not a word has at least
one infinite power of a finite word as an infix. In particularadmits as factors powers of finite words
of arbitrarily large exponent. Thus, it suffices to exhibiitelement of x V that fails this condition. For
this purpose let:, y € X be distinct letters and consider the Prouhet-Thue-Morbstgution, defined
by p(z) = zy, o(y) = yz, andp(z) = z forall z € X \ {z,y}. This extends to a unique continu-
ous endomorphism dR xV, which we also denote. Since, as proved by Hunter (1983), the monoid
of continuous endomorphisms BV is profinite under the pointwise convergence topology, wg ma
consider the element* (z) = lim ¢™ (). Now, it is well known that each worg™' () is cube free
(see, for instance, Lothaire (1983)). Sin¢és nontrivial and closed under concatenation product,lit co
tainsA. Therefore, the sets of the for(R x V) u(QxV)!, whereu is a word, are open (Almeida, 1995,
Theorem 3.6.1). Hence (z) is also free of cubes of finite words andg6(x) is not al-word. O

3 The Pin-Reutenauer procedure over S for pure signatures

Given a pseudovariety of semigroups, an implicit signatuseand a subset C Q% V, we denote by,
the closure ofL in 2% V. Both the implicit signature and the pseudovariely are understood in this
notation. We are interested in computing a representafiesnah closures in two cases:

(a) whenL is of the formpy (K) for some rational subséf of X *, wherepy is the natural continuous
homomorphism fromf2 xS to Q x V;

(b) whenL is a rational subset a3% V.

Recall that the class of rational subsets of a semigrblfis the smallest family of subsets @ff
containing the empty set and the singletdns} for m € M, and closed under unidy, Z) — Y + Z,
product(Y,Z) — YZ = {yz | y € Y, z € Z} and iterationy ~— Y+ = J,, Y*. Since the
homomorphic image of a rational set is rational, any set effthm a is also of the form b. Conversely,
there are of course rational sets(@f V that are not obtained as image of a rational sexXofunderpy,

such as the singletof{s®} wherea € N is ac-exponent.

We say that th€in-Reutenauer procedut®lds for a clas€ of subsets of2% V if, for every K, L € C,
the following conditions are satisfied:

pie
+ =
I
=

I, (3.1)
)os (3.2)

[
B

where(U), denotes the-subalgebra generated by the suli$etf 2% V. Again, in this notation, the fact
that closures are taken §2f; V is understood.

We say thatv is (weakly)o-PRif, for every finite alphabefX, the Pin-Reutenauer procedure holds
for the class of all subsets 6§V of the formpy (L) with L C X * a rational language. We say that
is stronglyo-PRif, for every finite alphabef(, the Pin-Reutenauer procedure holds for the class of all
rational subsets d% V.
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In this section, we only deal with the pseudovarigtyn Section 4, we shall transfer our results frém
to other pseudovarieties. The main result of this sectighagollowing theorem. It applies only to pure
signatures, which we describe below.

Theorem 3.1. The pseudovariety is o-PR for every pure unary signatusecontainings.
The additionapurity property thatr is required to possess is the following.

Definition. A unary signatures is said to bepureif, for every positive integed and for alla € N, if da
is ag-exponent, then is also ag-exponent.

Note that the quotient of by d is actually uniquely determined: &, 3 € N andd € N \ {0}
are such thatla = d3, thena = 3. This follows immediately from the fact that the free proténi
group on one generator, which is isomorphicNo, N, is torsion-free. Let us show this fact directly:
da = df means that all finite semigroups satisf§* = z?*. To show that all finite semigroups also
satisfyz® = 27, it is sufficient to consider 1-generated semigroups. Seofigroups have presentations
of the formS,, , = (a : ™ = a™*P), for integersm,p > 0. Note that the semigroup homomorphism
© : Sm.p — Sam.dp Mappinga to a? is injective. SiNCESyy, 4, Satisfieszd® = 247, we have NSy, ap
the equalitiesp(a®) = a? = a® = ¢(a”), whenceS,), , satisfiest® = 2. This proves thaty = 3.

In view of the following lemma, Theorem 3.1 can be appliech® $ignature.
Lemma 3.2. The unary signature is pure.

Proof: Everyr-exponentis of the forrw +n, wheren € Z. Therefore, it suffices to show thatyifis an
integer,d is a positive integer, and € N is such thatv +n = da, thend dividesn, whencen = w+ % is
again as-exponent. For that purpose, consider the unique contmbomomorphism of additive monoids
¢ : N — Z/dZ which mapsl to 1. We havep(w) = ¢(limy k!) = 0 andg(da) = de(a) = 0, and we
deduce from the equality + n = da thaty(n) = 0. O

To establish Theorem 3.1, we first prove a technical key leimn$ection 3.1. We shall then consider
separately the cases of concatenation and iteration rigglgén Sections 3.2 and 3.3.

3.1 Akeylemma

We first prove a technical result which will be the key lemmatia sequel. It shows that, under suit-
able hypotheses, one can balance the factors of a faciorizzta givens-term to make theng-terms
themselves, without affecting membership in given clopes.sForl, C X+, we denote byl(L) the
topological closure of. in QxS.

Given 1-termsty, ..., t, and language$., ..., L,,, we say that(t,,...,tm) is a (L1,..., Lpy)-
splitting of a 1-term¢ if the following conditions hold:

(i7) [ts]s € cl(L;) foreveryi =1,...,m.

Given ac-termt, let \,(t) = (rank,(t), v, (t)). We may write) instead of\, whenc is clear from the
context.

Lemma 3.3. Leto be a unary signature containing lett¢ be ag-term, and letL, ..., L,, be rational
languages. If admits an(Ly, ..., L,,)-splitting (¢1, . . ., t,,), then there exists a-term z admitting an
(L1, ..., Ly)-splitting (21, ..., z,,) such that:
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(1) [z]s = [t]s,
(2) z;isac-termfori=1,...,m,

(3) Aa-(Zi) = Aﬂ(tl) fori = 1, cee, M.

Proof: We only prove the statement fot = 2, since it is representative of the general case, and it allow
a simplified notation.

Let (t1,t2) be an(Lq, Lo)-splitting of t. Setx,, = &,(t1) andy, = &,(t2). By i, limz, = [t1]s
belongs tacl(L4), which is open by rationality of.; (Almeida, 1995, Thm. 3.6.1). Therefore, the word
x, belongs toL; for all sufficiently largen. Similarly, the wordy,, belongs toL. for all sufficiently
largen. Lety : X+ — S be a homomorphism into a finite semigroup recognizing batlylages.,
andLs. Inview of i, (z,,, y). iS a factorization sequence farLet (z,,, , y»,. ). be afiltered subsequence
of (zn, yn)n, and let(ky ,, l1 r, ..., kar, Lar)r e the sequence of exponent vectors for the factorization
én,.(t) = xn, Yn,. When(k; ), (resp.(¢;.)r) is constant, lek; (resp.¢;) be this constant value. Other-
wise, by taking a subsequence, we may assume that forseach, each of the sequencés® ), and
(s“),. is constant, say with value respectively ands’ (i = 1,...,d), the integers:; and/; being
independent of the element S.

In view of Case (2.3) of the definition of factorization seqoe and since is ag-term, each sequence
(kir + ¢;r + 1), converges to some-exponenty;. In particular,y; is infinite. Define(a, 5;) by

(ki,vi — ki — 1) if (ki) is constant ang?; ,),, unbounded,
(i, Bi) =< (i — 4 — 1,4;) if (k;,»)r is unbounded anfY; ,.), constant,
(vi — 4 — 1,w+¢;) ifboth (k; ), and(¢; ), are unbounded.

Note that in all cases, we have
a; + B+ 1=, (3.3)

Let z; (resp.z2) be thel-term obtained fronz,,,. (resp. fromy,,,) by replacing for every the exponent
ki » by o; and the exponertt . by ;. Set

g = z1%2,

and let us verify that,, zo andz fulfill the desired properties. We have to show propertie3, hnad that
(21, 22) isan(Ly, Lo)-splitting of z.

First note that, by (3.3), we havg~+/itl]s = [y7]s for all 1-termy. Since(k;, + l;, + 1),
converges toy;, using (2.3) we deduce thét]s = [t|s, which proves 1. Next, by definition; and 3;
either belong tdN, or are of one of the forms; — n or w + n wheren € N. Sincevy; is ag-exponent
and sincer containsk, botha; andj; areg-exponents, whence both, 2o area-terms, which proves 2.
Finally, we have\; (z;) = Ay (¢;) by construction, which is 3.

It remains to verify tha{z1, z2) is an(Ly, Lo)-splitting of z. Condition i is satisfied by definition
of z. Let us verify thatz; € cl(L;) (showing thatz, € cl(Ls) is similar). Letp : QxS — S be
the continuous extension of to QxS. By ii applied to the(L1, L»)-splitting (¢1,t2) of ¢, we have
t1 € cl(L1) = 7 (p(L1)). Sincety is the limit of (x,,.).., it suffices to show thap(z1) = ¢(x,,,.). This
follows from the claim that for- large enoughsé~-(®i) = sk = sk 'which is clear if(k;, ), is constant,
while it is obtained by reasoning in the gro{us”*? | p > 0} if (k;,), is unbounded. O
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3.2 The case of concatenation
We are now ready to treat the case of concatenation, thatéstablish Property (3.1).

Theorem 3.4. Equality (3.1) holds over the pseudovarie$yfor every unary signature containingx
and for all rational languaged, L C X .

Proof: The inclusion from right to left in (3.1) amounts to contityudf multiplication inQ2%S and thus
it is always valid. For the direct inclusion, letbe an arbitrary element df L. We need to show that
belongs tak - L.

Choose ar-term¢ such thaft]s = v. Sincev € cl(K L) and since the closuré(K L) of the rational
languageK L is clopen (Almeida, 1995, Thm. 3.6.1), the wajglt) belongs toK L for all sufficiently
largen. For suchn, lettq ,, € K andts,, € L be words such tha, (¢t) = t1,,t2,,, and let(t1 ., t2.n,. )r
be a filtered subsequence @f ., 2., ). FOri = 1,2, let¢; be the term obtained by substituting each
exponent vector with the limit of the sequence of exponentors, inNd, so thatlim¢; . = [ti]s, and
(t1,t2) is a(K, L)-splitting oft. By Lemma 3.3, it follows that there existsaterm =z such that = [z]s
andz admits a(K, L)-splitting (z1, z2) into 6-terms. Since the unary signaturecontainsk, we have
0%S = Q%S by Remark 1. Hencéz1]s € cl(K) N Q%S = cl(K) N Q%S = K, and similarly[zq]s € L.

Finally,v = [z]s = [2122]s = [21]s - [22]s € K - L. O

3.3 The case of iteration

We now show that (3.2) holds over the pseudovarsetior every pure implicit signature containingx
and every rational languadeC X . Itis easy to see that the inclusion from right to left in (3aRvays
holds, see Almeida et al. (2014). The rest of this subseddidevoted to the proof of the other inclusion.

Theorem 3.5. Equality(3.2) holds over the pseudovariegyfor every pure unary signatuke containing
x and for every rational languagé C X .

The proof of Theorem 3.5 follows the lines of its analog foe fiseudovarietr which is presented
in (Almeida et al., 2014, Section 6), even though the argumeguires significant changes in several
points.

Consider an element of L+. We must show that there is@&term which coincides withy when
evaluated on (finitely many) suitable elementg.oft turns out to be convenient to assume more generally
thatv € ¢l (L), so that there exists@term¢ such thaft]s = v. Therefore, we want to show that, for
everyg-termt,

for every rational languags, [t]s € LT implies|t]s € (L),. (Py)

Letw;, = & (t). The sequence of wordsy, ), converges ta = [t]s in QxS. As v belongs to the open
setL+, the wordw;, belongs toL* for all sufficiently largek, and we may therefore assume that there
are factorizations

Wi = W1,k Wry ks (3.4)

with eachw; ; € L. If there is a bounded subsequence of the sequengg, which counts the number of
factors fromL, then Theorem 3.4 yields thatbelongs to the subsemigroup@f; S generated by. and
we are done. We may therefore assumelhai;, = oo, which implies thatank(t) > 1. We first reduce
the problem to the casgt) = 1.
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Proposition 3.6. Assume thatP,) holds for everys-term¢ with v(¢) = 1. Then, it holds for everg-term
t.

Proof: Lett be ag-term such that(t) > 1. Letv = [t]s, and assume thate L+. To showthav € (L),,
we proceed by induction ok(t), for the lexicographical order d x N. Consider the factorization of
in 7-terms as in (2.1) and the factorization (3.4xqf = £ (¢). We distinguish three cases.

Case 1 Suppose first that there are infinitely many indiéefor which there exists, € {1,...,7:}
such that the first letter of the simplified history

shi(t, Wik - - Wiy oy Wiy 41,k - - Wry k)

is of one of the formg1, j) with 0 # j # m, or (2,5) with 1 # j # m. That is, the corresponding
factorizations(xy, yi), wherex,, = w1 -« - w;, k @NAdYy, = Wi, 415 - - - Wy ks A0 NOL SPIitéy (¢) in its
prefix &, (tys1*), nor in its suffix, (s&mt,, ).

By Lemma 2.1, bothxy); and (yx)r admit subsequences convergingltavords, sayv; = [ui1]s
andvs = [uz]s respectively, withu;us = t. Since bothz;, andy, belong toL*, we deduce that
v1,v2 € cl(LT). Therefore, one can apply Lemma 3.3: there exit#grmsz; andz, such thav = [2122]s,
and fori = 1,2, A\(z;) = Au;) and[z]s € cl(LF). By Remark 1, we obtaifi;]s € L. By the
assumption on the first letter of the simplified histories,hagerank(u;) = rank(t) andv(u;) < v(t),
hence\(z;) = A(w;) < A(t) (¢ = 1,2). Arguing inductively, we deduce tht; s and|[z2]s belong to
(L), whence so does= [z 22]s = [21]s - [22]s. This concludes the proof for Case 1.

Case 2 Assume now that for all sufficiently large there is an index;, such that the first letters of the
simplified histories

Shi(t, Wik - Wig—1,k, Wi -+ Wrp k)

Shi(t, Wik -+ Wiy ks W41,k * * * Wry k)

are of the forms (1,0) or (2,1) for the first one, aridm) or (2, m) for the second one. In other words,
the factorw;, x of £ (t) jumps from the prefixy (¢,s7*) to the suffix¢, (s t,,).

As in the first case, we may apply twice Lemma 2.1 to obtain filoefollowing sequence of factoriza-
tions

W = W1k Wiy—1,k * Wip k * Wi 41,k Wry k (k = 1),

an(L*, L, L™)-splitting of ¢ into 1-terms, say = ujusugz. Applying Lemma 3.3, we deduce that there
exists an(L*, L, L)-splitting (21, 22, 23) into 5-terms of ag-term z such thatz]s = v and A\(z;) =
Mu;), i = 1,2,3. By Remark 1, we obtaifk,]s, [23]s € LT and|z]s € L. By the hypothesis of Case
2, we know that fori = 1, 3, we have eitherank(u;) = rank(¢) andv(u;) = 1, orrank(u;) < rank(t).
Hence \(z;) < A(t). Thus, we may apply the induction hypothesis to deduce[thit and[z3]s belong

to (L),. Hence, we finally have = [z1]s - [22]s - [#3]s € (L)o - L+ (L)s C (L),.
Case 3 Assume finally that for all sufficiently large and for all indicesy, the first letter of the simpli-
fied historyshy (t, w1k -+ - Wi, 1.k, Wig ke * * * Wrp, k) 1S

(a) either of the form (1,0) or (2,1), which means that,_;, spans from the prefig (¢,s7") to the end
of fk (t),
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(b) orofthe form(1, n) or (2,n), which means thai, ; jumps from the beginning &, (¢) to the suffix
Er(sptm).

This case is treated as Case 2, settingresp.v;) to be the empty term, in case a or b occurs. O

To conclude the proof of Theorem 3.5, it remains to treat teeavhere/(t) = 1. For dealing with
this case, we use directed weighted multigraphgmAilti)graphis a tuple(Q, (E, ¢) p,q)coxq) Where
@ is a set of vertices, anfl,, , is a set of edges having sourgeind targey;, for each pair of vertices
(p,q) € Q x Q. Inthe sequel, the graphs shall always be finitewéighted multigraphs given by a
multigraph together with a weight function, which assoesato each edgea nonnegative integev(e).
If e is an edge with sourgeand target;, we represent this edge by

p g

For a pathy of a graphl, let ¢(y) denote the edge-induced subgraphl'oivhose edges are those
traversed byy. We call¢(vy) the supportof 4. Furthermore, if{ is an edge of’, then|y|. denotes the
number of timesy goes through the edge For a subgraph’ of ', we denote byy|r the minimumof
|v|¢ with ¢ an arbitrary edge df”.

Lemma 3.7. Let (7 ), be a sequence of paths of a finite multigrdphf there is some edgefor which
the sequencfny|¢)x is unbounded, then there is some cyglguch that(|7y|.(+))x is unbounded.

Proof: Consider on each path, the subpaths which start with the edgand whose length is the total
number of vertices of the gragh Since there are only finitely many such subpaths, at leasbbthem,
sayd, must be used an unbounded number of times. Becaunsgst go at least twice through the same
vertex,d contains some cycle which satisfies the required condition. O

We conclude the proof of Theorem 3.5 by establishing thealg result, which, combined with Propo-
sition 3.6, implies that Property?() holds for everyg-termt.

Proposition 3.8. Property(?;) holds for everny-termt with v(t) = 1.

Proof: Lett be ag-term withv(t) = 1. Letw = [t]s. Assuming thatv € L+, we want to show that
w € (L),. We havet = t,s7't,, with rank(¢), rank(¢;) < rank(s;) = rank(t) — 1. Letwy = & ().
Since fork large enough, we havey, € LT, one may consider a factorization (3.4)af. Using a similar
argument as in the proof of Case 2 of Proposition 3.6, we msyras, replacinguwy, ). by a subsequence
if necessary, thaf; (to) is a prefix ofw;  andé (¢1) is a suffix ofw,, .

SinceL is a rational language of *, there is a homomorphisp: X* — M onto a finite monoidy/
suchthatp=1(1) = {1} andyp~!(¢(L)) = L. Letm andp be positive integers such that

a™t? = o™ for everya € M. (3.5)
We construct for each a finite directed multigraph.. The set of vertices is
Vi = {(a,b) € M x M : &,(s1) € ¢ ' (a)L* " (b))} U{", 8},

where the two symbols and$ do not belong taV/. The following are the edges of the grapp, where
e denotes a natural number that does not ex¢géd ):
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o thereis an edgéur, by) < (az,bo) if LN @™ (b1)&(s5)¢ ™ (az) # 0;
e thereis an edgé < (a,b) if L N&x(tos§)p " (a) # 0
o thereis an edgér, b) <5 §if LN (b)&k(s5t1) # 0.

Observe that, in view of (3.5), there is an edge in the gragheformg; < ¢ with e > m if and only

if there is also an edgg 2 g ande + p < &x(a).
The purpose of this graph is to capture factorizations optoeluctt, (to)&x (s1)5+ (41 €, (¢1) belonging
to L. More precisely, for each, the factorizations

wi, = &k (to)€k(s1)5 @V (1)
= Wik Wey k

(3.6)

determine a pathr;, from vertex~ to vertex$: the factorsw;; which are not completely contained
in some factog(s;) determine the edges. Each intermediate vertex in the patBsponds to a factor
&1 (s1) together with a factorization into a word, followed by a pbssempty product of elements froi,
followed by a word, where only the values undeof the prefix and suffix words are relevant.
Conversely, every path from ~ to $ determines a factorization of a word of the foggitos{t,) into a
product of elements of. Indeed, we may choose for each intermediate vert@ordsu, i, vgr € X*
andz,, € L* such that
Sk(sl) = Uq,k2q,kVq,k- (37)
Then, for each edgeé: g, el qé, the word
Yek = Vac k €k (ST) gk (3.8)

belongs ta.. If the pathy is the sequence of edg€$, i, . .., ), With (- ~ 5 qéo and¢, : qc. g,
then we also have words
Yéo.k = Ek(tosT) gy i

Yerk = Ve, k §k(s71)

in L. Then the following is the factorization associated wita gath:

e (tosTt1) = Ycook Zae, k Y1k ** Zac, ok Yo k- (3.9)

The total number of factors¢y(s1) that are covered by following the pathis the sum of the weights
of the edges, taking into account multiplicities; we calhie total weightof the path. Combining with
Euler's Theorem (Almeida, 1995, Theorem 5.7.1), it is nowye deduce that each of the following
transformations does not change the total weight of a paditearefore the value of the left side of the
equality (3.9):

1. to traverse the edges in a path in a different order, witcbanging the number of times we go
through each edge;
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2. suppose that in the support of the path there are two cyclasdd,, with respective total weights
ny1 andng, and that the positive integers andr, are such that7; = nore; suppose further that
the path goes through each edgé,imore than-; times; to replace the path by another one which
goes through each edgedn lessr; times than before and through each edgé.imorer, than
before;

3. if there are two edgeg = ¢» andgs c2¥p, g4 in the path with botle;, es > m, to replace in the
path one occurrence of the edge=- ¢, by that of the edge; cutp, g2, provided we compensate
by replacing one occurrence of the edge="2 ¢4 by g3 2 qu:

4. suppose that in the support of the path there is a eyulith total weightn and that the path goes
through each edge if at leastp + 1 times; suppose further that there is an edge% ¢, with
weight at leastn; replace the path by another one which goes through eachieddessp times

than before and change the edge> ¢ by ¢1 etnp, .

Using transformations of type 3, we may assume that thematjoes through at most one edge whose
weight exceeds + p — 1. Therefore, the remaining edgesrp are taken from a fixed finite set. Thus,
by taking a subsequence, we may further assume that all pathse exactly the same edges of weight
at mostm + p — 1 and, either none of the;, use any other edges or, otherwise they all use only one
additional edgé;. connecting two fixed vertices. Hence all the graphis;) are the same finite graph, up
to an isomorphism that only changes one edge.

On the other hand, using transformations of type 4, we maynasghat if all the paths;, go through
some edge of weight at least, then the grapl(m;) contains no cycle in which every edge is used at
leastp + 1 times.

We now split the argument into two cases. Suppose first theat/eyr;, ) contains an edge of weight at
leastm. In this case, one can apply Lemma 3.7 to deduce that therledarad on the length of the paths
7, and, therefore, we may assume that they all have the samileévigreover, we may further assume
that, except for the edgg x, at the same positio) all pathsm, = (o, ..., Ci—1,Ci ks Cit1,---,Cr) @re
identical. Consider the factorizations

Wk = Yo,k Zqcy k" Ylio1,k Bae, k Yl n,k ZinHJC Y¢ivi,k """ Rqe, k Yir k

of the form (3.9) associated with each of the paths
Lete; be the weight of each eddeg (j # ¢) and lete; ,, be the weight of the edgg .. Computing the
total weight, we obtain the formula

Slar) =eix+ Y e (3.10)
J#i

Letting & — oo in (3.10), we deduce thdime; , = a1 — Z#i e; and, thereforeg; = lime, 5, is a
g-exponent, since so ig; and since by definitiorg is complete.
According to (3.8), the factorg;, » with j ¢ {0,i,r} are given by

.,
Yejk = Vac, k€ (81 Uag, -
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By compactness o2 xS, we may assume that each of the sequeliegs )k, (Vg.k)k, and(zq k) CON-
verges to the respective limit,, v,, andz, (¢ = g¢,, - - -, qc,.). Let

Yo = [tos1"]suq,
Yr = Uqgr [Stl%tl]s
€4 .
Yi = ’Uch [Slj]suq<j+1 (.] = 17 BRI A 1)
Then we obtain a factorization
w=Yo Z‘k] T Yt Zin Yi Zq<i+1 Yit1 - ZqCT Yr

in which eachy; belongs tacl(L), while thez, belong tocl(L*) U {1}. By Lemma 3.3, we may assume
that eachu,, vy, andz, is ag-word. By definition (3.7) of the words, , the latter has rank less than
rank(w). It follows that so is each;. Hence they;’s belong toL and thez, belong toL+ U {1}. By the
induction hypothesis, eacy belongs to(L),. Hencew belongs to(L),,, which completes the proof of
the first case.

It remains to consider the case where all edges have weigghthann. By previous reductions, we
know that the grapla(rw;) is constant. Because the total weight tendsxtpso does the length of the
pathm,. By Lemma 3.7, there is some simple cygldor which the sequenc@y|.(+))x is unbounded.
Applying transformations of type 2, we may assume that ttseoaly one such cycle. By Lemma 3.7, we
deduce that the patldswith ¢(d) C ¢(m1) which go at most once through each edge(in) have bounded
length. Hence, using transformations of type 1, we may asdhi there is a pathfrom ~ to $ such
that the pathr;, is obtained by inserting the power cye}é: at a fixed vertex in the path sayn; is the
concatenated pathyy+d;. Let the total weights of the patlds and~ be respectively,; andn. Then the
total weight of the pathr, is given by the formula

&k(a1) = no + n1 + nl. (3.11)

By taking a subsequence, we may assume that the seq(&ngceonverges to some < N. From (3.112),
it follows thatng8 = a1 — ng — n1. Since the signature is assumed to be pure, we deduce that a
g-exponent.

By the argument in the preceding case, using the inductigothesis, each of the patlis and v
determines a corresponding elementbf,, say respectively; andy, such thatw = yoy®y,. Sincep is
aa-exponent, we may now end the proof by observing that it fedithatw € (L),,. O

4 Pin-Reutenauer versus fullness

In this section, we apply the main results of Section 3 to stimatthe Pin-Reutenauer procedure is valid
for many pseudovarieties. For this purpose, we establlatioaships between that property and fullness,
a notion introduced by Almeida and Steinberg (2000a). SeeAdimeida and Steinberg (2000b); Almeida
et al. (2014) for related properties and other applicataftfaliness.

Recall thatpy denotes the natural continuous homomorphism ffdg6 to QxV. The pseudovariety
V is said to beull with respect to a class of subsets 0f2%S if the following equality holds for every
LecC

pv(L) = pv(L). (4.1)



18 J. Almeida, J. C. Costa, M. Zeitoun

The closure of the left hand side of (4.1) is takefdf S, while the closure of the right hand side is taken
in Q% V. We say thaV is (weakly)o-full if, for every finite alphabek’, V is full with respect to the set of
all rational languages of . We also say tha¥ is stronglyc-full if, for every finite alphabeX, V is full
with respect to the class of all rational subsetS)gfS.

4.1 The general case
We first consider the case of arbitrary pseudovarieties gmasires.

Proposition 4.1. Let o be an arbitrary implicit signature}V be a pseudovariety, and be the closure
under the rational operations of some set of finite subse@d. If the Pin-Reutenauer procedure holds
for €, thenV is full with respect tc®.

Proof: Let L be an arbitrary member &. We need to show that the equality (4.1) holds. The inclusion
from left to right is an immediate consequence of the coiitynof the mappingpy. For the reverse
inclusion, we proceed by induction on the construction ofitional expression of, in terms of finite
sets inC. If L is a finite set, themy(L) = py(L) andpy(L) = pyv(L), and so the equality (4.1) is
trivially verified. Suppose next thdt; and L. are elements of for which the equality (4.1) holds. Since
topological closure and the application of mappings conasumtith union, the equality (4.1) also holds
for L = L; U Ly. On the other hand, we have the following equalities andigiohs:

pv(L1La) = pv(L1) - pyv(L2) since the Pin-Reutenauer procedure holds
for @

=pv(L1)-pv(L2) by the induction hypothesis
=pv(L; - La) sincepy is a homomorphism
C pv(L1Lo) by continuity of multiplication.
Taking into account thaty is a homomorphism af-semigroups and that the inclusion from right to left

in (3.2) always holds (see the paragraph preceding Theorgnp.312), one can similarly show that (4.1)
holds forL = L. O

The following is an immediate application of Propositiot.4.

Corollary 4.2. Leto be an arbitrary implicit signature and a pseudovariety. I¥/ is (strongly)o-PR
thenV is (respectively stronglyy-full. O

The weak version of the following result is proved in (Almaiek al., 2014, Proposition 3.2). The same
proof applies to the strong case.

Proposition 4.3. Let V and W be two (strongly)o-full pseudovarieties such that € W. If W is
(respectively stronglyy-PR, then so i¥/.

Note thatS is trivially o-full for every implicit signaturer. Combining Theorem 3.1 with Corollary 4.2
and Proposition 4.3, we obtain the following result.

Corollary 4.4. Leto be a pure unary signature containimg Then a pseudovariely is o-PR if and only
if itis o-full. O

We do not know whether the hypothesis on the signature candppédd in Corollary 4.4.



Factoriality and the Pin-Reutenauer procedure 19

4.2 The group case

We now consider the case of pseudovarieties of groups, éssinatures.

Recall that a group IEERF (locally extendible residually finitéf) every finitely generated subgroup
is closed in the profinite topology. We say that a pseudotyaaegroupsH is LERF if, for every finite
alphabetX, the relatively free grouf’; H is LERF. By a classical result of Hall (1950), the pseudagri
G of all finite groups is LERF.

By (Margolis et al., 2001, Proposition 2.9j,is in fact the only nontrivial extension-closed pseudova-
riety of groups that is LERF. On the other hand, it is easy #ckltthat, for the pseudovarief\b of all
finite Abelian groups, every subgroup@f; Ab is closed (Delgado, 1998, Proposition 3.8).

A slightly different notion of strongly:-PR pseudovariety was considered by Pin and Reutenauer)(199
and Delgado (2001) (where it is simply called PR). Insteagroperty (3.2), the following property is
considered:

Lt = (L),. 4.2)

Compared to (3.2), the topological closure in the right hsidé of (4.2) has been dropped. As observed
in (Almeida et al., 2014, end of Section 4), Equation (4.8sffor the pseudovariet§ and the implicit
signatures, for L = a*b*, sincea®b € L+ \ (L),. However, the two notions coincide for the pseudova-
riety G (Pin and Reutenauer, 1991, Theorem 2.4). With same argumeigieneralize this result to LERF
pseudovarieties.

Lemma 4.5. LetV be a pseudovariety. ¥ satisfieg4.2)for a subsetZ of Q% V, then(3.2)also holds.
If V is a LERF pseudovariety of groups and= x, then(4.2) holds for rational subsets of Q% V.

Proof: Since forL C Q% V, the inclusiong L), C (L), C L* always hold, it is clear that (4.2) implies
(3.2).

For the second part, we argue as in (Almeida et al., 2014,.pL&) L be a rational subset ¢t V.
Then,(L), = (LUL~!)* isrational inQ%5 V. By a well-known theorem of Anissimow and Seifert (1975),
the subgrougdL),, is therefore finitely generated. Hendé,),, is closed inQ’;V, by the assumption that
V is a LERF pseudovariety. Finally, we hatie C (L),,, henceLt C (L), which, combined with the
reverse inclusion, which always holds, yields the result. O

It can be shown easily that &@PR pseudovariety of groups is LERF (see Delgado (1997)lusTh
a pseudovariety of groups is strongtyPR if and only if it is PR in the sense of Delgado (2001). In
(Delgado, 2001, Corollary 3.9), it is also established tvary “weakly PR” pseudovariety of groups is
r-full, a result which is considerably improved in the pregeaper, in the form of Corollaries 4.2 and 4.4.

It was conjectured by Pin and Reutenauer (1991)@&iatstronglyx-PR. Their conjecture was reduced
to another conjecture, namely that the product of finitelynynfinitely generated subgroups of a free
group is closed. The latter conjecture was established bgsRand Zalessk{(1993). Combining with
Proposition 4.3 and Corollary 4.2, we obtain the followieguilt.

Theorem 4.6. A pseudovariety of groups is stronglyPR if and only if it is strongly:-full. O

The diagram in Fig. 1 summarizes the results of this sulis®cile say that a pseudovariety of grotips
is strong RZf in every finitely generated fred-group, any finite product of finitely generated subgroups
is closed. We say thadi is weak RZif, in every finitely generated frel-group, any finite product of
finitely generatealosedsubgroups is also closed.
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Strong Thm. 4.6 Strong (Delgado, 1997, Thm. 4.2.1) Strong

s-full k-PR RZ
LERF

Weak Cor. 4.4 Weak Weak

k-full k-PR RZ

Fig. 1: Summary of results: pseudovarieties of groups
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