
1 

Metabolic control analysis and its applications 

1 

2 

3 

4 

5 

6 

7 

8 

Ana Meireles1, Manuel Simões1* 9 

10 

1LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of 11 

Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal 12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

*Author to whom correspondence should be addressed: Manuel Simões (mvs@fe.up.pt)24 

25 

This article was published in Current Bioinformatics, 9 (5), 490 – 498, 2014

http://dx.doi.org/10.2174/1574893609666140515230435 

http://dx.doi.org/10.2174/1574893609666140515230435


2 

ABSTRACT 1 

Metabolic Engineering (ME) provides the know-how for the reconstruction of 2 

microorganisms, in order to provide higher production rates of biotechnological 3 

products and increase their potential application in several industries, particularly those 4 

pharmaceutical, food and environmental. However, microbial metabolic cell 5 

reconstruction has limitations. Metabolic Control Analysis (MCA) allows the evaluation 6 

of the reliability of the changes performed by ME, emphasizing the importance of the 7 

whole pathways rather than individual pathway reactions resulting from simple flux 8 

analysis. This led to an increased emphasis on the regulatory structure of the network. 9 

The use of MCA becomes indispensable to quantify metabolic parameters, particularly 10 

those related with direct genetic modifications. However, this type of analysis is not a 11 

common practice. In the present study MCA is exemplified as a tool of ME, being 12 

demonstrated its practical application in drug delivery and in the production of three 13 

relevant biotechnological products (penicillin V, l-lysine and glycerol). 14 

15 

Keywords: control coefficient, drug delivery, enzyme, glycerol, kinetics, l-lysine, 16 

metabolic control analysis, penicillin V. 17 
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LIST OF ABBREVIATIONS 1 

6-APA 6-aminopenicillanic acid 

ACVS ACV synthetase 

ADP Adenosine diphosphate 

ASA Aspartate semialdehyde 

ASD Aspartate semialdehyde dehydrogenase 

ASK Aspartokinase 

ASP L-aspartate 

AT Acyl-CoA isopenicillin acyltransferase 

ATP Adenosine triphosphate 

BAP β-aspartylphosphate 

cys Cysteine 

DAP D, L- diaminopimelate 

DAPDC Diaminopimelate decarboxylase 

DAPDH Diaminopimelate dehydrogenase 

DHAP Dihydroxyacetone phosphate 

DHP L-dihydrodipicolinate 

DHPR Dihydrodipicolinate reductase 

DHPS Dihydrodipicolinate synthase 

FCC Flux control coefficient 

glut Glutathione 

GPD Glycerol-3-phosphate dehydrogenase 

GPP Glycerol-3-phosphatase 

IPN Isopenicillin N 

IPNS Isopenicillin N synthetase 

LLD-ACV L-α-aminoadipyl-L-cysteinyl-D-valine 
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Lys L-lysine 

L-α-AAA L-α-aminoadipic acid 

MCA Metabolic Control Analysis 

ME Metabolic Engineering 

MFA Metabolic Flux Analysis 

NADPH Nicotinamide adenine dinucleotide phosphate 

PERM Permease 

Pi Inorganic phosphate  

Pyr Pyruvate 

THDP L-tetrahydrodipicolinate 

val Valine 

 1 

LIST OF SYMBOLS 2 

ci Concentration of the i compound 

Cij
J0

 Flux control coefficient for the ith enzyme on Jth steady state flux 

Cij
x0 

Concentration control coefficient for the ith enzyme on the xth 

metabolite 

ei
0 Enzymes activity through the ith pathway  

Ji
0 Steady state flux through the ith pathway 

K Constant parameters 

Keq Equilibrium constant 

Ki Inhibition constant 

Km Michaelis-Menten constant 

LLys-Thr Inhibition term by lysine and threonine 

r Specific rate of the enzyme catalysed reaction 

R Response coefficient 

Rij
J0

 Response coefficient for the ith enzyme on Jth flux 
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Rij
x0 Response coefficient for the ith enzyme on the xth metabolite 

𝑣𝑖 Rate of an individual reaction 

𝜈𝑚𝑎𝑥 Maximum rate of the reaction 

xi
0 Level of intracellular ith metabolite 

ε Elasticity coefficient 

εij
c0 Elasticity coefficients for the ith enzyme related to external effectors 

εij
e0 Elasticity coefficients for the ith enzyme related to enzyme activity 

εij
x0 

Elasticity coefficients for the ith enzyme related to intracellular 

metabolites 

 1 

1. INTRODUCTION 2 

The most interesting feature of organisms is their ability to perform a wide variety of 3 

metabolic activities that provide the basis for synthesizing a wide range of products of 4 

commercial value. However, in their natural environment, the metabolism of a living 5 

cell is predominantly focused on survival and reproduction. In general, this means that 6 

cells use their biochemical machinery to synthesize metabolites and cellular 7 

constituents, in the minimum quantities required for their maintenance and growth. 8 

However, the requirements of a biotechnological process are contrary to these facts, as a 9 

compound of interest must be produced in large quantities in a way that the process is 10 

profitable [1, 2]. The study of cellular metabolism is a relevant strategy to understand 11 

the unique properties and behaviour of the constituent elements, particularly enzymes 12 

and their reactions. This has led to the continuous and growing interest of academic and 13 

industry researchers in Metabolic Engineering (ME) [3, 4]. 14 

ME is based on the manipulation of the cellular metabolism in order to obtain an 15 

organism capable of synthesizing a product of interest, at the maximum production rate, 16 

requiring the minimal amount of substrate, and therefore, providing less expensive 17 



6 

 

products [5-7]. ME is multidisciplinary and uses different knowledge from different 1 

areas, such as Genetics, Mathematics, Computer Science, Biochemistry, among others 2 

(Figure 1). To achieve the desired goals, microorganisms can be redesigned, to a certain 3 

limit, modifying the existing metabolic pathways or inserting new paths [8, 9]. If the 4 

metabolic main components are identified, the manipulation of these components and 5 

the study of the metabolic fluxes can be analysed, but not fully constructed. As genetic 6 

modifications are not predictable, the random modification in a gene is not a sufficient 7 

strategy to achieve a particular purpose. Therefore, it is necessary to understand the 8 

subsequent interactions of this genetic manipulation on the microbial physiology and 9 

behaviour [6]. Moreover, to make the desired changes, the knowledge of 10 

Transcriptomics, Proteomics, Metabolomics and Fluxomics is essential information 11 

[10]. 12 

After disrupting the natural system of organisms, research and experiments are still 13 

needed, to determine how to adjust the metabolic processes according to the 14 

manipulations. This process is a continuous and constructive cycle that permits to 15 

acquire more information every time a cycle is completed [1, 11]. 16 

ME involves mechanisms of analysis and synthesis. Therefore, ME focuses on kinetics, 17 

enzymatic catalysis and in stoichiometry reactions [6, 12]. The enzymatic profile is 18 

crucial in identifying the steps that origin the desired product. ME defines the steps that 19 

contribute most to the development of the final product; which are the limiting steps 20 

(analysis); and executes the changes (synthesis) to achieve the desired objective [6]. 21 

The determination of metabolic fluxes is carried out by Metabolic Flux Analysis 22 

(MFA). The fluxes are considered the key element of metabolism and this analysis is 23 

strategic, since the fluxes contain the minimum information necessary to describe the 24 

metabolism [2, 6, 10]. 25 
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Metabolic Control Analysis (MCA) can quantify the metabolic fluxes, that are 1 

nonetheless than the rate of components production in the metabolic pathway [12]. 2 

MCA can help the manipulation of certain pathways in order to access the control that 3 

an enzyme exerts in the fluxes [13]. The software available for MCA are typical tools 4 

that can be applied in ME, such as CellDesigner, Wolfram Mathematica, Matlab, The R 5 

Project for Statistical Computing [4, 14-16]. However, there are specific metabolic 6 

simulators, such as SCAMP [17], MetaModel [18], Gepasi [19, 20], as well as MCA 7 

coefficients calculators, like CONTROL [21] and MetaCon [22]. 8 

 9 

2. MCA GUIDE 10 

The biochemical pathways of microorganisms are not yet fully understood, mainly due 11 

to the fact that the methods applied to uncover the biochemical systems are minimalists, 12 

regarding the representation of the complexity of metabolic pathways and their 13 

intervenients [23, 24]. Therefore, there are mathematical methods, such as MCA, that 14 

are used to characterise and quantify the flux changes, by acting as a control. A MCA 15 

approach allows the quantification of cellular changes that may occur: metabolite 16 

concentration variation; changes in metabolic fluxes in response to changes in growth 17 

conditions; and enzyme activity (Figure 2) [25]. 18 

The concepts used in MCA have some gaps: they focus on the regulation of metabolic 19 

flux in an enzyme, and this cannot be considered absolutely correct, since the enzyme 20 

may not exercise control over the complete metabolic pathway. Despite the fact that a 21 

cell directs its machinery to regulate a particular enzyme, it does not mean that an 22 

increase or decrease in its activity will affect the flux significantly, the rate of the 23 

reaction can be affected by other factors, such as environmental, physiological or 24 

genetic [12]. Another disadvantage of this theory lies in the fact that there is not 25 
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sufficient knowledge about enzyme kinetics, genetics, epigenetics and response to 1 

environmental changes. This gap led to the development of various computational tools 2 

that allow the study of metabolism, due to the variation of certain on and the 3 

determination of the variables involved [4, 26]. 4 

Despite the limitations, this type of analysis is an advantageous tool for controlling the 5 

metabolic flux of individual reactions and allows the verification of different 6 

concentrations of intracellular metabolites and the enzyme activity [12]. 7 

MCA is only applied to reactions in the steady state or pseudo-stationary state [27]. It is 8 

considered that the reactions studied are defined only by the activity of enzymes that act 9 

at different stages of the pathway [12]. There are databases, such as MetaCyc 10 

(www.metacyc.com) and BioCyc (www.biocyc.com) where all the information about 11 

the metabolic pathways and enzymes can be accessed [28]. 12 

The enzyme kinetics is crucial to apply MCA [29]. It is necessary to determine the 13 

metabolic control coefficients: control and elasticity coefficients (which are interrelated) 14 

[27]. Therefore, MCA defines the quantitative relationship between the flux of a 15 

metabolic pathway, and the activity of an enzyme, in terms of flux control coefficient 16 

(FCC) [30]. Consequently, FCC evaluates the influence of an enzyme in the pathway 17 

flux [25]. 18 

The control coefficient allows the characterization of the systemic response of the 19 

system variables, such as metabolic flux and/or the concentration of metabolites. It 20 

correlates the changes observed with the disturbances imposed. The variation of the rate 21 

of a single step reaction, regarding a metabolite, is expressed by the elasticity 22 

coefficient [25, 31, 32]. 23 
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These coefficients are dimensionless [25] and are associated with the enzymes activities 1 

(ej
0), fluxes (Ji

0), levels of intracellular metabolites (xi
0) and external factors (ci

0). The 2 

FCC's (Cij
J0

) can be calculated from equation 1 [33]. 3 

 4 

Cij
J0
=
ej
0

Ji
0

dJi
dej

 (1) 

 5 

Where Cij
J0

is the FCC for the ith enzyme on J flux [33]. 6 

This coefficient is considered the most important of the control coefficients and for a 7 

linear pathway, has values between 0 and 1. The enzyme that has the higher value of 8 

FCC is the enzyme that has a higher flux control and an increase in this enzyme activity 9 

will result in the flux increase [12, 34]. 10 

The concentration control coefficients (Cij
x0) are determined by equation 2 [12, 33, 35]. 11 

 12 

Cij
x0 =

ej
0

xi
0

dxi
dej

 (2) 

 13 

Where Cij
x0 is the concentration control coefficient for the ith enzyme on the x 14 

metabolite; xi
0 are the levels of intracellular metabolites [12]. 15 

The elasticity coefficients (ε) can be calculated from equations 3, 4 and 5, related to 16 

intracellular metabolites (εij
x0), enzyme activity (εij

e0) and external effectors (εij
c0), 17 

respectively, as in any compound that modifies the reaction rate [12, 33]. 18 

 19 

εij
x0 =

xj
0

Ji
0

∂𝑣i
∂xj

 (3) 

 20 

εij
e0 =

ej
0

Ji
0

∂𝑣i
∂ej

 (4) 
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 1 

εij
c0 =

cj
0

Ji
0

∂𝑣i
∂cj

 (5) 

 2 

Where 𝑣𝑖 represents the rate of an individual reaction, εij
x0 the elasticity coefficient for 3 

the ith enzyme related to intracellular metabolites, εij
e0 the elasticity coefficients for the 4 

ith enzyme related to enzyme activity and εij
c0 the elasticity coefficients for the ith 5 

enzyme related to external effectors [12, 33]. 6 

The response coefficients (R) can also be defined, allowing to verify the effect of a 7 

change in an external parameter. For the fluxes is set equation 6, and for the 8 

concentration is established equation 7 [33, 35]. 9 

 10 

Rij
J0
=
cj
0

Ji
0

dJi
dcj

 (6) 

 11 

Rij
x0 =

cj
0

xi
0

dxi
dcj

 (7) 

 12 

Where Rij
J0

is the response coefficient for the ith enzyme on J flux and Rij
x0 is the response 13 

coefficient for the ith enzyme on the x metabolite [33, 35]. 14 

The elasticity coefficients are local properties, and take into account the variation of one 15 

effect (keeping the others constant), while the response coefficients are global, and 16 

evaluate all the effects imposed [33]. On the other hand the control coefficients have 17 

systemic properties and can only be compared with the control coefficients of the same 18 

metabolic pathway [12]. 19 

Two theorems of flux control were introduced in detail by Stephanopoulos et al. [12]: 20 

the Summation Theorem and the Connectivity Theorem [12, 33, 36]. For the 21 
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Summation Theorem, the control of a metabolic pathway is distributed by the enzymes 1 

that constitute it. This means that the sum of fluxes must be equal to one (equation 8) 2 

[12, 33, 34]. 3 

 4 

∑Cij
J0
= 1 (8) 

 5 

If the pathway is very long, the FCC’s will have a small value, but there has to be a 6 

particular step in the pathway that exerts the control over the fluxes, if the FCC value is 7 

considerably higher than the others. The FCC’s with a small value, in a long pathway, 8 

are the explanation for the numerous and consecutive mutations required to improve 9 

strains to increase the production of selected metabolites [12]. 10 

Additionally, it is perceptible that one of the enzymes in the reaction has to exert 11 

negative control over the metabolites. Picturing a simple reaction, if the level of the 12 

enzyme increases and the metabolite concentration decreases the sum of the 13 

concentration control coefficients is zero (equation 9) [12, 33, 36]. 14 

 15 

∑Cij
x0 = 0 (9) 

 16 

The response coefficient can be calculated by the multiplication of FCC's and elasticity 17 

coefficients of the same enzyme (equation 10) [12, 33]. 18 

 19 

Rij
J0
= Cij

J0
∙ εij

x0 (10) 

 20 

When the action of more than one enzyme is present, it is used the sum of responses for 21 

each enzyme (equation 11) [12, 33]. 22 

 23 
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Rij
J0
=∑Cij

J0
∙ εij

x0 (11) 

 1 

The elasticity is related to flux control through the Connectivity Theorem presented in 2 

its mathematical form in equation 12 [12, 33]. 3 

 4 

∑Cij
J0
∙ εij

x0 = 0 (12) 

 5 

This theorem shows how the enzyme kinetics affects the flux control [12, 33]. Higher 6 

values of elasticity are reflected in lower FCC's. This gives an indication if the flux 7 

control of certain reactions will be low or high, according to the elasticity [12, 33, 37]. 8 

For example, to block a pathway of a pathogen is important to identify which enzymes 9 

have the highest FCC's values. It is supposed that the inhibition of these enzymes 10 

reduces the flux of the pathway, controlling the pathogen proliferation [31]. 11 

The control coefficients can be determined by direct methods (titration with specific 12 

inhibitors, or genetic alteration of enzyme activity) or by indirect methods (SCAMP 13 

[17], MetaModel [18], Gepasi [19, 20]) and the elasticity coefficients can be calculated 14 

from kinetic models [12, 38], such as MetaCon [22] and CONTROL [21]. This software 15 

is based on the matrix method, therefore, it allows the determination of the matrix in a 16 

more simple approach than what was previously demonstrated [39]. 17 

 18 

3. MCA SUCCESSFUL APPLICATIONS 19 

The practical applications of MCA are mainly related with the medical field, allowing 20 

diagnose of diseases that are related to enzyme deficiencies by the identification of the 21 

cause of the metabolic pathway malfunction [40, 41]. MCA also allows the deletion of 22 

specific metabolic pathways in pathogens [31] and is applied to the study of cancer 23 

treatment [42] and drug delivery [43], which are described below. 24 
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Since the industry is interested in obtaining large quantities of particular 1 

biotechnological products, penicillin-V, l-lysine and glycerol were selected for this 2 

study as cases of MCA successful applications [12, 23]. 3 

 4 

3.1. DRUG DELIVERY 5 

The drug delivery is an important pharmacology issue both quantitatively and 6 

qualitatively. MCA can be valuable to quantify and determine which components are 7 

more important for the functioning of the system [40, 44]. 8 

In order to a drug be delivered properly, the targeting is essential. To determine if the 9 

target is the most appropriate, one can use the control coefficients information. A good 10 

target is the one with the highest value of control coefficients [44]. 11 

In the case of cancer, the targeting is very important due to the fact that tumour cells are 12 

very similar to the non-tumour cells [44]. The conventional treatments are based in the 13 

tumour cells susceptibility towards irradiation and chemical compounds. The main 14 

problem with these treatments is the fact that it is not specific and it also affects the non-15 

tumour cells. These solutions can also lead to resistant tumour cells due to mutation. 16 

With these problems new solutions are being developed. In this way, MCA is a very 17 

important tool, since it permits to follow which reactions are controlling the processes. 18 

This control is not uniform and it belongs to multiple enzymes, which means that 19 

inhibiting or altering more than one enzyme is more efficient [42, 45]. In other words, 20 

the rate limiting step is not a single step, but multiple steps, since the enzymes share the 21 

control of energy metabolism [42]. 22 

Özbayraktar and Ülgen [43] used two computational methods (MCA and metabolic 23 

pathway analysis) with the purpose of identifying enzymes of the sphingolipid pathway, 24 

which can be used as targets in the cancer therapy. Sphingolipids are a very important 25 
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piece in cancer development and treatment. The metabolic significant reactions were 1 

identified by MCA and the target enzymes, responsible for these reactions, were 2 

selected and manipulated to accumulate ceramide – simple sphingolipid that induces 3 

apoptotic responses. These authors propose the increasing activity of certain enzymes 4 

(glycerol-3-phosphate, 4-hydroxylase, ceramide synthase, acetyl-coenzyme A 5 

synthetase, etc.) and the decreasing activity of others (phosphoserine-phosphatase, 6 

serine palmitoyltransferase, sphingolipid long chain base kinase, etc.) resulting in a 7 

multiple response [43]. 8 

Type 2 diabetes mellitus is another disease where MCA was already used to identify 9 

therapeutics strategies. Trombetta et al. [46] applied MCA to quantify the control 10 

coefficients in the intravenous glucose tolerance test. This test evaluates the plasma 11 

glucose concentration and is used to diagnose the disease. The strategy was to target the 12 

points with highest control coefficients and restore the primary control [46]. 13 

 14 

3.2. PENICILLIN V PRODUCTION 15 

An example of MCA application is the penicillin V (phenoxymethylpenicillin) 16 

production by Penicillium chrysogenum. The β-lactam antibiotics are used to treat 17 

various infectious diseases and, therefore, it becomes imperative to optimize the 18 

industrial production, being inevitable the application of ME [47-50]. 19 

The metabolic pathway of biosynthesis of penicillin V (Fig. 3) has three enzymatic 20 

steps. The first step is the condensation of three amino acids: L-α-aminoadipic acid (L-21 

α-AAA), L-cysteine and L-valine, forming L-α-aminoadipyl-L-cysteinyl-D-valine 22 

(LLD-ACV). This first reaction is catalysed by the enzyme ACV synthetase (ACVS). 23 

This enzyme also modifies the L-valine into D-valine running an epimerization [47, 49]. 24 
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In the second step, the ring of LLD-ACV is closed. This reaction is catalysed by 1 

isopenicillin N synthetase (IPNS) in the presence of oxygen, forming the isopenicillin N 2 

(IPN) [47, 49]. 3 

The last step can occur in two different ways: two-step reaction and one-step reaction. 4 

In the two-step reaction, the molecule of L-α-AAA of IPN is cleaved and 6-5 

aminopenicillanic acid (6-APA) is released. If available a precursor phenoxyacetyl-CoA 6 

is available, it can bind to the enzyme acyl-CoA isopenicillin acyltransferase (AT) and 7 

turn into penicillin V [11]. In the reaction with only one step, the hydrophilic chain of 8 

L-α-AAA of IPN is exchanged for an added precursor (phenoxyacetic acid), resulting in 9 

penicillin V, without release of 6-APA [47, 49]. 10 

The molecule of L-α-AAA is released and can be reused for the synthesis of LLD-ACV. 11 

However, part of this molecule undergoes cyclization to form 6-oxopiperide-2-12 

carboxylic acid which is excreted into the medium, with consumption of L-α-AAA, 13 

implying that this molecule (L-α-AAA) should be replaced during the biosynthesis of 14 

penicillin V [50]. 15 

This pathway has negative feedback inhibition by the first enzyme (ACVS) through the 16 

LLD-ACV. Therefore, to obtain a high production of penicillin V, it becomes obvious 17 

that it is important to keep the concentration of LLD-ACV low, in order that the flux of 18 

production becomes higher, and that through the enzyme IPNS (which consumes LLD-19 

ACV) there is a metabolic flux control [50]. 20 

According to different authors, the kinetic expressions are only projected to ACVS and 21 

IPNS, due to the greatest control of metabolic flux of these enzymes [12, 49, 51-54]. 22 

For ACVS, for the production of LLD-ACV, it was found that it follows the Michaelis-23 

Menten kinetics, resulting in the equation 13. 24 

 25 



16 

 

rLLD−ACV
ACVS =

νmax

1 + KL−α−AAA ∙ cL−α−AAA
−1 + Kcys ∙ ccys

−1 + Kval ∙ cval
−1 ×

1

1 + KLLD−ACV
−1 ∙ cLLD−ACV

 (13) 

 1 

Where r is the specific rate of the enzyme catalysed reaction, 𝜈𝑚𝑎𝑥 represents the 2 

maximum rate of the reaction, K are constant parameters related to the compounds (L-3 

α-AAA, cysteine, valine and LLD-ACV) and ci refers to the concentration of the ith 4 

compound (L-α-AAA, cysteine, valine and LLD-ACV). 5 

Regarding IPNS, for the production of IPN, is applied by equation 14 [12]. 6 

 7 

rLLD−ACV
IPNS =

νmax ∙ cLLD−ACV

cLLD−ACV + Km(1 + cglutKi
−1)

 (14) 

 8 

Where Km is the Michaelis-Menten constant [12]. 9 

For the elasticity coefficients, the expressions that allow their determination are given 10 

by equations 15 and 16 [53]. 11 

εLLD−ACV
ACVS = −

KLLD−ACV
−1 ∙ cLLD−ACV

1 + KLLD−ACV
−1 ∙ cLLD−ACV

 (15) 

 12 

εLLD−ACV
IPNS =

Km(1 + cglutKi
−1)

cLLD−ACV + Km(1 + cglutKi
−1)

 (16) 

 13 

There are several published studies in which genetic engineering is applied to increase 14 

the productivity of penicillin V [47, 49, 55, 56]. However, there are no published works, 15 

other than those mentioned previously [12, 49, 51-54], using MCA to analyse the 16 

metabolic pathway and assess possible changes to be implemented. 17 

 18 

3.3. L-LYSINE PRODUCTION 19 

Lysine is an essential amino acid that has applications in the pharmaceutical area, as 20 

well as in feed and food products [57, 58]. Many studies have been made with the 21 
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purpose of optimizing lysine production. In spite of this advances, it has not been found 1 

a modified microorganism providing better results than the traditional strains [59-62]. 2 

MCA is applied to improve lysine production and to quantify the modifications 3 

imposed. The metabolic pathway for lysine production for Corynebacterium species is 4 

represented in Figure 4. As can be seen, the synthesis has successive catalysed 5 

reactions. First, L-aspartate is activated by aspartokinase (ASK) and reduced by 6 

aspartate semialdehyde dehydrogenase (ASD). Dihydrodipicolinate synthase (DHPS) 7 

and dihydrodipicolinate reductase (DHPR) catalyse the subsequent steps in the pathway 8 

[59, 60]. At this point, L-tetrahydrodipicolinate (THDP) can be transformed into l-9 

lysine by two different ways: the dehydrogenase pathway (catalysed by 10 

diaminopimelate dehydrogenase (DAPDH)) or the succinylase pathway, that operate at 11 

the same time [62, 63]. L-lysine is then obtained from D, L-diaminopimelate 12 

decarboxylation by diaminopimelate decarboxylase (DAPDC) [59, 60]. 13 

The kinetic expressions are not projected to ASD and DHPR, due to the fact that they 14 

operate near equilibrium [64]. For ASK, the production of aspartate semialdehyde 15 

(ASA) is represented by the specific rate of the enzyme catalysed reaction, according to 16 

equation 17 [64, 65]. 17 

 18 

rASA
ASK =

νmax (cASPcATP −
cADPcBAP
Keq,ASK

)

KASPKATP + KATPcASP + KASPcATP + cASPcATP +
KASPKATPcADP

KADP
+
KASPKATPcBAP

KBAP
+
KASPKATPcADPcBAP

KADPKBAP

×
1

1 + LLys−Thr (1 +
cLys
KLys

)
8 

(17) 

 19 

Where LLys-Thr is the inhibition term by lysine and threonine and cBAP is defined in 20 

equation 18 [64, 65]. 21 

 22 
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cBAP =
cASAcNADP+cPi

Keq,ASDcNADPHcH+
 (18) 

 1 

For DHPS, for the production of L-dihydrodipicolinate (DHP), is represented in 2 

equation 19 [64, 65]. 3 

 4 

rDHP
DHPS =

νmax(cPyrcASA)

Km,ASAcPyr + Km,PyrcASA + cPyrcASA + cDHP (
Km,PyrKi,ASA

Ki,DHP
+ cASA

Km,Pyr

Ki,DHP
)

 (19) 

 5 

Where cDHP is defined in equation 20 [64, 65]. 6 

 7 

cDHP =
cTHDPcNADP+

Keq,DHPRcNADPHcH+
 (20) 

 8 

Concerning DADPH, for the production of D, L-diaminopimelate (DAP) the specific 9 

rate of the enzyme catalysed reaction is calculated through equation 21 [64, 65]. 10 

 11 

rDAP
DADPH =

νmax

(1 +
KNADPH
cNADPH

) (1 +
KNH4

+

cNH4
+
)(1 +

KTHDP
cTHDP

)

 
(21) 

 12 

For DAPDC, the production of l-lysine (Lys), was found to follow a Michaelis-Menten 13 

kinetics, resulting in equation 22 [64, 65]. 14 

 15 

rLys
DAPDC =

νmaxcDAP
Km,DAP + cDAP

 (22) 

 16 

The first step of the reaction is the rate limiting step, consequently the control is mainly 17 

exerted by ASK [64]. The kinetic parameters can be estimated by different software 18 

[64]: CONTROL [21] and MetaCon [22]. The first uses the matrix method to calculate 19 

control coefficients [21] and MetaCon allows the calculation of algebraic expressions 20 

for the control coefficients [22]. The application of MCA for the production of desirable 21 
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industrial products is a future proposition. To achieve higher concentrations of products, 1 

it is necessary to use simulation to evaluate the magnitude of the changes applied [16]. 2 

Moreover, the productivity of l-lysine can be enhanced through genetic engineering 3 

techniques, such as coordinated gene overexpression [61]. 4 

 5 

3.4. GLYCEROL PRODUCTION 6 

Glycerol is a by-product commonly formed by Saccharomyces cerevisiae during 7 

alcoholic fermentation [66]. It is used to synthetize products like lubricants and 8 

cosmetics [67] and it is also used as an antifreeze in chemical industry [68]. 9 

This promising product is synthetized by the reduction of dihydroxyacetone phosphate 10 

(DHAP) to glycerol-3-phosphate, by glycerol-3-phosphate dehydrogenase (GPD). 11 

Glycerol-3-phosphate is then dephosphorylated to glycerol by glycerol-3-phosphatase 12 

(GPP) (Figure 5) [66, 67]. S. cerevisiae produces this compound in response to osmotic 13 

stress or anaerobiosis. The quantity of glycerol naturally produced is small, therefore, 14 

research has been made to direct the sugar metabolism to glycerol production [67]. 15 

The increase in glycerol production was accomplished by the sulfite process and by the 16 

application of recombinant DNA technology. In the sulfite process, sulfite is added to 17 

the fermentation process and it stays connected with acetaldehyde. With this bond the 18 

acetaldehyde is not able to be an electron acceptor in the reoxidation of NADH. The 19 

NADH is then reoxidized but in glycerol production [67]. When using engineered 20 

strains it was found that glycerol is accumulated intracellularly. Using MCA, it was 21 

found that the glycerol efflux is the rate limiting step of this reaction [66]. Other 22 

recombinant techniques applied were the reduction of pyruvate decarboxylase 23 

expression and deletion of alcohol dehydrogenase genes [67]. 24 
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Cronwright et al. [69] determined a model with MCA and concluded that several 

parameters affect glycerol production, and that some parameters may have a certain 

effect when altered in the beginning of the fermentation process and the same parameter 

may not affect the fermentation in the end of the process. This shows that despite the 

fact that MCA is a powerful tool, not everything can be predicted [69]. 

CONCLUDING REMARKS AND FUTURE OUTLOOK 

ME applies multidisciplinary techniques, including computer and experimentation, 

allowing the study of cell dynamics and function. This knowledge enables the 

modification of microorganisms in order to improve the productivity of a particular 

metabolic product. In this work it was presented the application of MCA to study the 

metabolic pathways of microorganisms. This strategy allows to identify which are the 

enzymes that have higher control coefficients, in order to control the metabolic 

performance of the organisms. The enzymes and the pathways involved are the key to 

improve the common methods and applications. 

Complete success in ME will only be achieved if the changes in metabolism can 

accomplish industrial application. However, although the study of kinetics is a slow 

process, this technique is the one that helps the reliable design of the desired strain, with 

the highest metabolic performance and, thus the highest productivity. To improve the 

knowledge on enzyme kinetics, at a large scale, mathematical simulation is a required 

tool. 
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Figures and Tables 1 

 2 

Figure 1 – Schematic representation of Metabolic Engineering multidisciplinarity 3 

(adapted from [70]). 4 
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Figure 2 – Schematic representation of a strategy MCA. 2 
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Figure 3 – Metabolic pathway for penicillin V synthesis (adapted from [51]). 2 

 3 



30 

 

 1 

Figure 4 – Metabolic pathway for l-lysine production (adapted from [64, 65]). 2 
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Figure 5 – Metabolic pathway for glycerol production (adapted from [67]). 2 


