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Abstract 17 

Exposures to a wide spectrum of air pollutants were associated to several effects on 18 

children’s health. Exposure assessment can be used to establish where and how air 19 

pollutants’ exposures occur. However, a realistic estimation of children’s exposures to air 20 

pollution is usually a great ethics challenge, especially for young children, because they 21 

cannot intentionally be exposed to contaminants and according to Helsinki declaration, 22 

they are not old enough to make a decision on their participation. Additionally, using 23 

adult surrogates introduces bias, since time-space-activity patterns are different from 24 

those of children. From all the different available approaches for exposure assessment, 25 

the microenvironmental (ME) modelling (indirect approach, where personal exposures 26 

are estimated or predicted from microenvironment measurements combined with time-27 

activity data) seemed to be the best to assess children’s exposure to air pollution as it 28 

takes into account the varying levels of pollution to which an individual is exposed during 29 

the course of the day, it is faster and less expensive. Thus, this review aimed to explore 30 

the use of the ME modelling approach methodology to assess children’s exposure to air 31 

pollution. To meet this goal, a total of 152 articles, published since 2002, were identified 32 

and titles and abstracts were scanned for relevance. After exclusions, 26 articles were 33 

fully reviewed and main characteristics were detailed, namely: i) study design and 34 

outcomes, including location, study population, calendar time, pollutants analysed and 35 

purpose; and ii) data collection, including time-activity patterns (methods of collection, 36 

record time and key elements) and pollution measurements (microenvironments, methods 37 

of collection and duration and time resolution). The reviewed studies were from different 38 

parts of the world, confirming the worldwide application, and mostly cross-sectional. 39 

Longitudinal studies were also found enhancing the applicability of this approach. The 40 

application of this methodology on children is different from that on adults because of 41 

data collection, namely the methods used for collecting time-activity patterns must be 42 

different and the time-activity patterns are itself different, which leads to select different 43 

microenvironments to the data collection of pollutants’ concentrations. The most used 44 

methods to gather information on time-activity patterns were questionnaires and diaries, 45 

and the main microenvironments considered were home and school (indoors and 46 

outdoors). Although the ME modelling approach in studies to assess children’s exposure 47 

to air pollution is highly encouraged, a validation process is needed, due to the 48 

uncertainties associated with the application of this approach.  49 
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1. Introduction 60 

1.1. Relevance of the assessment of children’s exposure to air pollution 61 

Duan (1982) and Ott (1982) introduced in the early 80’s the concept of human exposure 62 

(or simply exposure), which was defined as “an event that occurs when a person comes 63 

in contact with the pollutant” (Ott, 1982). Thus, exposure to air pollution occurs whenever 64 

a human being breathes air in a location where there are at least trace amounts of airborne 65 

pollutants (Klepeis, 2006). Although the first official efforts to control air pollution have 66 

traditionally focused on outdoor air, it is now apparent that elevated contaminant 67 

concentrations are common inside both private and public buildings (Spengler and 68 

Sexton, 1983). Attention should continue to be paid to outdoor air quality and its influence 69 

on human health, especially in urban and/or industrialized areas of developed countries. 70 

However, people spend up to 90% of their time indoors, making indoor air quality more 71 

important than outdoors (Harrison, 1997). Whilst this does not per se mean that indoor 72 

exposures will produce more harmful effects, the evidence is that indoor concentrations 73 

of many pollutants are often higher than those typically encountered outside (Jones, 1999; 74 

Sousa et al., 2012a).  75 

Children are highly vulnerable to air environmental hazards, being considered a risk 76 

group (Nieuwenhuijsen et al., 2006; Peled, 2011; Sousa et al., 2009, Sousa et al., 2012b, 77 

Sousa et al., 2013) for several reasons including their relative higher amount of air 78 

inhalation (the air intake per weight unit in a resting infant is twice than in an adult) and 79 

their not fully developed immune system and lungs. As above referred, evidence has been 80 

made that children, as well as adults, spend most of their time in indoor environments and 81 

are therefore more exposed to indoor air pollution. As a consequence, exposures to a wide 82 

spectrum of air pollutants were associated to several effects on children’s health, like the 83 

increasing of the occurrence of asthma, other allergies and respiratory diseases (Hulin et 84 

al., 2010; McGwin et al., 2010; Mendell, 2007; Rumchev et al., 2002; Salvi, 2007; 85 

Schwartz, 2004; Sousa et al., 2012a). Evidences of other health outcomes have been 86 

found: i) Brook et al. (2004) and the World Health Organization (WHO, 2006) reported 87 

cardiovascular diseases associated with exposure to air pollutants; and ii) a review from 88 

Beamish et al. (2011) suggested that there is a link between air pollution and intestinal 89 

disease.  90 
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In their daily routine, children move from one location to another and are exposed to a 91 

large number of air contaminants for different time durations, raising serious questions 92 

about whether such exposures are likely to cause adverse health effects, and what are 93 

pollutants’ sources. Thus, a complex multifactorial approach for exposure assessment 94 

seems appropriate aiming to: i) associate exposure with health effects; ii) link health 95 

effects with pollution sources; and iii) determine the exposure value of an individual or 96 

group of individuals relative to the population exposure distribution (Moschandreas and 97 

Saksena, 2002). In this field, epidemiologic studies provide the opportunity to assess the 98 

effects of exposure to air pollution on children’s health, i.e., the exposure-response 99 

relationship. Multiple outcomes from this type of studies are of interest (Gilliland et al., 100 

2005), including the prevalence of asthma and respiratory diseases, as well as the 101 

associated morbidity and mortality. In several countries, as the example of China (Ye et 102 

al., 2007), despite the increasing concern about environmental health, most risk-103 

assessment activities are conducted focusing on adults, making environmental health 104 

policies inefficient in protecting children’s health. Children exposure should be 105 

developed to characterize real-life situations, whereby i) potentially exposed populations 106 

are identified; ii) potential pathways of exposure are identified; and iii) the magnitude, 107 

frequency, duration and time-pattern of contact with a pollutant are quantified (Hubal et 108 

al., 2000). Assessing children’s exposure to air pollution cannot be merely reduced to the 109 

measurements of air pollutants concentrations in one or more environments. In fact, 110 

exposure studies can be used to establish where air pollutants exposures occur and the 111 

source of those air pollutants (Weisel, 2002).  112 

Hubal et al. (2000) reviewed the factors that strongly influence children’s exposure, and 113 

concluded that: i) the physiologic characteristics and behavioural patterns of children 114 

result not only in exposure differences between children and adults, but also in differences 115 

in exposures among children of different developmental stages; ii) significant challenges 116 

are associated with developing and verifying exposure factors for young children, so it is 117 

necessary to develop and improve the methods for monitoring children’s exposures and 118 

activities; iii) the data usually available for conducting children’s exposure assessments 119 

are highly variable, depending on the route of exposure considered, so it requires the 120 

collection of physical activity data for children (especially young children) to assess 121 

exposure by all routes. Socioeconomic status also greatly influence children’s exposure 122 

to air pollution (Chaix et al., 2006).  123 
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 124 

1.2. Methods to assess children’s exposure to air pollution - main advantages and 125 

limitations 126 

The study of exposure assessment has evolved significantly over the past 30 years (Lioy, 127 

2010) through the appearance of a myriad of methods for assessing personal exposure 128 

levels to air pollution. Two different approaches, direct and indirect, described below, 129 

have been taken to assess personal exposure to air pollution (Ott, 1982).  130 

There are two available direct methods: i) personal monitoring, which monitors pollution 131 

concentrations using portable equipment worn by the subjects, which can work actively 132 

(pumped) or passively (diffusive); and ii) biomonitoring, which is the use of biomarkers 133 

to assess exposure to air pollution, although its usability on exposure studies to air 134 

pollution is very specific. Simplicity of design and freedom from modelling assumptions 135 

are the advantages of the direct approach (Duan et al., 1991; Wallace and Ott, 1982). 136 

Despite direct measurements clearly reflect individual personal exposure levels best, 137 

measurements of personal exposures are expensive, time consuming and difficult to apply 138 

(Monn, 2001), especially to young children (Jones et al., 2007). It is important to note 139 

that a personal measurement does not a priori provide more valid data than a stationary 140 

measurement, i.e. a personal sample in a study investigating effects from a specific place 141 

or source is often influenced by other sources than those on focus of the investigation, 142 

and may thus confound the exposure-effect outcome. Nevertheless, in 1984 EPA 143 

performed two large studies of carbon monoxide (CO) exposure in Washington, DC and 144 

Denver Colorado, where 1987 persons were followed for 24 hours in DC and 1139 145 

persons were followed for two days in Denver. The specific personal monitor used 146 

provided exact times in each microenvironment without having to write them down in a 147 

questionnaire. This was the first and the most complete study to ever include actual ME 148 

measurements, and included many more MEs than in subsequent studies, although being 149 

a personal monitoring study (Akland, 1985). While biomarkers offer clear advantages, 150 

some important criteria must be met when using them for this purpose (Hubal et al., 151 

2000): i) biomarkers that can accurately quantify the concentration of an environmental 152 

contaminant and/or its metabolite(s) in easily accessible biological media (blood, urine, 153 

and breath) must be available; ii) biomarkers must be specific to the contaminant of 154 

interest; iii) the pharmacokinetics of absorption, metabolism, and excretion must be 155 
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known; and iv) the time between exposure and biomarkers sample collection must be 156 

known. Although there are a number of biomarkers that meet these criteria, few studies 157 

using biomarkers have collected all of the information required to accurately estimate 158 

exposure. In studies with large sample sizes, long duration and diverse outcomes and 159 

exposures, exposure assessment efforts should rely on modelling to provide estimates for 160 

the entire cohort, supported by subject-derived questionnaire data, although assessment 161 

of some exposures of interest requires individual measurements of exposures using 162 

snapshots of personal and microenvironmental exposures over short periods and/or in 163 

selected microenvironments (Gilliland et al., 2005). In addition, significant challenges are 164 

associated with collecting biomarkers’ data from children (Weaver et al., 1998). Although 165 

findings from Sexton et al. (2000) indicated that, with proper care, it could be practicable 166 

to obtain personal volatile organic compounds (VOC) measurements from elementary 167 

school children wearing personal VOC badges samplers, direct methods are unusual on 168 

children studies due to their difficult applicability on their time-space-activity 169 

specifications. For example, personal monitors for suspended particles (PM) may be 170 

particularly impractical for infants or young children due to the requirement of attached 171 

pumps (Jones et al., 2007). 172 

Exposure modelling is the indirect method that assesses (estimates or predicts) personal 173 

exposures derived from ambient measurements (i.e., measurements made in locations 174 

frequented by the study participants) combined with time-activity data, which results in 175 

exposure models (MacIntosh and Spengler, 2000; Monn, 2001; Ott, 1982). Some authors 176 

reviewed the existing exposure models and tried to classify them, by dividing them into 177 

different categories, like Klepeis (2006) and Zou et al. (2009), but the most common 178 

classification is into three major groups, as recently reviewed by Milner et al. (2011): i) 179 

Statistical Regression models (not unanimously considered as models), in which linear 180 

and nonlinear regression techniques are used to relate personal exposure to its 181 

determinants based on measurement data (Kollander, 1991); ii) Computational Fluid 182 

Dynamics (CFD), used to model the spatial and temporal variations in pollutants’ 183 

concentrations at an extremely fine scale, working on the basic fluid dynamics principles; 184 

and iii) Microenvironmental (ME) modelling, an approach in which weighted average 185 

exposure is calculated using time spent and time-averaged concentrations at various 186 

places where the population under observation is likely to circulate (Duan, 1981; 1975). 187 

There are also examples where different models can be complementary (Mölter et al., 188 
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2010a; Mölter et al., 2010b), increasing the amount of available data for assessing 189 

personal exposure to air pollution, or using both indirect and direct approach to compare 190 

the exposure values estimated by the indirect approach with the real personal sampling 191 

measured values, which can also be done to validate the model.. It is feasible to believe 192 

that the indirect methods of exposure assessment can yield estimates closely matching 193 

those of the direct method (Malhotra et al., 2000). However, CFD is not considered 194 

appropriate for generic population exposure modelling, because it is primarily a research 195 

tool used for ventilation, air flow and contaminants’ modelling, rather than individual or 196 

population exposure modelling. In the same way, and despite being frequently used in 197 

epidemiologic studies, regression models have major issues that could be constraints to 198 

their applicability, like their transferability to other locations and to other periods of time, 199 

when compared to a mechanistic approach like ME modelling (Ashmore and 200 

Dimitroulopoulou, 2009). In this field, ME modelling can be used to determine exposures 201 

to both individuals and large populations, because it is not often financially practical to 202 

make a sufficient number of exposure measurements to completely characterize the 203 

spatial and temporal range of exposures in large populations, and to predict what changes 204 

in emissions or activities are most effective to obtain reduced exposure (Weisel, 2002). 205 

Furthermore, it has several advantages, mainly the possibility to be rapidly and 206 

inexpensively used to calculate estimates of exposure over a wide range of exposure 207 

scenarios (Klepeis, 1999), and it is also the most appropriate way to examine the potential 208 

outcomes of future environmental and/or building interventions and policies, 209 

safeguarding the importance to consider indoor exposure modelling (Milner et al., 2011). 210 

However, and according to Klepeis (1999), a main disadvantage of this approach 211 

compared to the direct approach is the currently research need for its systematic 212 

validation, i.e., the results of a fully developed indirect exposure assessment must be 213 

compared to an independent set of directly measured exposure levels. The main 214 

advantages and limitations of the methods and approaches available to assess children’s 215 

exposure to air pollution, as well as several examples of studies using them, are 216 

summarized in Table 1.  217 

 218 

1.3. Scope and objectives of this review 219 
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Exposure studies on children are usually a great ethics challenge especially for young 220 

children, because they cannot intentionally be exposed to contaminants and according to 221 

Helsinki declaration, they are not old enough to make a decision on their participation. 222 

Using adult surrogates for these studies introduce bias, because adults do not behave like 223 

young children, therefore they cannot mimic their contact activities (Hubal et al., 2000). 224 

This is why it is a challenge to develop a realistic estimation of children’s exposures to 225 

air pollution.  226 

Despite the several available methods within different approaches to assess human 227 

exposure to air pollution, the ME exposure modelling method seemed to have several 228 

advantages and a great application potential to the assessment of children’s exposure to 229 

air pollution. With the time children spend in each location (microenvironment) and time-230 

averaged pollutant concentrations, it is possible to estimate and quantify the exposure 231 

distribution of study subjects. Additionally, it is viable to examine the likely influence of 232 

each location and other exposure factors (Klepeis, 2006). Since children’s time-space-233 

activity patterns are different from those of adults, the performance of this modelling 234 

approach in estimating personal exposures may differ between these two different types 235 

of population (Wu et al., 2005a). Thus, this review aimed to explore the ME modelling 236 

approach methodology to assess children’s exposure to air pollution. To meet this goal, 237 

this work reviewed studies from the last decade on the assessment of children’s exposure 238 

to air pollution using this approach, focusing on the methodology, challenges and 239 

limitations, to provide a summary of the available scientific findings concerning study 240 

design and data collection (time-activity patterns information, microenvironments’ 241 

selection and pollution measurements), and to some extent look at the outcomes and ME 242 

model type. 243 

 244 

2. Methodology of this review 245 

The present review refers to articles published from 2002 to date in the following on-line 246 

databases: Science Direct, Scopus, PubMed and Google Scholar. Although no restrictive 247 

criterion was established to limit the language in which the articles were published, all 248 

the citations refer to documents published in English. The search considered only fully 249 

published and in press articles. 250 
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This review was elaborated to report original research and review studies on the 251 

assessment of exposure in several microenvironments, with children as the main 252 

population study and/or as one of the study sub-groups, and focusing on those using ME 253 

modelling approach to assess children’s exposure to air pollution. Thus, the main 254 

keywords used for the search were: “children’s exposure”, “air pollution”, “assessment”, 255 

“microenvironment”, and “modelling”. A total of 152 articles were identified and titles 256 

and abstracts were scanned for relevance. Detailed exposure measurement or estimation 257 

methodologies and models on different approaches are beyond the scope of this review, 258 

and can be found reviewed in other papers (Baxter et al., 2013; Klepeis, 2006; Milner et 259 

al., 2011; Moschandreas et al., 2002; Steinle et al., 2013). The type of article, i.e. being 260 

an original, review, letter or other type, was not used as inclusion or exclusion criteria 261 

due to the limited number of articles that addressed this topic. 262 

Exclusions were performed, namely regarding those studies that: i) did not consider 263 

children as the population study or as one of the population sub-groups; ii) studies that 264 

did not used ME modelling approach to assess exposure to air pollution; iii) only 265 

considered a unique microenvironment; and iv) merely focused on the conceptual 266 

framework or only on one of the ME modelling aspects.  267 

Studies that relied on both indirect and direct methods for their exposure assessments 268 

were also included. After exclusions, the search performed retrieved 26 articles 269 

containing studies on the assessment of children’s exposure to air pollution using a ME 270 

modelling approach.  271 

 272 

3. Results 273 

3.1. Conceptual framework 274 

In daily life, people move around and thus are exposed to various levels of pollutants in 275 

various locations. The earlier researchers Fugas (1975), Duan (1981, 1982), and Ott 276 

(1982) introduced the concept of calculating exposure as the sum of the product of time 277 

spent by a person in different microenvironments and the time-averaged air pollution 278 

concentrations occurring in those microenvironments. Equation (1) represents the 279 

standard mathematical formula for integrated exposure. 280 
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𝐸𝑖 =  ∑ 𝐶𝑖𝑗𝑡𝑖𝑗
𝑚
𝑗=1   (1) 

𝐸𝑖  is the exposure of the ith individual, 𝐶𝑖𝑗 is the concentration of the pollutant measured 281 

in the jth microenvironment of the ith individual, 𝑡𝑖𝑗 is the time spent by the ith individual 282 

in the jth microenvironment, and m is the number of different microenvironments, such 283 

that the Equation 2 is satisfied: 284 

∑ 𝑡𝑖𝑗 = 24ℎ𝑚
𝑗=1   (2) 

In a review, Milner et al. (2011) distinguished the following types of ME models: i) 285 

measurement-based ME models, based on observational (measured) data, usually long-286 

term averages, whether from air quality monitoring stations or local outdoor or indoor 287 

measurements; ii) mass-balance ME models, which model the movement of air pollution 288 

throughout a system of one or two ME compartments and from outdoors based on 289 

principles of mass conservation; iii) multizone ME models, based on the same principles 290 

as mass-balance ME models, although in this case a larger number of microenvironments 291 

are modelled, with exceptionally detailed input data requirements; and iv) sub-zonal ME 292 

models, similar to multizone but additional sub-zones are considered to capture within-293 

room gradients, being useful for buildings/rooms which may have high gradients of 294 

concentration. 295 

By using a ME exposure model, the researcher in each case can quantify the exposure 296 

distribution of study subjects and examine the likely influence of each location and other 297 

exposure factors (Klepeis, 2006). When the required input data are available or can be 298 

reliably estimated, the target population exposure distributions can be predicted 299 

accurately enough for the most practical purposes using a ME modelling approach 300 

(Hänninen et al., 2003).  301 

Time-activity patterns are an important determinant of personal exposure to air pollution 302 

and crucial in ME modelling exposure, not only because of the time spent on those 303 

microenvironments but also because: i) personal exposure to environmental toxics is 304 

largely dependent on the movement across locations or microenvironments; and ii) of the 305 

different contributions of microenvironments on specific population groups (Dons et al., 306 

2011). Therefore, time spent in different microenvironments makes a significant 307 

contribution to the total exposure. Regarding children, differences in their behaviour, 308 

particularly the way in which children interact with their environment, may have a 309 
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profound effect on the magnitude of exposures to contaminants. In fact, the manner in 310 

which children, and in special infants and toddlers, move is significantly different from 311 

the manner in which adults move and can significantly impact their exposure to 312 

contaminants in the air (Hubal et al., 2000). Plus, socio-demographic and environmental 313 

factors define time-activity patterns and also define quantifiable differences in personal 314 

exposures to different sources and individual compounds (Edwards et al., 2006). These 315 

and other determinants of time-microenvironmental-activity patterns need to be taken into 316 

account in exposure assessment, epidemiological analyses, and exposure simulations, as 317 

well as in the development of preventive strategies that focus on time-microenvironment-318 

activity patterns that ultimately determine exposures (Schweizer et al., 2007).  319 

The main characteristics of the ME modelling approach to assess children’s exposure to 320 

air pollution in the 26 reviewed studies are listed in: i) Table 2, regarding study design 321 

and outcomes, namely location, study population, calendar time, pollutants analysed, 322 

purpose and type of study; and ii) Table 3, regarding data collection, namely time-activity 323 

patterns (including methods of collection, record time and key elements included), and 324 

pollution measurements (including microenvironments, methods of collection and 325 

duration and time resolution).  326 

 327 

3.2. Study design and outcomes 328 

Any exposure research should start by planning the design: purpose and objective, study 329 

population, pollutants analysed, temporal and spatial resolution, type of study as well as 330 

outcomes. It is possible to observe from Table 2 that eleven of the reviewed studies were 331 

performed in the USA, but there were also studies performed in Europe, Australia, Latin 332 

America, India and Asia.  333 

The majority of the selected studies had the assessment of children’s exposure to air 334 

pollution as main purpose, and in some cases relating it with adverse health effects. Some 335 

of those studies also aimed to compare children’s exposure between different areas of the 336 

same city or region like urban vs. suburban; influence from streets with different degrees 337 

of traffic intensity, or between cities from different countries (Ballesta et al., 2006; 338 

Shimada and Matsuoka, 2011; Mestl et al., 2006; Van Roosbroeck et al., 2007; Van 339 

Roosbroeck et al., 2006).  340 
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In the majority of the reviewed studies the calendar time was described, although in some 341 

it was not reported (Harrison et al., 2002; Rojas-Bracho et al., 2002; Shimada and 342 

Matsuoka, 2011; Mestl et al., 2006; Van Roosbroeck et al., 2007; Wu et al., 2005b; Zhang 343 

and Batterman, 2009). The reviewed studies were published since 2002 and in some cases 344 

there was a gap between the period when the study took part and its publication date, as 345 

for example in Crist et al. (2008) where this gap was more than 8 years. 346 

The overwhelming majority of the reviewed studies were cross-sectional, and only 3 were 347 

longitudinal: i) a cohort study where children’s exposure was estimated and health 348 

outcomes were evaluated every year from age one until the age three (Ryan et al., 2008); 349 

ii) a panel study involving repeated measurements of outcomes and exposures in 350 

individuals (Wu et al., 2005a); and iii) a panel study conducted in several different 351 

monitoring sessions in each one of the two consecutive years (Liu et al., 2003).  352 

The reviewed studies considered children from birth (Hänninen et al., 2009; Ryan et al., 353 

2008; Shimada and Matsuoka, 2011; Mestl et al., 2006; Wang et al., 2008), to 354 

schoolchildren with ages comprised between 5 and 14 years old (Briggs et al., 2003; 355 

Mölter et al., 2012; Zhao et al., 2007), although, in some of them children were a subgroup 356 

of the entire study population (Ballesta et al., 2006; Briggs et al., 2003; Chau et al., 2002; 357 

Harrison et al., 2002; Liu et al., 2003; Shimada and Matsuoka, 2011; Mestl et al., 2006; 358 

Wheeler et al., 2011; Zhang and Batterman, 2009). In the latter studies, a stratified 359 

sampling was used, despite the study population selection was normally done by a 360 

probability sample – children were normally selected on a school-based strategy, thus 361 

recruited from schools. Nevertheless, Wu et al. (2005b), Adgate et al. (2004b) and 362 

Saksena et al. (2003) recruited children based on a probability sample of households, and 363 

Wheeler et al. (2011) recruited study participants from a previous study. In the particular 364 

cases of Liu et al. (2003) and Yip et al. (2004), only children aged 7-11 with known or 365 

probable asthma were selected from the general population, thus not using a probability 366 

sampling. 367 

Exposures to a wide spectrum of environmental pollutants were considered for 368 

investigation in the studies selected, including air pollutants of indoor and outdoor origin, 369 

gaseous compounds and/or particles. Nevertheless, in all studies reviewed and presented 370 

in Table 2, the pollutants analysed were mainly combustion-related, with the exceptions 371 

of ozone in Lee et al. (2004), and radon in Briggs et al. (2003). Additionally, no examples 372 
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were found of the application of ME modelling approach to study children’s exposure to 373 

biological compounds, like aeropathogens, moulds and allergens.  374 

Regarding the outcomes which are deeply related with the purpose and objectives of the 375 

study, the reviewed studies were mostly in the field of the characterization of children’s 376 

personal exposures and their relation with outdoor and indoor concentrations (Table 2). 377 

A common conclusion in the reviewed studies was the significant importance of air 378 

quality in indoor microenvironments to children’s exposure to air pollution. 379 

 380 

3.3. Data collection 381 

3.3.1.Time-activity patterns information 382 

The reviewed studies mainly used a time-activity diary as method for collecting time-383 

activity patterns (Table 3). A questionnaire or information from previous studies or 384 

existing databases were also used in some cases (Shimada and Matsuoka, 2011; Mestl et 385 

al., 2006; Zhang and Batterman, 2009) to collect time-activity patterns information. Crist 386 

et al. (2008) and Zhao et al. (2007) did not report the methods of collection used. Chau et 387 

al. (2002) and Lee et al. (2004) used diaries and questionnaires done by telephone surveys 388 

to the parents. To support survey’s information in a study from Italy (Hänninen et al., 389 

2009), time-activity patterns information was also derived from school administration and 390 

using typical daily timetables of schoolchildren. In the study of Wu et al. (2005a) 391 

participants used an electronic time-activity diary. 392 

Time-activity patterns information were usually recorded in a daily basis (24-h 393 

recordings), although Ryan et al. (2008) reported one complete year (12 months) and 394 

Chau et al. (2002) and Wang et al. (2008) a 7-day period. On the other hand, a shorter 395 

period was also found in Lee et al. (2004), with a specific period of the day (from 8:00 396 

a.m. to 9:00 p.m.). The most common time-interval found was 15-min, but different time-397 

intervals were also found. Wheeler et al. (2011) and Briggs et al. (2003) used 30-min 398 

intervals to record time-activity patterns information for children.  399 

Additional information on microenvironments’ characteristics (Lazenby et al., 2012; 400 

Mölter et al., 2012), possible indoor sources (Liu et al., 2003; Van Roosbroeck et al., 401 

2007; Van Roosbroeck et al., 2006), data on exposure to tobacco smoke and other 402 
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potential modifiers (Adgate et al., 2004a; Adgate et al., 2004b; Rojas-Bracho et al., 2002; 403 

Wheeler et al., 2011), basic socio-demographic and/or socioeconomic data (Chau et al., 404 

2002; Zhang and Batterman, 2009), and health information (Ryan et al., 2008) were also 405 

often collected.  406 

 407 

3.3.2. Pollution measurements 408 

All the reviewed studies chose the specific microenvironments for pollution 409 

measurements according to the time-activity information collected (Table 3). They 410 

considered mostly both outdoor and indoor (home and school) microenvironments, 411 

although some studies also considered in traffic (Adgate et al., 2004b; Hänninen et al., 412 

2009; Mölter et al., 2012; Rojas-Bracho et al., 2002; Wang et al., 2008; Wheeler et al., 413 

2011; Wu et al., 2005a; Wu et al., 2005b; Zhang and Batterman, 2009). Crist et al. (2008), 414 

Zhao et al. (2007), Van Roosbroeck et al. (2007) and Lee et al. (2004) had only school 415 

indoor and outdoor as the unique studied microenvironments, and Briggs et al. (2003) did 416 

the same but for home. Mölter et al. (2012), Shimada and Matsuoka (2011), and Wang et 417 

al. (2008) went further in the analysis and divided home indoors into different 418 

microenvironments, like kitchen, living room and children’s bedroom. Also Crist et al. 419 

(2008) and Adgate et al. (2004a) have considered different microenvironments in school 420 

indoors (different classrooms). Chau et al. (2002) and Harrison et al. (2002) sub-divided 421 

the main microenvironments according to time-activity patterns information collected. 422 

Ryan et al. (2008) considered home and non-home (including daycare, babysitter, 423 

relative’s home and other locations). Chau et al. (2002) considered a higher number of 424 

microenvironments (20), but grouped them into indoor at home, indoor away from home, 425 

enclosed traffic and outdoor. Some regular activities were also considered as 426 

microenvironments in some cases, as the example of cooking and sleeping sessions 427 

(Saksena et al., 2003) and leisure activities (Harrison et al., 2002).  428 

Data availability and its quality for model input are critically important, so distinct 429 

methods of collection were found in the 26 reviewed studies (Table 3), mainly depending 430 

on the microenvironments analysed. Outdoor concentrations were often obtained through 431 

continuous measurements from the nearest urban monitoring air quality station (Hänninen 432 

et al., 2009; Mölter et al., 2012; Wang et al., 2008; Wu et al., 2005a), or with the support 433 

of dispersion models (Ryan et al., 2008; Mestl et al., 2006; Wu et al., 2005b). In some 434 
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studies, indoor concentrations were obtained from continuous measurements in the indoor 435 

microenvironments (Adgate et al., 2004a; Briggs et al., 2003; Harrison et al., 2002; 436 

Wheeler et al., 2011). In other cases, personal individual monitoring was performed in 437 

indoor microenvironments instead of indoor ME measurements (Van Roosbroeck et al., 438 

2007; Van Roosbroeck et al., 2006). Indoor concentrations were also estimated i) through 439 

the use of modelling, mainly mass-balance or infiltration models (Hänninen et al., 2009; 440 

Wu et al., 2005b); or ii) from the fuel consumption and room characteristics (Shimada 441 

and Matsuoka, 2011); or iii) estimated based on data from databases or previous studies 442 

in the literature (Chau et al., 2002; Mestl et al., 2006; Zhang and Batterman, 2009). 443 

Passive or diffusive sampling was also found as a method to collect pollution 444 

measurements in the reviewed studies, mainly to obtain indoor ME concentrations 445 

(Adgate et al., 2004b; Ballesta et al., 2006; Lazenby et al., 2012; Rojas-Bracho et al., 446 

2002). Lazenby et al. (2012), Mölter et al. (2012), Van Roosbroeck et al. (2006) and Wu 447 

et al. (2005b) also collected general meteorological data. A different method to measure 448 

the pollutants concentrations was performed by Lee et al. (2004), in which each 449 

participating child and family had a set of personal (wearable) / indoor / outdoor passive 450 

O3 samplers. Other cases exist in which a personal individual sampler was also used, 451 

particularly to compare with the ME concentrations measured indoor and/or outdoor 452 

(Crist et al., 2008; Liu et al., 2003; Mölter et al., 2012; Yip et al., 2004). In fact, Mölter 453 

et al. (2012) proposed a simple validation process in their ME model, by comparing the 454 

modelled with the measured personal exposure results, which allowed to understand if, 455 

by using a ME exposure modelling approach, the modelled values estimated the 456 

children’s personal exposure to air pollution with efficiency. Besides pollutants’ 457 

concentrations, the ME model proposed by Adgate et al. (2004a) also included singular 458 

characteristics of the microenvironments as covariates, like for example the “design” 459 

(season, English or non-English-speaking home, race/ethnicity, and level of education), 460 

source variables (e.g., presence of a smoker in household), and ventilation.  461 

The duration and time resolution of pollution measurements were found to be variable 462 

within the reviewed studies (Table 3). In fact, it varied from periods of 24 and/or 48 hours 463 

of measurements (Crist et al., 2008; Lazenby et al., 2012; Rojas-Bracho et al., 2002; 464 

Saksena et al., 2003; Van Roosbroeck et al., 2007; Wang et al., 2008; Zhao et al., 2007) 465 

to periods of several weeks (Briggs et al., 2003; Lee et al., 2004; Wheeler et al., 2011) or 466 

even an entire school year of measurements (Hänninen et al., 2009). In some cases, 467 
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different measurement periods or campaigns were considered (Ballesta et al., 2006; Liu 468 

et al., 2003; Van Roosbroeck et al., 2006), and in some of them measurement campaigns 469 

were made in different seasons to study seasonal variability (Adgate et al., 2004a; Mölter 470 

et al., 2012; Wheeler et al., 2011; Yip et al., 2004). 471 

 472 

4. Discussion 473 

There is no universal methodology to use a ME modelling approach to assess children’s 474 

exposure to air pollution. In addition, there is evidence that usually a methodology 475 

developed for a certain exposure study is very specific for that particular purpose, 476 

objectives, and mainly for that study group or population, and for that spatial and temporal 477 

context. This makes the studies’ methodology harder to extrapolate to other contexts, and 478 

consequently makes the studies’ comparison tricky. Unfortunately, most of the studies in 479 

the literature are focused on adult subjects. Since children’s time-space-activity patterns 480 

are different from those of adults, the performance of this modelling approach in 481 

estimating personal exposures may differ between these two different types of population 482 

(Wu et al., 2005a). Nevertheless, 26 studies were reviewed using a ME modelling 483 

approach to assess children’s exposure to air pollution, from different countries, which 484 

enhances the possibility of a worldwide application of this approach.  485 

In the majority of the studies reviewed, children were selected through a probability 486 

sample, and in some cases a stratified sampling was also used. This does not imply any 487 

escape from probability selection but a better precision, because it ensures that subgroups 488 

of the population will be included in the sample to maximize the accuracy of the study 489 

(Kollander, 1991). One potentially successful design strategy is to maximize the number 490 

of contrasting pollution profiles among study subjects by using a quasi-factorial approach 491 

to select populations distributed over geographic regions with different pollution profiles 492 

(Gauderman et al., 2000). However, steps such as identifying, contacting, recruiting, and 493 

monitoring a children population are difficult, especially in economically disadvantaged 494 

areas. A school-based strategy (Sexton et al., 2000) is relevant to select the study 495 

population to assess air exposures of schoolchildren and related health effects, but it is 496 

also important to improve the understanding of other factors (e.g. cultural, economic, 497 

psychological, social) affecting the willingness of families/children to participate in such 498 

studies. 499 
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Although the majority of the reviewed studies were cross-sectional, thus involving 500 

measurements at one specific point in time, ME modelling approach to assess children’s 501 

exposure to air pollution was also reported in longitudinal (panel and cohort) studies. As 502 

far as known, the ME modelling approach was not used to study children’s exposure to 503 

other compounds than combustion-related, ozone and radon, like for example biological 504 

compounds (aeropathogens, moulds and allergens) which have been proven to have 505 

negative effects on children’s health, namely associated with respiratory symptoms, 506 

allergies, asthma and immunological reactions (Spengler and Sexton, 1983; WHO, 2009). 507 

However, nothing seemed to indicate the impossibility of its applicability to study 508 

exposures to that kind of pollutants. Although outcomes from the studies reviewed were 509 

mainly focusing on the characterization of children’s personal exposures, other outcomes, 510 

like health ones were also reported. 511 

There are several methods to obtain reliable data on time-activity patterns to use in a study 512 

on children’s exposure assessment through a ME modelling approach, such as the recent 513 

geopositioning (GPS), accelerometer and photodiary methods. However, the main three 514 

methods found in the reviewed studies were time-activity diaries, questionnaires and 515 

surveys. In fact, the standard research tool is still the structured, self-reported and 516 

longitudinal diary (Decastro et al., 2007). Obtaining these diary data usually represents 517 

considerable effort in an exposure assessment study, due to the development of the diary 518 

structure, checks on subjects’ reporting compliance and clarification of subjects’ diary 519 

entries. Nowadays, new versions are being developed and used also on children’s 520 

exposure studies like electronic time-activity diaries (Wu et al., 2005a). Another example 521 

is a broad time-activity patterns database, such as that of the National Human Activity 522 

Pattern Survey (NHAPS) in the United States, which is a 2-year probability-based 523 

telephone survey of exposure-related human activities, that has a primary purpose to 524 

provide comprehensive and current exposure information over broad geographical and 525 

temporal scales, particularly to use in probabilistic population exposure models (Klepeis 526 

et al., 2001). Questionnaires are also important tools as they are low cost and can be used 527 

to identify and quantify contacts with potential sources which is especially important to 528 

identify indoor sources that do not reflect the same mixtures than outdoor sources (Monn, 529 

2001). Questionnaires can also provide other important information, like children’s health 530 

symptoms, household characteristics and presence of environmental tobacco smoke. It is 531 

easily understandable that in the case of infants, toddlers and children, questionnaires 532 
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should be filled by parents/guardians or with their support. Although seldom used on 533 

children studies, diaries and questionnaires can also be done as telephone surveys to the 534 

parents, as in the cases of Chau et al. (2002) and Lee et al. (2004), because in those cases 535 

they were found less expensive than paper ones. Freeman and Saenz de Tejada (2002) 536 

also reported direct observation and videography as useful methods to obtain time-537 

activity information about small children. Daily basis time-activity patterns recordings 538 

were usual, but longer and shorter periods were also found, although rare. The longer the 539 

periods considered, the more reliable the information is. Although several time-intervals 540 

were used, 15-min intervals were the most common to record time-activity patterns 541 

information. However, to obtain children’s time-activity patterns data longer periods (30-542 

min) were also used, due to their lower mobility along the day when comparing to adults.  543 

Time-activity patterns information allows identifying the optimum number of 544 

microenvironments that should be monitored. This is a crucial step to assess children’s 545 

exposure to air pollution using a ME modelling approach. The most common 546 

microenvironments considered are merely reduced to outdoor and indoor (home and 547 

school). Children spend most of their time indoors and consequently, according to 548 

Ashmore and Dimitroulopoulou (2009), their personal exposure is dominated by air 549 

pollution in three microenvironments: home, school and transport. However, other 550 

authors considered multiple microenvironments in each one of these. In fact, home 551 

microenvironment is one of the major important contributors to children’s personal 552 

exposure to air pollution. Sometimes it is possible to distinguish different patterns in the 553 

house characteristics in specific areas (e.g., inner-city, suburban), and relate it to 554 

predisposition to cause a particular health effect (Simons et al., 2007). A study in 555 

Bangladesh, from the World Bank (Dasgupta et al., 2006), suggested that young 556 

children’s exposures vary considerably with households’ conditions, which depends on 557 

the incoming and education of the families. For instance, indoor O3 concentrations were 558 

associated with influences from the outdoor air and several housing characteristics (i.e., 559 

central air conditioning, fan use, and window opening) (Lee et al., 2004). Due to 560 

differences in exposures inside homes, particular microenvironments were usually 561 

considered to refine the study, as the example of kitchen, bedrooms, living rooms, garage, 562 

and home outdoor. Zipprich et al. (2002) found that close to 70% of the variation in adults 563 

and children’s personal exposure to NO2 and NOx was due to exposure in the bedroom 564 

and other indoor locations, especially the kitchen. Also bedroom concentrations were 565 



21 
 

found to explain 90% of the variation of the personal exposure to formaldehyde 566 

(Gustafson et al., 2005). Although not necessarily considered as microenvironments, 567 

there are some aspects related to home that significantly influence children’s exposure to 568 

air pollution in this microenvironment, and should be taken into account, otherwise results 569 

could be deceivers. Tobacco smoking, gas-stove usage, outdoor temperature and wind 570 

speed, as well as the presence of wooden material, heating, and location in a suburb area, 571 

are determinants of indoor air quality in homes, and consequently influence exposures 572 

(Lai et al., 2006). Exposure in nurseries and schools, including children day care centres, 573 

has been somehow ignored, despite the fact that is a major contributor for children 574 

exposure to indoor air pollutants (Ashmore and Dimitroulopoulou, 2009), because 575 

children usually spend large amounts of time in there. A study from the United States 576 

Environmental Protection Agency (Ligman et al., 1999) concluded that particulate matter 577 

concentrations were higher in schools than in office buildings, as it was also higher 578 

indoors than outdoors (Stranger et al., 2008), although outdoor influence cannot be 579 

neglected. Inside the school, sometimes it is important to consider distinct 580 

microenvironments (e.g., kitchen, playground, different classrooms, and teacher’s 581 

lounge), as stated by Mejía et al. (2011) in a recent review, in which the methodologies 582 

employed to assess the exposure of children to air pollutants at school were explored, 583 

namely how these methodologies influenced the assessment of the impact of this exposure 584 

on children’s health, in particular related with traffic emissions. Outdoor environment is 585 

usually considered as a whole microenvironment. However, several differences were 586 

reported when assessing children’s exposure to outdoor air in the school than in transit, 587 

for example. Thus, some studies divided the outdoor environment into several 588 

microenvironments, for example school outdoor, home outdoor and, the most common 589 

and important, in transit. Exposure in transit was also often ignored as an important 590 

contributor to children exposure to air pollution (Janssen et al., 2001). Although low when 591 

compared to the time spent in other microenvironments like home or school, children tend 592 

to spend some time commuting from home to school and vice-versa, by car, by bus, by 593 

bike or walking, and it is expected to have a significant influence to their exposure to air 594 

pollution, especially concerning combustion-related pollutants (Janssen et al., 2001; Van 595 

Roosbroeck et al., 2006). This was also stated by some studies that specifically showed 596 

influence of bus-commuting on children’s exposure to air pollution, in particular to 597 

traffic-related air pollutants (Behrentz et al., 2005; Sabin et al., 2005). 598 
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After choosing the microenvironments for the study, it is necessary to obtain data from 599 

the pollutants’ concentrations in those microenvironments. Data availability and its 600 

quality for model input are critically important. These data can be obtained by 601 

measurements in-situ (fixed or personal samplers) or by predictive models, and both cases 602 

were found in the reviewed studies. Predictive models included mass-balance or 603 

infiltration models, modelling from the fuel consumption and room characteristics. To 604 

estimate concentrations based on data from databases or previous studies in the literature 605 

was also found in the reviewed studies. ME monitoring is a special case of environmental 606 

monitoring in which the location where measurements are made is considered to be 607 

homogenous with respect to concentrations of the targeted pollutants over the averaging 608 

time of interest, and it should be consistent with the microenvironments considered to 609 

study. As a different example from the reviewed studies, Diapouli et al. (2007) developed 610 

experimental procedures to measure ultrafine particles’ concentrations in different 611 

microenvironments (school, home and in-traffic), including: i) continuous monitoring 612 

outdoor and indoor schools (in different rooms) during school hours; ii) 24-hour indoor 613 

measurements in residences (in a bedroom, at breathing height); and iii) a counter placed 614 

on a co-driver’s seat of a private car moving along selected routes. In the absence of data, 615 

indoor concentrations can be obtained by some existing predictive models as a function 616 

of ambient concentrations, effective penetration rates and contribution of indoor sources, 617 

as also exemplified by Chaloulakou and Mavroidis (2002) who predicted indoor air 618 

concentrations of CO at a public school, or by Kruize et al. (2003) in a Dutch population 619 

study (including children as a subpopulation group). Sensitivity analyses can be 620 

performed to determine the most significant factors of exposure. Furthermore, if the 621 

measurements are not conducted in collaboration with concurrent health studies, it could 622 

result in a low participant rate. The duration and time resolution of pollution 623 

measurements can vary from short to long periods and from single to multiple 624 

measurements’ periods or campaigns. Multiple periods or campaigns seem to be useful 625 

to study seasonal variability of exposure (mainly in longitudinal studies). In fact, some 626 

authors found that personal exposure was significantly different by season, like Lee et al. 627 

(2013) found for NO2. 628 

Considering the ME modelling classification proposed by Milner et al. (2011), 629 

measurement-based was the ME model type found in almost all of the 26 reviewed 630 

studies, with exception of Hänninen et al. (2009), Shimada and Matsuoka (2011), and Wu 631 



23 
 

et al. (2005b) which were found to be mass-balance ME models. Thus, the ME modelling 632 

approach in exposure assessment studies has several advantages for it takes into account 633 

the varying levels of pollution to which an individual is exposed during the course of the 634 

day (Malhotra et al., 2000). The key advantage of these models is that they are relatively 635 

straightforward to apply and produce results which may be easily compared with 636 

exposure observations (Milner et al., 2011). However, there are problems with both the 637 

limited temporal and spatial resolutions of these techniques. Nerriere et al. (2005) 638 

identified some of the main sources of error when applying a ME approach to assess 639 

children’s exposure: i) method of recall, because frequently the data collected is based on 640 

the ability of the respondents to recall; ii) ability of respondent, for example sometimes 641 

the study can be hindered by the low literacy level of the study subjects; iii) nature of 642 

study, in itself contributes to a source of error, because it is difficult for any respondent, 643 

irrespective of the intellectual ability or memory, to account for every half an hour or 644 

even an hour in the daily schedule; and iv) difference between ideal and real situations, 645 

because in real social situations it is not possible to manipulate all the variables. 646 

As reviewed by Milner et al. (2011), there are uncertainties associated with the application 647 

of exposure models, mostly due to the lack of detailed time-activity information or due 648 

to the assumptions and simplifications that are usually necessary along the assessment 649 

process. Thus, according to the same review, it is crucial for studies with exposure models 650 

to have a validation process. Sometimes this can be performed comparing ME 651 

concentrations of pollutants with direct personal exposure measurements in the entire or 652 

in a selected small group of the study population, so as to examine variations in results 653 

(Moschandreas and Saksena, 2002). In fact, only 5 of the 26 reviewed studies have not 654 

done any kind of validation process (Briggs et al., 2003; Saksena et al., 2003; Wang et 655 

al., 2008; Wu et al., 2005b). 656 

Besides being a powerful tool to assess children exposure to air pollution, ME models 657 

can also have a potential opportunity to extrapolate data to an entire children population. 658 

Although not specific for children exposure assessment, there are examples of some 659 

models that were developed with the ability to predict personal exposure. Those models 660 

rely on the characterization of activity patterns of the population at risk as human 661 

activities impact the timing, location and level of personal pollutant’s exposure, which is 662 

especially important for the evaluation of public policies and urban planning that may 663 



24 
 

change the behaviour of individuals, resulting in a concurrent shift in the patterns of 664 

exposure experienced by the population (Schweizer et al., 2007).  665 

 666 

5. Conclusions 667 

From all the different available approaches and methods for determining exposure, the 668 

ME modelling approach (indirect approach) seemed to be the best to assess children’s 669 

exposure to air pollution as it is faster and less expensive, and takes into consideration 670 

several levels of pollution to which a child is exposed during the course of the day. By 671 

considering the pollutants’ concentrations in different locations attended by the study 672 

participants (microenvironments), and the time they spend in those locations (time-673 

activity patterns information), it is possible to determine the children’s exposure to air 674 

pollution, both in individuals and/or extend it to populations’ groups. 675 

There are a limited number of children’s exposure assessment studies using the ME 676 

modelling approach. Since 2002, it was only possible to find and review 26 studies. 677 

Almost half of them were performed in the USA, but there were studies also performed 678 

in Europe, Australia, Latin America, India and Asia, which confirms the possibility of a 679 

worldwide application of the ME modelling approach to assess children’s exposure to air 680 

pollution. Although the majority of the reviewed studies were cross-sectional, thus 681 

involving measurements at one specific point in time, ME modelling approach to assess 682 

children’s exposure to air pollution was also found in longitudinal (panel and cohort) 683 

studies, which enhances the applicability of this approach to that kind of studies.  684 

Those studies usually aimed to determine or characterize children’s exposure to air 685 

pollution, but other outcomes were also reported. The methodology looks similar when 686 

using this approach on children or on adults’ studies, however children’s singularities 687 

lead to considerable differences in the application of this approach, like those related to 688 

the data collection: i) the methods for collecting time-activities patterns must be different; 689 

and ii) the time-activity patterns are itself different, which leads to choose different 690 

microenvironments to pollutants’ concentrations data collection. In fact, to gather 691 

information on time-activity patterns, the most used methods were questionnaires and 692 

diaries, although different methods were also found to be feasible for children studies. 693 

Time-activity information led to the choice of the study microenvironments. The main 694 
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microenvironments used were home and school (indoors and outdoors) and in traffic. 695 

Some of the studies reviewed divided home and/or school in different sub-696 

microenvironments as kitchen, bedroom and different classrooms, but others can be 697 

considered. Data on pollutants’ concentrations can be obtained by in-situ measurements 698 

(fixed or personal samplers) or by predictive models, respectively measurement-based 699 

and mass-balance models, and both cases were found in the reviewed studies. Some 700 

studies also reported this type of data estimated from databases or in the literature.  701 

The use of the ME modelling approach in studies to assess children’s exposure to air 702 

pollution is highly encouraged, as it has several advantages for it takes into account the 703 

varying levels of pollution to which an individual is exposed during the course of the day, 704 

being relatively straight forward to apply and produce results which may be easily 705 

compared with exposure observations. However, there are uncertainties associated with 706 

the application of this approach, mostly due to the lack of detailed time-activity 707 

information (particularly difficult in children studies), or due to the assumptions and 708 

simplifications that are usually necessary along the assessment process (existing in 709 

children’s studies). Thus, a validation process is needed, which can be performed by 710 

comparing ME concentrations of pollutants with direct personal exposure measurements 711 

in the entire or in a selected small group of the study population.  712 
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Table 1 – Methods and approaches to assess children’s exposure to air pollution: main advantages and limitations, and examples of children’s studies. 1001 

Approach and method Main advantages Main limitations Examples 

Direct 

Personal monitoring 
- Simplicity of design 

- Freedom from modelling assumptions 

- Expensive and time-consuming  

- Limited for large population studies (e.g. 

cohort/panel studies) and for young children 

Gonzalez-Flesca et al. (2007); 

Thiriat et al. (2009); Buonanno 

et al. (2013); Both et al. (2013) 

Biomonitoring 
- Useful measure of direct exposure 

- Aggregate over all sources and pathways  

- Expensive and time-consuming 

- Complex methodologies 

- Hard to collect all of the info required to 

accurately estimate exposure 

Delfino et al. (2006); Neri et al. 

(2006a); Neri et al. (2006b); 

Ruchirawat et al. (2007) 

Indirect 

Statistical regression 

models 
- Frequently used in epidemiologic studies 

- Limited to extrapolate to other locations 

and to other periods of time 

Gauvin et al. (2002); 

Chaloulakou and Mavroidis 

(2002); Delfino et al. (2004); 

Zhou and Zhao (2012) 

CFDa 

- Enables modelling at an extremely fine 
scale 

- Good as a research tool for ventilation, air 

flow and contaminants modelling 

- Not considered appropriate for generic 
population exposure modelling 

- High technical and very specific knowledge 

and software are required 

Huang et al. (2004); Valente et 

al. (2012) 

MEb modelling 

- Conceptually easy to apply 

- Can be used to determine exposure to both 

individuals and large populations 

- Rapidly and inexpensively calculates 

exposures over various scenarios 

- The best way to predict the potential 

outcomes of future interventions and policies 

to reduce exposure 

- There is a research need for its systematic 

validation 

Mölter et al. (2012); Wang et 

al. (2008); Ballesta et al. 

(2006); Briggs et al. (2003) 

aCFD – Computer Fluid Dynamics; bME - Microenvironmental 1002 

 1003 

  1004 
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 Table 2 – Summary of the study design characteristics and outcomes of the reviewed studies using ME modelling approach to assess children’s exposure to air pollution since 2002. 1005 

Reference 

Study design 

Outcomes 

Location Study population Calendar time 
Pollutants 

analysed 
Purpose Type of study 

Lazenby et al. 
(2012) 

2 suburbs of Perth, 
Western Australia 

41 children aged  
9-12 years 

November 
2006 to August 

2007 
Formaldehyde 

To investigate seasonal variations in 
exposure. 

Cross-sectional 
Only a little variation detected between the 

seasonal monitoring periods, slightly higher in 
winter samples. 

Mölter et al., 
(2012) 

Secondary school 

in Greater 
Manchester, 

England 

Children aged  
12-13 years 

30th April 2008 
until 23rd 

January 2009 
NO2 

To develop a new ME exposure 
model. 

Cross-sectional 
A ME model provides better exposure 

estimates than the nearest urban monitor or an 
outdoor pollution model. 

Shimada and 
Matsouka (2011) 

16 Asian countries 

Population 
divided into sub-
groups by age, of 
which children (0, 

1-4 and 5-14) 
were considered 

NRa PM2.5 

To estimate exposure concentrations 
emitted through the consumption of 
fuel inside residences in individual 
countries in Asia, in order to assess 

associated health risks.  

Cross-sectional 

Individual exposure was greatly affected by 
people’s use of time indoors. In each studied 

country, PM2.5 exposure was higher for 

children and unemployed women aged 35-64.  

Wheeler et al. 
(2011) 

Windsor, Ontario, 
Canada 

48 adults + 47 
asthmatic children 

2005 to 2006 

Ultrafine 

particles 
(UFP), black 
carbon (BC) 
and PM2.5 

To examine the relationships between 
indoor and outdoor concentrations and 

personal exposures.  
Cross-sectional 

Mean outdoor concentrations were 
significantly higher than either indoor or 
personal ones. This exposure modelling 
estimation method performs well during 

different seasons when activity patterns and 
aerosols can vary. 

Hänninen et al. 

(2009) 

Turin and Bologna, 

Italy 

333 school 
children (6-10 

years) from 
Bologna + 

101,563 children 
(0-14 years) from 

Turin 

1st June 2004 to 
31st May 2005 
in Bologna and 

14th January 
2003 in Turin 

PM10 

To present a ME and time-activity-
based approach for exposure model to 
provide quantitative health-based tools 

for air quality-related policy 
refinement and evaluation.  

Cross-sectional 

Majority of the children were exposed to 
levels of health concerns in the case of an 

episode. Especially highest exposures 

experienced while in traffic may affect 
children spending substantial periods of time 

in or close to traffic environments.  

Zhang and 
Batterman (2009) 

USA 

8297 people, of 
which 5.8% were 
0-4 years old and 

14.5% were 5-17 
years old 

NRa Benzene and 
PM2.5 

To investigate changes in time 
allocation patterns and pollutant 
exposures that result from traffic 

congestion.  

Cross-sectional 

Changes in exposures depended on the 
duration of the congestion and the pollutant. 

Time allocation shifts and the dynamic 
approach to time-activity patterns improve 

estimates of exposure impacts from 
congestion and other recurring events. 
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Crist et al.  
(2008)  

Columbus and 
Athens in Ohio, 

USA 

30 Children, 

students from 4th 
and 5th grade 

elementary school 

January 1999 
to August 2000 

PM2.5 
To characterize indoor, outdoor and 

personal PM exposures of school 
children. 

Cross-sectional 

At all the studied sites, personal PM2.5 

exposures were significantly affected by 
indoor PM2.5, presumably the result of re-

suspension by human activity.  

Ryan et al. 
(2008) 

Ohio, USA 
642 children (age 

0-36 months) 
2001 to 2005 

Diesel Exhaust 
Particles (DEP) 

To estimate exposure to DEP, and to 
determine if exposure to high values of 

DEP during childhood increases the 
risk for developing allergic diseases. 

Longitudinal 

Using birth addresses to estimate a child’s 
exposure may result in exposure 

misclassification for some children who spend 
a significant amount of time at a location with 

high exposure to DEP. 

Wang et 

al.(2008)  
Chongqing, China 

Children (0-14), 
adults (15-64) and 

elders (>65) 
2004 to 2006 PM10 

To determine population exposure to 

particulate matter. 
Cross-sectional 

Home was the largest contributor to personal 
exposure, especially on the rural areas, due to 
solid fuels burning. Elder people had higher 
exposure, due to more time spent in indoor 

microenvironments.  

Zhao et al. (2007)  
Denver, Colorado, 

USA 

56 asthmatic 
children  

aged 6-13 years 
enrolled in the 

Kunsberg School  

Two winters 

(October 2002-
March 2003 
and October 
2003-March 

2004) 

PM2.5 

To identify and apportion the PM2,5 
sources that were common resulting in 

exposure to asthmatic children, and 
consequently interferes with regular 

school attendance and progress. 

Cross-sectional 

Secondary nitrate and motor vehicle 

emissions were the largest external sources of 
particulate matter. Cooking was the largest 

internal source. Also a significant influence of 
indoor smoking and high traffic flow outside 

the school in indoor air quality. 

Van Roosbroeck 
et al. (2007)  

Utrecht, 
Netherlands 

54 children 
attending four 

different schools 

NRa PM2.5, soot, 
NOx and NO2 

To validate exposure classification 
based on school location. 

Cross-sectional 

The school’s proximity to a freeway can be 
used as a valid estimate of exposure in 

epidemiological studies on the effects of the 

traffic-related air pollutants, soot and NOx in 
children.  

Van Roosbroeck 
et al. (2006) 

Amsterdam, 
Netherlands 

14 children aged 
9-12 years 

March to June 
2003 

NO, NO2 and 
soot 

To assess personal exposure to air 
pollution in children living in homes 

on streets with different degree of 
traffic intensity. 

Cross-sectional 

Children living near busy roads were found to 

have a 35% higher personal exposure to 
“soot”, but smaller contrasts for NO and NO2. 

Ballesta et al.  
(2006)  

Six European 

cities: Brussels, 
Lisbon, Bucharest, 
Ljubljana, Madrid 

and Dublin. 

150 people, 25 of 
them school 

children, in each 
studied city.  

22 October 

2002, 27 May, 
3 December 
2003 and 28 
April 2004. 

Benzene 
To assess population exposure to air 
pollutants in Europe, using one day 

cross-sectional campaigns. 
Cross-sectional 

Evident linear relationship between ambient 

levels and human exposure, although this was 
higher. Highest indoor concentrations were 
measured in bars and inside motor vehicles, 

due to tobacco and traffic influence. 

Staff Mestl et al. 

(2006) 

Shanxi province, 

China 

Population from 
rural area of 

Shanxi and urban 
area of Taiyuan, 
divided in age 

NRa PM10 

To estimate daily average exposure for 
different population groups: rural coal 

users, urban coal users, and urban gas 
users. 

Cross-sectional 

Young children and elderly spend most the 
time indoors and had the highest daily 

exposure in the coal using population. The 

rural population experienced higher exposure 
than the urban ones, even though the outdoor 

air is significantly cleaner in rural areas.  
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groups (0-1; 2-6; 

7-14: 15-64; >65) 

Wu et al. (2005a)  
Alpine, California, 

USA 

20 asthmatic 
children aged 9-

17 years attending 
5 different schools 

September-
October 1999, 

April-June 
2000 

PM2.5 

To characterize children’s short-term 
personal exposures and separate them 

into ambient and non-ambient 
components. 2 different model 

approaches were used. 

Longitudinal (panel 
study) 

Study subjects only received 45% of their 
exposure indoors at home, even though they 

spent more than 60% of their time there. 
29.2% of their exposure was received at 

school, where they spent only 16.4% of their 
time. 

Wu et al. (2005b)  
Southern 

California, USA 

5000 children 
aged 9-18 years 
from Southern 

California 
Children’s Health 

Study (CHS) 

NRa 

CO, NO2, 
PM10, PM2.5 

and elemental 
carbon 

To investigate the relationship 
between air pollution and children’s 

chronic respiratory health outcomes. 

Cross-sectional 

Local traffic significantly increased within-
community variability for exposures. Inter-

community exposure differences were 
affected by location, traffic density, locations 
of residences and schools, and time activity 

patterns of the children. 

Adgate et al. 
(2004a)  

Minneapolis, 
Minnesota, USA 

153 children 
(from 2nd to 5th 

grade) attending 
two different 

schools.  

November 
1999 to May 

2000 

VOC (15 
compounds) 

To characterize air pollution exposures 
in inner-city children predominantly 

from low-income households for 
providing benchmarks. 

Cross-sectional 

Media and upper-bound home and personal 

exposures were well above health benchmarks 
for several compounds, so outdoor 

measurements likely underestimate long-term 
health risks from children’s exposure to these 

compounds. 

Adgate et al.  
(2004b)  

Minneapolis, 
Minnesota, USA 

Probability 
sample of children 
(3-12 years) from 
284 households. 

May to 
September 

1997 

VOC (10 
compounds) 

To determine and compare personal, 
indoor and outdoor exposure, and 

statistical associations with common 
sources and modifiers of exposure. 

Cross-sectional 

A consistent pattern of personal > indoor > 
outdoor exposure was observed for 9 of 10 

VOC. For most children, the indoor at-home 

microenvironment was strongly associated 
with personal exposure. 

Lee et al.  (2004)  
Nashville, 

Tennessee, USA 

36 elementary 
school children 
(10 to 12 years). 

99 children 
provided 

additional time-
activity info. 

June and July 
1994 

O3 

To determine weekly outdoor, indoor 
and personal exposure estimates of 

school children. To determine if 
systematic exposure differences 

among children exist. 

Cross-sectional 

Personal O3 exposures reflected the 

proportional amount of time spent in indoor 
and outdoor environments (higher out). 

Centrally air-conditioned indoor environments 
confer a substantial protect from ambient O3 

levels. 

Yip et al. (2004)  
Detroit, Michigan, 

USA 

20 children, aged 

7-11 years with 
asthma 

2000 to 2001 PM10 

To characterize the children’s personal 
exposures with respect to the measured 

values at the ambient sites, in the 
classrooms, and in the homes. 

Cross-sectional 

Children’s personal exposure strongly 
correlated with their home environment and 
weak correlations with the ambient (outdoor) 

and classroom environments. 

Briggs et al. 

(2003) 
Northampton and 
Kingsthorpe, UK 

567 adult 
residents + 247 

college students + 
1998 to 1999 Radon 

To model potential exposures to radon 
in domestic environment for different 

population sub-groups 
Cross-sectional 

Students and schoolchildren were found to 

have the lowest home occupancy, 
consequently they were found to have the 

lowest home radon exposure. 
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a) N.R. - Not reported 1006 

  1007 

447 

schoolchildren  
(9-13 years old) 

Liu et al. (2003) Seattle, USA 

89 elderly people 
+ 19 children with 

asthma (6-13 
years old) 

1999 to 2001 
PM2.5 and 

PM10 

To examine the particulate matter 
exposures and health effects in 

individuals. 
Longitudinal 

When personal exposures were directly 
measured, asthmatic children had the highest 
exposures. However, this model based on the 

three MEs did not well correlated with the 
measured values for PM personal exposure of 

asthmatic children.  

Saksena et al. 

(2003)  
Delhi, India 

Infants and 
women from two 

slums 

December 
1994 to 

February 1995 

Respirable 
Suspended 

Particles (RSP) 
and carbon 
monoxide 

To assess the daily exposure of infants 
(and their mothers) and to determine 
the factors that influence exposure. 

Cross-sectional 

Indoor background levels during the day and 
at night-time exceedingly high, due to re-

suspension of dust and infiltration. Outdoor 
levels measured poorly correlate with 

integrated exposure.  

Chau et al. 
(2002) 

Hong Kong 

396 Hong Kong 

inhabitants, of 
which 14 were 
children (<14 

years old) 

April to August 
1998 

CO2, CO, NO2 
and PM10 

To estimate the total exposure to air 

pollutants for different population age 
groups, and to compare their exposure 

profiles with respect to different 
commuting and behaviour patterns. 

Cross-sectional 

Homes were shown to be one of the major 

exposure sites for all age groups. 24h NO2 
exposures for individuals spending more than 
2h in commuting daily exceeded the 24h NO2 

exposure standards.  

Harrison et al. 
(2002) 

Birmingham, UK 

11 healthy adult 
subjects and 18 

members of 
groups more 

susceptible to 
adverse health 

changes 
(including 6 

schoolchildren 
~10 years old) 

NR.a PM10, NO2 and 
CO 

To investigate the relation between 
personal exposure and exposures 

estimated from static concentrations 
measured within the same 

microenvironments, for healthy 
individuals and susceptible groups. 

Cross-sectional 

ME measurements of CO and NO2 can well 
represent the personal exposures of 

individuals within that ME. Elderly subjects 
and those with pre-existing disease received 

generally lower PM10 exposures than the 
healthy adults and schoolchildren, due to their 

less active lifestyles.  

Rojas-Bracho et 
al. (2002)  

Santiago, Chile 

20 children (age 

10-12 years), 
living in non 

smoking 
households 

NR.a PM2.5, PM10 
and NO2 

To characterize particle and gaseous 
exposures of children (aged 10-12 
years), living in Santiago, Chile 

Cross-sectional 

Outdoor particles contributed significantly to 

indoor concentrations. The presence of gas 
cooking stoves in the homes results in NO2 
weak associations for indoor-outdoor and 

personal-outdoor relationships. 
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Table 3 – Summary of data collection characteristics of the reviewed studies using ME modelling approach to assess children’s exposure to air pollution since 2002. 1008 

Reference 

 Time-activity patterns 
 

Pollution measurements 

 Methods of collection Record time 
Key elements 

included 

 
Microenvironments  Methods of collection 

Duration and time 

resolution 

Lazenby et 
al. (2012) 

 
Daily activity diary and 

a questionnaire. 

15-min intervals of 
each 24-h record 

period. 

Information about the 
indoor and outdoor 

environment, children’s 
lifestyle and activities. 

 
Indoor domestic, 
outdoor domestic, 

school indoors  

Microenvironment concentrations were 
passively collected using a badge 

sampler. Also personal badge samples 
were made to compare the results. 

24-h periods: one weekday 
and one weekend. 

Mölter et al. 
(2012) 

 
Time activity diary, 

filled in by the 
participants. 

15-min time intervals. 

ME, period of time, 

additional information 
on home 

characteristics.  

 Home, school and 
journey (all indoor and 

outdoor). Home 
indoor divided into 

kitchen, living room, 
and child’s bedroom. 

Home indoor calculated through an 
indoor exposure model. School indoor 

also estimated. Outdoors from the 
nearest urban monitoring system. Also 

use of a personal sampler. 

2 days in each one of the 
four seasons (Spring, 
Summer, Autumn and 

Winter), for both stationary 
and personal.  

Shimada and 
Matsouka  

(2011) 
 

Several time-use 
surveys data in Asia 

region. 
NRb 

The daily life children 
activities were adapted 
from the adult surveys. 

 Home indoors: kitchen 
and living room; 

heating; illumination. 

Estimated from the fuel consumption 
and room characteristics. 

NRb  

Wheeler et 
al. (2011) 

 
Time activity diary 

(TAD). 

15-min and 30-min, 
intervals for adults and 
children respectively. 

Information on 
activities and presence 
in various locations and 

on whether the 
participants were close 
proximity to smokers, 

and for how long.  

 
According to TAD: 
indoors (at home, 

away and at school), 
and outdoors (at home, 
away and in vehicles). 

Integrated and continuous monitors 
were employed to measure indoor and 

outdoor particles and BC (only at 
home). Personal sampling was also 

conducted. 

5 sampling days each in 
the winter (January-March) 
and summer (July-August) 
of each year for stationary, 

and only in 2006 for 
personal.  

Hänninen et 
al. (2009) 

 

Information derived 

from school 
administration, from a 
survey on two children 

samples, and using 
typical daily timetables 

of schoolchildren in 
Italy. 

NR b 

Estimation on time 
spent travelling 

between home and 
school. 

 

Residential indoors, 
school indoors, in 

traffic and residential 
outdoors 

Indoor concentrations were modelled 

using either a mass-balance model or 
infiltration model. Outdoor and in-

traffic concentrations were estimated 
using fixed site monitoring stations (the 

last one multiplied by coefficients 
observed in a number of studies 

reviewed by WHO). 

1 school year in Bologna 
and 1 day in Turin 

Zhang and 
Batterman 

(2009) 
 

From the National 
Human Activity Pattern 

Survey (NAHPS), 

Variable, depending on 
the answers. 

Locations and activities 
in a diary for a 24-h 
period, along with 

 Indoor: Home, 
workplace, shopping, 

bar/restaurant, 
school/public building, 

Concentrations were based on recent 
literature, and Monte Carlo analyses 

were used to address both the variation 
and uncertainty in the available data. 

NRb 
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developed by the 

USEPA. 

basic socio-

demographic data. 

other; outdoor: near 

road and other; 
transport: in-vehicle 

Crist et al. 
(2008)  

 NRb NRb NRb 

 School indoors 
(selected classroom 

away from the 
kitchen) and school 

outdoors 

Indoor monitors during the classroom’s 
usage time. Continuous ambient 

monitor to measure outdoor 
concentrations. Also personal samplers 
(pumped) – one student per classroom. 

Daily (24-h) both for 
indoor and ambient. Also 
school day period (8 a.m. 

to 3 p.m.) for ambient, 
indoor and personal. 

Ryan et al. 

(2008) 
 

Annual complete 
parental report of the 
locations where child 

spent eight or more 
hours per week, in the 

last 12 months. 

1 complete year (12 

months) 

Locations where 
children spent eight or 
more hours per week. 

Additional health 
information in the 

questionnaire. 

 
Home and non-home 

environments 
(includes daycare, 

babysitter, relative’s 
home or other 

locations) 

A land-use regression (LUR) model 
was developed using geographic data as 

independent variables and sampled 
levels of a marker of DEP as the 

dependent variable. 

Daily levels obtained of 
each sampling site, 

averaged to minimize the 
effect of seasonal and 
temporal variations as 
health outcomes were 
measured annually. 

Wang et 
al.(2008) 

 
Recall questionnaire 

sent to families. 

A full 7-day period 
report, between January 

and March 2006 

Time spent in the 
different MEs 
considered. 

 Kitchen, bedroom, 
living room, 

school/work, other 
indoors away from 
home, transit, and 

outdoors 

Outdoor concentrations from air quality 
monitoring stations. Indoor 

concentrations measured at 21 sites 
containing major indoor MEs. In transit 

levels were estimated based on data 
from literature. 

Indoor measurements 
conducted continuously for 
at least 24 h. Outdoor data 

for each month of 2004 
available at 10 ambient air 
quality monitoring stations. 

Zhao et al. 
(2007) 

 NRb NRb NRb 

 
Indoor (inside school) 

and outdoor (outside 
school) 

Fixed monitors were located in the 
main corridor of the school (indoor) 

and outdoors on the roof of the school.  
Use of personal samplers (pumped) to 
personal monitoring (for comparison). 

Continuous measurements 

(24 h), both for indoor, 
outdoor and personal. 

Van 
Roosbroeck 
et al. (2007) 

 
Questionnaire on time-

activity patterns. 
N.R.b 

Daily activity patterns, 
school travel mode and 

additional data on 
housing conditions and 

possible indoor 
sources. 

 

Outdoor and indoor at 
school (and personal 

for comparison) 

Personal monitoring was performed in 
48-h periods, by a personal wearable 

bag sampler. Indoor and outdoor 
measurements were done using the 

same equipment as for personal 
sampling, but with a shelter. 

48-h measurements 
periods, from Monday to 

Wednesday and from 

Wednesday to Friday. 

Van 
Roosbroeck 
et al. (2006) 

 
Questionnaire on time-

activity patterns. 
N.R.b 

Additional information 
on possible indoor 

sources. 

 

Outdoor and indoor 
(school and home). 

Personal monitoring was performed by 
a personal wearable bag sampler. 
Outdoor measurements were done 

using the same equipment. 

Measurements took place 
from Monday to 

Wednesday or from 
Wednesday to Friday, in a 

total of 8 measurement 
periods of 48 h. 
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Ballesta et 
al.  (2006) 

 
Time-micro-

environment-activity 
diary. 

Data entered into a 
database file that 

recorded intervals of 
15-min 

Movements and 
activities of the 

sampled population. 

 Outdoor: city 

background and hot 
spots. Indoor: homes 
and specific locations 

(schools, offices, 
shops and bars) 

Simultaneous diffusive measurements 
of outdoor, indoor and human exposure 

benzene concentrations. 

Measurements were made 
during one day campaigns, 

on six groups. 

Staff Mestl 
et al. (2006) 

 

Based on earlier 
publications: urban 

from a Hong Kong 
study and rural from a 

Bangladesh study. 

Depending on the 
earlier publications 

Information about the 
variability of the 

number of hours spent 
in the different MEs. 

 
Indoor: kitchen, 

bedroom, living areas, 
school/work; and 

outdoors 

Indoor concentrations were estimated 
based on data from previous studies. 

Outdoor concentration levels were 
estimated by an air dispersion model 

(AERMOD). 

Depending on the previous 
studies. 

Wu et al. 
(2005a) 

 
Electronic time-activity 

diary used by the 
subjects. 

24-h recordings, with 
15-min resolution 

Time, locations and 
activities. 

 
Indoor (home, school 
and other places), and 
outdoor (home, other 
places, and on road or 

in transit). 

To measure outdoor concentrations 
central-site fixed stations were used.  
Personal nepholemeters to measure 
indoor concentrations and personal 

exposure to compare with the 

modelling results. 

Two 14-day runs in 1999 
and five runs in 2000, 

where 1-min PM 
concentrations were 

determined continuously. 

Wu et al. 
(2005b) 

 

Using information from 
a time-activity survey 

administered twice a 
year to each child, and 
from the Consolidated 

Human Activity 
Database developed by 

the USEPA. 

24-h time-activity 
series (15-min 

intervals) for each child 

How much time (by 5 
categories) they spent 

outdoors, and also if 
they spent more than 

15 min daily travelling 
between school and 
home and by what 

means. 

 

Residential (indoor 
and outdoor), school 
(indoor and outdoor), 

and in vehicle. 

Combine of central-site ambient 
observations with 2 dispersion models 

to estimate outdoor concentrations: 
CALINE4, to traffic emissions; and 
SMOG airshed model, to transported 
pollutants and non-mobile sources. A 
single-compartment steady-state mass 

balance equation to estimate indoor 
concentrations. 

N.R b 

Adgate et al. 
(2004a) 

 
Each subject kept a 
time-activity diary. 

24-h recordings 

Time spent in 7 
primary MEs as well as 

data on exposure to 
tobacco smoke and 

other potential 

modifiers. 

 
Indoors: child’s home, 
five randomly selected 

classrooms in each 
school; outdoor at 

each school. 

Personal and home measurements were 
collected continuously for 2 days; 
school measurements after school 
hours; and outdoor measurements 

continuously from Monday to Friday  

Winter (24 Janurary – 18 
February) and Spring (9 
April – 12 May) 2000 

Adgate et al.  
(2004b) 

 
Each subject kept a 
time-activity diary. 

24-h recordings 

Time spent in 7 
primary MEs as well as 

data on exposure to 
tobacco smoke and 

other potential 
modifiers. 

 
Indoor (at home, 

school and other); 

outdoor (home, school 
and other); and in 

transit. 

VOCs were collected by passive 
diffusion, indoor and outdoor urban and 

nonurban residences. Also personal 
sampling was carried to compare the 

results. 

Screening-phase, followed 
by an intensive-phase. 6-

day average concentrations 
on fixed monitors (indoor 

and outdoor) and in 
personal samplers. 

Lee et al.  

(2004) 
 

Activity diaries 

collected during 

Daily activities from 

8:00 a.m. to 9:00 p.m. 

Times, location and 

activities. 

 School and home, both 

indoors and outdoors. 

Continuous outdoor and passive indoor 

and outdoor home measurements were 

6 week monitoring period 

during the school’s 
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sampling period. 99 

children provided 
additional info on time-

activity by telephone 
interview. 

for a sample of 15 non-

consecutive days 

done. Each participating child and 

family had a set of personal (wearable) 
passive O3 samplers to personal 
sampling (compare the results). 

summer vacations, in June 

and July of 1994. 

Yip et al. 
(2004) 

 
Children recorded their 

activity in logs. 
24-h recordings 

Time, location and 
activities. 

 

School and home, both 
indoors and outdoors. 

Daily ambient and indoor 
measurements at two elementary 

schools, as well as concurrent 

measurements inside the children 
homes. Personal samplings also made. 

Daily 24-h measurements 
were made in 8 seasonal 

sampling campaigns. 

Briggs et al. 

(2003) 
 

Survey of home 
occupancy rates, and 

surveys of time activity 
and journey patterns. 

Over a 24-h weekday 

period, for half-hourly 
intervals. 

Daily time spent 
indoors home, other 

time-activity and 
journey patterns. 

 
Home outdoors, home 

downstairs, home 
upstairs. 

Radon levels obtained for a 

representative occupied house, by 
continuous monitoring. 

Continuous monitoring 
over an 18 day period. 

Liu et al. 

(2003) 
 Individual diary.  

Daily, with a 15-min 
time intervals. 

Time, activity and 

location. Additionally, 
technicians recorded 
occurrence of events 
that potentially affect 
PM concentrations at 

homes. 

 

Indoor (including 
home and other 

places), outdoor near 
home, and outdoor 
away from home. 

Indoor and outdoor PM concentrations 
were measured with single-stage 

inertial monitors. Personal monitoring 
was also measured using a personal 

monitor device for comparison with the 

modelled values. 

26 monitoring sessions, 
each one with 10 

consecutive monitoring 
days, starting on Tuesdays 

and ending on Fridays. 

Saksena et 
al. (2003) 

 
Estimated through 

recall-based 
questionnaires. 

NRb 
Time spent in the six 

MEs. 
 

 The three cooking 
sessions, the session 

between meals which 
could be spent indoors 

or outdoors, and the 
sleeping session. 

Concentration levels were measured 
using portable samplers, for two 
consecutive days in each house. 

Continuously (24-h) for 
two consecutive days. 

Chau et al. 

(2002) 
 

Time diaries obtained 
from recall 

questionnaires by 
telephone. 

7-day, with 15-min 

time intervals. 

Both socioeconomic 
characteristics of the 

respondents, locations 

and activities on 
weekdays and 

weekends. 

 
20 grouped in: Indoor 
at home, Indoor away 

from home, enclosed 
traffic and outdoor. 

Directly measured in the major MEs, 
and obtained by the data reported in 

various open literature for the 
remaining MEs. 

NR b 

Harrison et 
al. (2002) 

 Activity diaries. N.R.b 
The periods of time 

spent by the subject in 
the different MEs. 

 Outdoor and indoor 
(home and 

workplace/school). 
Additional MEs: 
leisure activities 

(social clubs, pubs and 
cafes), transport (cars, 

Static measurements were performed in 
the indoor and outdoor 

microenvironments. Additionally, 
direct personal measurements were 
performed in healthy subjects. In 

susceptible subjects, a shadowing 
approach was performed for the 

Continuously. Duration not 
reported. 



45 
 

a) according to Milner et al. (2011); b) NR – not reported 1009 
 1010 

 1011 

 1012 

buses and trains), 

shops and park area 
(dog walking). 

additional direct personal sampling to 

compare the results. 

Rojas-
Bracho et al. 

(2002) 
 

Time-activity diary. A 
recall diary was also 

used to report activities 
and conditions that 
could affect indoor 

concentrations or 
personal exposures. 

N.R.b 

Time intervals spent in 
different MEs, time 
spent near smokers, 
and specific info on 

buildings. 

 

Indoors, outdoors, and 
in transportation 
(motor vehicle, 

walking or bicycle). 

Indoor and outdoor samples were done 
by passive badges. Personal samples 

were done by a pumped wearable 
device to compare the results. 

Personal, indoor and 
outdoor 24-h samples were 

collected for five 
consecutive days. 


