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Abstract- For many years, research on bovine papillomavirus (BPV) has contributed to 

the understanding of papillomavirus-induced pathology in humans and animals. The 

present review shows how recent studies on BPV keep providing evidence concerning 

key points in viral infection, such as the expression of viral proteins in lymphocytes and 

the occurrence of productive infections of the placenta. Studies on BPV-induced 

tumours also provide important information concerning the mechanisms of oncogenesis 

and immune evasion, as the cases of connexin 43 down-regulation with loss of 

intercellular gap junctions and Toll-like receptor 4 (TLR4) down-regulation in equine 

sarcoids. The biological functions of viral proteins are also being further clarified as in 

the case of E2, which was recently shown to load BPV genomes into host chromosomes 

during the S-phase, a process mediated by the ChlR1 protein. In the near future, the 

ongoing efforts to characterize and classify additional emerging BPV types are likely to 

broaden even further the possibilities for research.   

Introduction 

Animal papillomavirus such as the bovine papillomavirus (BPV), the cottontail rabbit 

papillomavirus and the canine oral papillomavirus have long been known to induce 

tumours in their host species. In fact, these viruses first provided evidence for virally-

induced carcinogenesis and have since been used as models to study the biology and 

pathology of human papillomavirus (HPV), as reviewed by Campo [1]. Papillomavirus 

are highly species-specific, making animal models for HPV difficult to obtain, except 

by using animal papillomavirus. Even though these difficulties in finding experimental 

models of HPV infection and carcinogenesis have been largely overcome during the 

first years of the new century, with the development of HPV-transfected organotypic 

cell cultures [2], research on animal papillomavirus, and particularly on BPV, does not 

seem to have diminished since then.  

This review will deal with selected recent literature on animal papillomavirus, 

especially with those papers published over the last two years. Emphasis will be placed 

on BPV, since it causes several important syndromes and great losses among infected 

animals. Urinary bladder tumours associated with BPV infection caused losses worth 

over 4 million euros on state compensations and insurances paid to affected milk 

producers in the Azores between 2000 and 2006 [3], though this may be an 

underestimate. Research on BPV has led to most of the recent breakthroughs on the 

biology and pathology of animal papillomavirus, with major implications for human 
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health. Using such spontaneous models, researchers have recently made significant 

discoveries on the interaction of papillomavirus with chemical carcinogens and 

immunosuppressants [4], on the role of BPV oncoproteins in cell transformation and 

immune evasion, on the infection of some unusual cell types and the possibility of 

haematogenous transplacental BPV transmission [5], as well as on new prophylactic 

and therapeutic vaccines [6-8].  

In 2008, ten BPV types were recognized [9], but three new types have recently been 

proposed [10-12]. Bovine papillomavirus are grouped into three genera within the 

family Papillomaviridae: Deltapapillomavirus (BPV-1, BPV-2 and BPV-13), 

Xipapillomavirus (BPV-3, BPV-4, BPV-6, and BPV-9 to -12) and 

Epsilonpapillomavirus (BPV-5 and BPV-8), which show important inter-generic 

differences (e.g. Xipapillomavirus lack the E6 gene) [13] (Figure 1). The classification 

of BPV-7 remains to be determined [14] and there are at least sixteen other virus strains 

under study, detected in samples from Brazil, Japan and Sweden, which await 

classification, as recently reviewed by Zhu and co-workers [11]. In cattle, infection with 

several different BPV types is associated with the development of cutaneous, udder and 

teat papillomas and fibropapillomas [15-18] and cancer of various organ systems. In 

particular, BPV-4 causes upper digestive tract papillomas while BPV-2 and, less 

commonly, BPV-1 are associated with urinary bladder tumours [9]. Papillomavirus are 

strictly species-specific, with the remarkable exception of BPV-1 and, to a lesser extent, 

BPV-2. These two BPV types show a varied tropism for unusual cell types and even for 

species other than cattle, including equids such as horses, donkeys and zebras, where 

they cause fibroblast-derived cutaneous sarcoid tumours [19-20]. The following 

sections will deal with recent findings regarding BPV-induced tumours and the roles of 

BPV proteins, the interactions between BPV and chemical carcinogens, viral strategies 

to develop latency and enhance transmission, and new vaccination strategies. 

References to HPV and to other animal papillomavirus will be made when appropriate. 

BPV-induced cell transformation 

Tumours induced by BPV in cattle and horses provide a valuable opportunity for 

researchers to study the mechanisms through which viral oncoproteins – E5, E6 and E7 

- transform infected cells. BPV E5 is a small, hydrophobic protein, mostly located in the 

in the Golgi apparatus and endoplasmic reticulum, and is considered a major 

transforming oncoprotein (reviewed by Venutti et al. [21]). Accordingly, its role in 
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carcinogenesis has long been the focus of intense research. Many of HPV E5 functions 

have been first elucidated in BPV models, while some BPV E5 activities are not even 

shared by HPV E5, such as the activation of PDGFR and the tyrosine kinase c-src in 

bovine bladder carcinomas. Bovine papillomavirus type 2 and, less frequently, BPV-1 

cause a non-productive infection of the urothelium in cattle, which has been associated 

with the development of urinary bladder tumours [22-23]. A similar pathology showing 

identical features was recently described in Turkish water buffaloes [24]. Several 

studies on bovine urothelial neoplasms reported the expression of cancer markers 

(reviewed by Gil da Costa et al. [4]) such as calpain-3, recently proposed to contribute 

to carcinogenesis by cleaving pRB [25]. Bovine urinary bladder tumours are often of 

mesenchimal or mixed mesenchimal/epithelial origin, often involving the endothelium 

(haemangiomas, haemagiosarcomas). Besides being present in the urothelium, BPV-2 

DNA and oncoproteins (E5 and E7) have also been detected in neoplastic endothelial 

cells, where E5 was also shown to co-localize with PDGFR [26]. E5 is believed to be 

critical in driving cell transformation in vitro and in vivo, through several mechanisms, 

especially by activating the platelet-derived growth factor receptor  (PDGFR [21]. 

As recently described, the binding of BPV-1 E5 to PDGFR results in activation of the 

phophatidylinositol-3-kinase (PI3K)-AKT-cyclin D pathway, leading to cell-cycle 

deregulation [27]. In higher-grade urothelial carcinomas PDGFR recruits growth factor 

receptor-bound protein 2 (GRB2) and its constitutively associated protein Sos, leading 

to RAS activation, but not to downstream Erk or Mek phosphorylation [28]. Based on 

these findings, the PI3K-AKT-cyclin D rather than the RAS-Erk pathway seems to be 

instrumental in driving papillomavirus-induced urothelial carcinogenesis (Figure 2).  

The roles of E6 and E7 oncoproteins have also been studied in BPV-induced tumours. 

Importantly, BPV-1 E6 (together with HPV-1 and -8 E6) has been recently reported to 

bind the mastermind-like protein 1 (MAML1), repressing the NOTCH pathway and 

consequent gene transcription [29]. Based on these results, the authors propose that 

delayed keratinocyte differentiation in papillomavirus-induced papillomas may be a 

consequence of impaired NOTCH signalling. Despite lacking the canonical pRB-

binding motif, BPV E7 plays a significant role in bovine and equine tumours. Infection 

of the bovine upper gastrointestinal mucosa by BPV-4 leads to papillomatosis of 

variable extension and severity. Upon prolonged exposure to bracken (Pteridium spp., a 

carcinogenic fern) papillomas progress to squamous cell carcinomas, providing a useful 
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example of viral and chemical co-carcinogenesis [30]. As recently reviewed by Gil da 

Costa et al., [4] malignant transformation seems to depend on the mutagenic and 

immunosuppressant properties of bracken toxins which, on the one hand, 

promote genomic instability, resistance to apoptosis and cell-cycle deregulation by 

inactivating p53 and activating ras and, on the other hand, prevent the immune system 

from clearing the viral papillomas (Figure 3). The bracken flavonoid quercetin, 

abundant in fruits and vegetables, also activates transcription from the BPV-4 long 

control region (LCR), up-regulating E7 expression and contributing to cell 

transformation in vitro [13]. Bearing in mind that, in human populations, HPV 

infection has been demonstrated in a significant proportion of oesophageal cancer 

cases and that bracken exposure is epidemiologically associated with higher 

oesophageal cancer risk, the hypothesis has been advanced that a similar mechanism 

may underlie oesophageal carcinogenesis in humans [1]. As with gastrointestinal 

tumours, bracken toxins are thought to drive the malignant transformation 

of initial bladder viral lesions. However, the interaction between BPV and bracken 

is not as clear as in the gastrointestinal tract. In fact, ptaquiloside from bracken is 

capable of inducing pre-neoplastic and neoplastic bladder lesions in laboratory 

animals alone, without any viral involvement [4, 31]. Bovine bladder tumours 

have attracted great interest not only due to their implication for animal health and the 

dairy industry, but also because they constitute a valuable spontaneous model to study 

the role of viral oncoproteins in cell transformation.  

BPV E7 is also thought to be important in preventing anoikis, possibly by binding to the 

retinoblastoma protein-associated factor p600 in vitro. Binding of p600 has now also 

been reported in naturally occurring equine sarcoids, bringing additional support to this 

hypothesis [32]. Sarcoids are locally aggressive tumoural lesions that develop in equids 

(horses, donkeys, zebras) from dermal fibroblasts that harbour a latent, most 

commonly non-productive BPV-1 or BPV-2 infection and maintain the BPV-1/2 

genomes in an episomal form [20]. Much interest has been focused on the 

mechanisms through which BPV-1 and -2 transform equine fibroblasts, causing 

equine sarcoids. Interestingly, the number of viral DNA copies has been shown to 

be significantly higher in more aggressive sarcoids, compared with their slow-

growing counterparts [33]. Over the years, the expression of several cancer 

markers has been studied in equine sarcoids, such as the tumour suppressor gene 

fragile histidine triad (FHIT), which was found to be down-regulated [34] as in 

human cervical cancer [35] although, curiously, not in BPV-associated bovine 

urinary tumours [36]. Such differences make spontaneous, 
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BPV-induced, animal cancer models particularly useful to study the influence of 

specific host’s genes in the carcinogenic process. Over-expression of matrix 

metalloproteinases (MMP) is an important mechanism involved in tumourigenesis, 

and was recently studied in detail at the University of Glasgow. MMP-1, -2 and -9 are 

over-expressed in sarcoid fibroblasts and decreased expression of viral genes by E2 

siRNA treatment effectively reduced MMP expression, demonstrating the link 

between viral infection and MMP expression [37]. In particular, MMP-1 over-

expression was shown to be driven by E6 and E7 through the activator protein-1 

(AP-1) transcription factor [38], and by E5 through an indirect mechanism. However, 

only E5 and E6 were found to confer invasiveness and enhanced proliferation to 

equine fibroblasts in vitro, while E7 was associated with anchorage-independent 

growth [39]. E5 and E6 induce the over-expression of p38 mitogen-activated protein 

kinase (MAPK) which in turn leads to phosphorylation of an AP-1 component 

(Fra-1), triggering MMP-1 expression. Both increased proliferation and invasiveness 

were shown to be mediated by MAPK [40]. The MAPK-AP-1-MMP-1 signalling 

cascade was thus shown to be involved in the invasiveness of equine sarcoid 

fibroblasts.  

BPV-mediated immune evasion 

Evading the host’s innate and adaptive immune responses is essential for 

maintaining viral infection. BPV E5 helps blocking the interactions between infected 

cells and their surrounding environment, especially by irreversibly down-

regulating major histocompatibility complex class I (MHC I) expression. This is 

achieved in a variety of ways, including the disruption of protein assemblage and 

traffic at the Golgi apparatus, thus preventing MHC I from being displayed on the cell 

surface [21]. Impaired protein oligomerization in the Golgi apparatus was also the 

mechanism proposed to explain connexin 43 down-regulation and the loss of 

intercellular gap junctions in bovine bladder carcinomas (Figure 2) [41]. This loss of 

gap junctions is likely to contribute to make infected cells refractory to inhibitory 

signals from neighbouring cells.   

BPV-1 was also the first papillomavirus found to down-regulate the expression of the 

Toll-like receptor 4 (TLR4) through its oncoproteins E2 and E7, using transfected 

equine fibroblasts cultures in vitro [42]. TLRs are involved in triggering the innate 

immune response and, accordingly, TLR4 down-regulation is expected to contribute to 

immune evasion and viral persistence.  
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Recent findings show how ptaquiloside, the main bracken carcinogen, helps inhibiting 

the innate immune response. Ptaquiloside was shown to enhance the expression of 

metallothienin-1 and -2 in natural killer (NK) cells, resulting in lower intracellular zinc 

concentrations and in NK function down-regulation [43-44] (Figure 3). One of 

the functions of NK cells is to destroy virus-infected cells and certain tumour cells. In 

the context of papillomavirus infection, this immunosuppressive effect is likely to 

promote viral persistence and tumour development. The same group demonstrated that 

NK cell function can be restored upon selenium administration [45]. These findings 

highlight the importance of environmental immunosuppressants, such as 

bracken, in the pathogenesis of papillomavirus-induced tumours.  

BPV persistence, latency and transmission 

The E2 protein associates with the host’s chromatin and with the viral genome during 

mitosis, allowing viral maintenance in dividing cells. The actual mechanisms through 

which the E2 protein tethers papillomaviral episomes to host chromosomes are the 

subject of intense debate [46]. Using synchronised live cells, Feeney et al. [47] have 

shown that the DNA helicase ChlR1 is required for the association of BPV-1 E2 with 

chromosomes. In their recent paper, the authors proposed that ChlR1 is required for 

loading the E2-associated viral genomes onto chromosomes during the S-phase, but not 

for their retention during mitosis.  

The transcriptional regulator functions of E2 proteins have also been studied using 

BPV. A recent study describes the different regulator activities of the full-length E2 

protein (E2-TA) and of its two truncated isoforms, E2-TR and E8E2 [48], both of which 

have been described as transcriptional repressors. This study shows that, while E8E2 

indeed acts as a transcription repressor, E2-TR acted as a transcriptional activator of E2-

dependent promoters. However, in contrast to E2-TA, E2-TR activated transcription 

from a promoter-proximal position and partially inhibited P89, while E8E2 led to 

complete repression. 

Latent BPV-2 infection of peripheral blood lymphocytes resulting in chromosomal 

aberrations has long been known to occur in cattle [49-50], However, investigations on 

viral activity and the expression of viral proteins in peripheral blood mononuclear cells 

(PBMCs) have only started. Hartl et al. [51] reported that foals challenged 

intradermally with BPV-1 develop viraemia during the early stages of 

tumourigenesis. Viral DNA was detected in PMBCs before pseudo-sarcoids become 

palpable, at day 11-32 post-
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challenge, and the blood viral load correlates with tumour size. Moreover, E5 mRNA 

was demonstrated in PMBCs, indicating that viral oncogenes are expressed in these 

cells. Roperto et al. [52] also reported BPV-2 E5 expression in monocytes, B-

lymphocytes and, especially, in CD4
+
 and CD8

+
 T-lymphocytes from cattle with urinary 

bladder tumours. These two cell populations were the only ones to also show expression 

of the L1 protein, associated with productive infections, and the authors accordingly 

concluded that they represent the most important BPV-2 blood reservoir.  

In a recent study, viral DNA has also been found in the epidermis of horses with 

inflammatory skin conditions and in the epidermis overlying sarcoids, especially in 

early-stage, “occult”, flat lesions [53]. Results suggest that a transient, productive 

infection may take place in the overlying epidermis during the early phases of sarcoid 

development [54-55]. These important findings raise the possibility of BPV 

transmission between equids, through direct contact or through fomites. 

The presence and replication of BPV-2 in the bovine placenta has also been recently 

demonstrated [5]. Viral particles were demonstrated by electron microscopy in both 

endometrial and chorionic epithelial cells. Expression of E2 and E1 was confirmed, 

together with that of E5, which co-localized with PDGFR Although there was already 

some data to support placental infection by HPV [56-57], these important findings 

confirm that papillomavirus are capable of establishing a productive infection in 

placental cells in vivo, and bring additional support to the hypothesis that children can 

be infected by HPV in utero.     

Prophylactic and therapeutic vaccines  

Innovative prophylactic and therapeutic vaccination strategies for equine sarcoids and 

bovine urinary bladder tumours have recently been advanced, mostly based on the use 

of virus-like particles (VLPs). In 1996, Kirnbauer et al. [58] first reported in a seminal 

study, that VLPs comprising the BPV-4 L1 and L2 or only the L1 protein triggered a 

strong humoural response in calves. This response led to immunity on a subsequent 

challenge with BPV-4, but did not induce papiloma regression in previously infected 

animals [52].  

Later on, chimeric VLPs comprising BPV-1 L1 and E7 proteins were tested on sarcoid-

bearing donkeys [59] and horses [60] for therapeutic purposes. Despite a robust 

humoural response against L1 [60] and a tendency for tumour regression in some 

animals, results were not conclusive. However, very recently, BPV-1 L1 VLPs were 
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tested in a dose-escalation trial for the vaccination of healthy horses and were shown to 

induce a long-lasting humoural response, which the authors deemed appropriate for 

protection [8].  

A binary ethylenimine-inactivated and saponized BPV-2 vaccine was also tested against 

BPV-associated bovine urinary bladder tumours, but no regression was obtained [7]. All 

these results agree in showing that current BPV vaccination strategies may be more 

useful for prophylactic rather than therapeutic purposes.    

Conclusions 

Research on BPV continues to be of use for elucidating the mechanisms underlying 

virally-induced cell transformation. Indeed, in order to study important topics such as 

the synergy between papillomavirus and bracken toxins, BPV-based models can hardly 

be put aside. Research on BPV is also expected to continue providing useful leads and 

clues concerning the functions of viral proteins, especially E2 and E5. Studies on the 

mechanisms of viral persistence and transmission through blood lymphocytes and the 

placenta are of particular interest, due to their implications for public health. Important 

information is also being gained regarding distressing animal pathologies with high 

economical impact, such as bovine oro-oesophageal and urinary bladder cancer or 

equine sarcoids. At the same time, the ever-growing number of known BPV types holds 

the promise of new and unexpected possibilities for studying the molecular biology of 

papillomavirus.   
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Figure 1- Neighbour-joining phylogenetic tree of bovine papillomaviruses 
(BPV, blue) and some high risk human papillomaviruses (HPV, red), 
based on the L1 nucleotide sequence. Greek letters indicate the genus. 

Figure 2- Some of the BPV-1 E5 oncogenic actions on PDGFR  and the Golgi apparatus (G), 
in bovine urothelial carcinomas. E5 activates PDGFR , which triggers the PI3K-AKT 
pathway and recruits the GRB2-SOS, activating RAS. AKT up-regulates cyclin D and is 
proposed to activate JNK, leading to altered gene expression. In the Golgi apparatus, E5 blocks 
MHC I (green) and connexin 43 (yellow) assembly and traffic, down-regulating surface MHC I 
and gap junctions.



Figure 3- Interaction between BPV-4 and some bracken toxins in upper digestive carcinogenesis. BPV-4 
infects normal epithelial cells (grey), initiating exophytic proliferations (papillomas, in blue), which show 
virion production (red) and E7 oncoprotein expression (yellow). In a second phase, quercetin (1) is 
proposed to up-regulate E7 expression while ptaquiloside (2) blocks natural killer (NK) cell function, 
reducing immunosurveillance, and contributes to genomic instability, promoting carcinogenesis and 
leading to oro-oesophageal carcinomas (violet).  
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