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Abstract 

The effect of meteorological variables on surface ozone (O3) concentrations was analysed 

based on temporal variation of linear correlation and artificial neural network (ANN) models 

defined by genetic algorithms (GAs). ANN models were also used to predict the daily 

average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies 

were applied using GAs, two of them considering threshold models. In these models, the 

variables selected to define different regimes were daily average O3 concentration, relative 

humidity and solar radiation. The threshold model that considers two O3 regimes was 

the one that correctly describes the effect of important meteorological variables in O3 

behaviour, presenting also a good predictive performance. Solar radiation, relative humidity 

and rainfall were considered significant for both O3 regimes; however, wind speed 

(dispersion effect) was only significant for high concentrations. According this model, high 

O3 concentrations corresponded to high solar radiation, low relative humidity and wind 

speed. This model showed to be a powerful tool to interpret the O3 behaviour, being useful 

to define policy strategies for human health protection regarding air pollution. 

Keywords: Air quality; Surface ozone concentrations; Meteorological effect; Statistical 

models; Artificial neural networks; Genetic algorithms; Evolutionary procedure. 18 
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1. Introduction

Surface ozone (O3) is one of the most important air pollutants due to its negative effects not 

only on human health, but also on climate, vegetation and materials (Brauer &Brook 1997, 

Lippmann 1991). It is a secondary pollutant, formed by chemical reactions between its 

precursors that occur in atmosphere. These chemical reactions are very complex, which 

attributes to O3 a characteristic behaviour very difficult to predict. For instance, the O3 

concentrations at rural sites are usually higher than the ones measured at urban sites, 

where several air pollution sources can be found (Coyle et al. 2002, Jaffe &Ray 2007, 

Pires et al. 2012a). Aiming the prediction of O3 concentrations, several research studies 

were recently performed (Butler et al. 2012, Colette et al. 2012, Huang et al. 2013, 

Manders et al. 2012, Thunis et al. 2013). The developed models can be used to replace air 

quality monitoring or to analyse the effect of meteorological and environmental variables on 

the predicted air pollutant concentration. Additionally, the forecasting of air pollutant 

concentrations is needed to create preventive and clear actions regarding high concentration 

episodes. 

As mentioned above, the behaviour of O3 concentrations is very complex, as it is the result of 

the combination of chemical formation, transport (horizontally and vertically), destruction and 

deposition. As a photochemical pollutant, it is expected that meteorological variables (mainly 

temperature and solar radiation) have a strong impact in O3 concentrations. To develop 

predictive models, two main approaches can be applied: phenomenological and statistical 

models. The first approach showed to be accurate. It combines models of emissions with those 

of meteorological and chemical atmospheric processes. However, the main disadvantages 

of these approaches are: (i) the scarce emission inventories and meteorological data; (ii) the 

costly computation; (iii) the difficult operation; and (iv) the requirement of a high level of 

expertise. On the other hand, statistical models require less data to be developed, being 

inexpensive and easy to operate. For that reasons, they were commonly used in several recent 

research studies. Linear and nonlinear models have been applied to predict ozone 

concentrations. Multiple linear regression, principal component regression, quantile 

regression, among others, are few examples of linear models (Abdul-Wahab et al. 2005, 

Baur et al. 2004, Pires et al. 2012b) and, on the other hand, artificial neural networks (ANNs) 

are the nonlinear models most commonly used (Comrie 1997, Pires &Martins 2011, Yi 

&Prybutok 1996). As the definition of the model structure have a strong influence of its 

performance, evolutionary procedures were also used to optimize simultaneously the 

structure and parameters. Genetic algorithms (GAs) and genetic programming are some of 

the procedures applied to air quality modelling (Feng et al. 2011, Pires et al. 2010, 2011). 

GAs are generally associated with ANNs to optimize their structure 
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(Feng et al. 2011, Pires et al. 2012c). Pires et al. (2012c) presented three different 

methodologies to create ANNs with GAs, two of which are threshold models, aiming to 

predict the next-day hourly average O3 concentrations at an urban site in Porto, Portugal. 

These methodologies presented good predictive performances and were able to identify 

different ozone regimes, where the exploratory variables present different influences on the 

output variable. Taking into account the potential of these methodologies, this paper aims to 

analyse single and combined effect of meteorological variables on surface ozone behaviour 

and to predict its daily average concentrations. 8 

2. Data and Models
9 

2.1. Site characterization and data 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

The study was conducted in the city of Campo Grande. This city is located in central western 

Brazil, with a population of approximately 724,000 inhabitants and a high degree of economic 

development, highlighting the importance of agribusiness. 

Daily average concentrations of ozone (O3) were obtained at the Department of Physics of 

Universidade Federal de Mato Grosso do Sul (UFMS). It is considered an urban site 

without influence of traffic or industrial sources. The ozone analyser has the working 

principle of the absorption of ultraviolet radiation by ozone molecule. The analyser is 

installed near Campo Grande, away from local resources. O3 is continuously monitored 

and 15-min average concentration are registered. Daily averages are then calculated 

based on these values. Meteorological data were collected at Embrapa (Gado de Corte – 

Campo Grande), with the distance to UFMS of about 5 km. These data are considered 

representative of all region and include daily average (Ta, oC) and maximum (Th, oC) 

temperature, solar radiation (SR, W m-2), relative humidity (RH, %), wind speed (WS, m/s) 

and rainfall (RF, mm). The analysed period was from 2004 to 2010. 24 

2.2. Models 
25 

26 

27 

28 

29 

30 

31 

The development of ANN models requires the division of the data into three sets: training, 

validation and test. The training and validation sets corresponded to the period 2004-2008 

(1671 data points) and 2009 (365 data points), respectively. The test set corresponded to 2010 

(364 data points).  

In this study, feedforward ANN with three layers was applied to predict daily average O3 

concentrations using eight input variables: Ta, Th, SR, RH, 1/RH, WS, RF and O3 measured in 

the previous day. A linear function was used as activation function of the output neuron. 32 
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Concerning the hidden neurons, four functions were tested: sigmoid, hyperbolic tangent, 

inverse and radial basis. The early stopping method (training procedure is stopped when an 

increase of validation error is observed) was applied, to avoid the overfitting. Three 

methodologies proposed by Pires et al. (2012c) were applied for defining the optimum 

structure of ANN models using genetic algorithms (GAs) – GA-ANN models (see Table 1). 

GA-ANN1 model is the linear combination of three ANN models. In this model, GAs defined 

the transfer function (for hidden neurons), the number of hidden neurons (up to 8) and the 

input variables for each ANN model. GA-ANN2 model considered two O3 regimes. In this 

model, GAs defined the threshold variable and value, the transfer function (for hidden 

neurons), the number of hidden neurons (up to 8) and the input variables for each ANN 

model (one for each regime). GA-ANN3 model considered four O3 regimes. Besides the 

threshold variables and values, GAs defined the transfer function (for hidden neurons) and the 

number of hidden neurons (up to 8) that was used in the four ANN models (in this 

methodology, ANN models have the same structure). All models were coded by the authors 

in MATLAB ® routine. 

14 

2.3 Performance indexes 
15 

The ANN performances were evaluated through the calculation of five performance indexes: 16 

mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE), index of 17 

agreement of second order (d2) and Akaike Information Criterion (AIC). 18 

MBE indicates if the experimental values were over or under estimated. MAE and RMSE 19 

measures residual errors, which gave a global idea of the difference between the experimental 20 

and the predicted values. The values of d2 show the extent that predicted deviations differ from 21 

the observed deviations about the mean observed value, indicating the degree to which model’s 22 

predictions are error free (Pires 2009) The Akaike Information Criterion (AIC) is a measure of 23 

goodness of fit that penalises the model complexity (Pires et al. 2012c). The model with the 24 

smallest AIC is the one that most efficiently fits the data. 25 

3. Results and discussion
26 

3.1. Profiles of O3 concentrations and meteorological variables 
27 

28 

29 

30 

31 

Table 2 presents the annual averages of the meteorological variables and O3 concentrations. 

The annual average concentrations ranged from 15.1 to 20.1 ppb, being the highest value 

obtained for 2007. In this period, slightly higher temperatures and solar radiation were 

observed as well as low RH and WS. This observation is in agreement with the 

research studies performed by other authors (Camalier et al. 2007, Jacob &Winner 2009). 

Camalier et al. (2007) 
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developed a generalised linear model developed to predict O3 concentrations that explained 

80% of the variance. This model showed a positive correlation with temperature and negative 

with RH, considering these variables as the most important ones. Regarding WS, low values in 

polluted regions cause O3 increase due to the longer reaction time and high aerodynamic 

resistance to dry deposition (Baertsch-Ritter et al. 2004, Dawson et al. 2007). In addition, high 

WS promotes the dispersion of O3 precursors and thus the decrease of its concentration. 

Figure 1 presents the annual average profiles of O3 concentrations during the analysed period. 

For each year, the highest monthly average concentrations occurred mainly in September (in 

2005, it occurred in August), period between dry and wet seasons. Figure 2 shows the monthly 

average values of meteorological variables. The highest monthly average temperatures were 

observed in the period from November to January, while the lowest values occurred between 

May and July (values between 18.6 and 27.5 oC). Similar profile was observed for SR. These 

meteorological variables are often associated to high O3 concentrations, but in this study the 

highest values of these variables did not occur at the same period. However, in 2007 (when the 

highest monthly average O3 concentration occurred – 39.2 ppb), the highest temperatures were 

also measured in September, which may contribute to the increase of photochemical production 

of this secondary pollutant. Comparing to the average values measured in September, it was 

observed an increase of about 40% in O3 levels in 2007 due to the different annual profile of 

temperatures observed in this year. Regarding other meteorological variables, September 

2007 was the month with the lowest RH value (36.9%) from all period and it was the 

month with lowest RF comparing with same period of other years. 21 

3.2. Linear correlation analysis 
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Figure 3 shows the temporal variation of linear correlation (monthly basis) between O3 

concentrations and meteorological variables. With respect to temperature, positive 

correlations were usually observed which is in agreement with what was expected. The 

highest correlation values were observed in September 2005 (R=0.864) and 2008 

(R=0.839), and April 2010 (R=0.804). In September 2007, the correlation value was 

also high (R=0.737). SR also presented positive correlation with O3. On the other hand, 

RH was almost always negatively correlated with O3 concentrations. The influence of this 

variable took more relevance in 2008 with six absolute correlation values greater than 

0.75. In September 2007, this variables presented a low and positive correlation value 

(R=0.129). Concerning WS and RF, no strong correlations (>0.75) with O3 concentrations 

were observed. 

32 

3.3. Prediction of O3 concentrations 
33 
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Several GA-ANN models were developed to predict daily average O3 concentrations using 

meteorological variables as inputs. Two of these models are threshold models that considered 

two or more regimes where relationship between the output and input variables are different. 

The change from one regime to another depends on the value (threshold value) of a specific 

input variable (threshold variable). GAs were used to optimise the ANN structure, input 

variables, transfer function and threshold variable and value (for threshold models GA-ANN2 

and GA-ANN3). Table 3 shows the best achieved GA-ANN models. GA-ANN1 considered 

the average of the outputs of three ANN models with radial basis function as activation 

function in the 8 hidden neurons, having 211 parameters. All the variables were selected. 

GA-ANN2 selected the daily average O3 concentrations of previous day as threshold 

variable. For O3 concentrations less than 34.6 ppb, the daily average concentration of 

the next day was dependent on Th, Ta, SR, RH, RF and O3 and for concentrations higher 

than threshold value, WS was also considered significant in the prediction and Th was not 

selected. GA-ANN2 also considered radial basis function as activation function in 8 and 5 

hidden neurons in the two ANN models, having 114 parameters. GA-ANN3 considered two 

threshold variables: RH and SR. All ANN models considered hyperbolic tangent as 

activation function in the 8 hidden neurons. GA-ANN3 selected all input variables, 

having 243 parameters. These models presented the best performance in the fitting of 

O3 concentrations using the training and validation set (see Table 4). In this period, GA-

ANN2 presented better performances than GA-ANN1 and GA-ANN3 models (lower MAE, 

RMSE and AIC, and higher d2). These models were then applied to test set (not used in their 

development) to evaluate their predictive performance. GA-ANN1 presented better 

performance indexes (lower MAE and RMSE, and higher d2); however, taking into 

account the complexity of the achieved model (using AIC parameter), GA-ANN2 model 

was the one that most efficiently predicted O3 concentrations. GA-ANN3 presented the 

worst performance in both training and test periods. Figure 4 shows the model predictions 

of GA-ANN1 and GA-ANN2 during test period. GA-ANN1 prediction values were almost 

always closer to the measured data.  

27 

3.4. Influence of meteorological variables in different O3 regimes 
28 

29 

30 

31 

32 

33 

The analysis of the influence of meteorological variables on O3 concentrations were 

performed through the GA-ANN1 and GA-ANN2 models, which presented good 

performances in the O3 prediction. The combination effect of two meteorological variables 

were tested for Th, SR, RH and WS (the most selected variables by the models). The tested 

values belonged to the range defined by the data used for the models’ development: 

10.9<Th<39.5, 9.3<SR<359.8, 19.2<RH<98.0 and 0<WS<12.1. Figure 5 shows the 

influence of the combination of two 
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meteorological variables on O3 concentrations according GA-ANN1 model. The effect of Th on 

O3 concentrations was clear in all tested combinations: with SR, RH and WS. O3 concentrations 

increase with Th and presented the maximum values for 48<SR<243 (maximum O3 

concentration of 24.0 ppb), 19<RH<81 (maximum O3 concentration of 24.3 ppb) and 4<WS<5 

(maximum O3 concentration of 23.0 ppb). Regarding SR, all combinations showed that O3 

concentrations corresponded to middle or lower values. This observation is contrary to what is 

expected in terms of O3 chemistry (Camalier et al. 2007, Jacob &Winner 2009). As a 

photochemical pollutant, its concentration should increase with solar radiation. With respect to 

RH, the GA-ANN1 model identified two distinct O3 behaviours. The combination effect Th-RH 

showed that low O3 concentrations corresponded to low RH, while in SR-RH the opposite 

relationship was observed. Chen et al. (2011) have demonstrated that RH favours O3 

decomposition, showing a negative correlation. Concerning WS, the combination of Th-WS 

showed that high O3 concentrations corresponded to high values. This observation is also at 

odds with what was expected. High WS values promote the dispersion of pollutants and thus 

their concentration tends to be low. In addition, no significant variation on O3 concentration 

was observed with the tested combinations of WS with SR and RH.  

Figure 6 shows the combined effect of the selected meteorological variables according GA-

ANN2 model. For low O3 concentrations (O3 <= 34.6 ppb), WS was not selected by the model, 

i.e. WS did not present any significant influence on O3. Thus, only the binary effects Th-SR, 

Th-RH and SR-RH were analysed in this O3 regime. High O3 concentrations was observed for 

high Th and SR and low RH. For O3 > 34.6 ppb, Th was not considered significant in this O3 

regime. High O3 concentrations (near 50 ppb) were observed for high SR and low RH and WS, 

being in agreement with other research studies (Baertsch-Ritter et al. 2004, Camalier et al. 2007, 

Dawson et al. 2007, Jacob &Winner 2009, Ordonez et al. 2005). The importance of WS in high 

O3 concentrations was also identified by other authors. For instance, Baertsch-Ritter et al. 

(2004) reported that O3 peak concentration lowers 15% when WS was doubled.  

This analysis of the effect of meteorological variables in O3 concentration should be performed 

for the development of predictive models. In this study, GA-ANN1 model achieved the best 

predictive performance, but did not describe the real effect of meteorological variables on O3 

concentrations. On the other hand, GA-ANN2 also obtained a good predictive performance with 

less complexity (low AIC value). Additionally, this model presented the accepted relationship 

between the studied variables, in special for high O3 concentrations (which is important for the 

definition of policy measures for human health protection). Accordingly, GA-ANN2 

methodology should be applied to predict the O3 concentrations.  34 
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4. Conclusions
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Correlation analysis between O3 concentrations and meteorological variables showed the 

positive impact of temperature and solar radiation and negative influence of relative humidity. 

The highest O3 concentrations were observed in a period, when temperature presented high 

correlation value and low values and low impact were observed for relative humidity. Wind 

speed and rainfall did not show strong influence on O3 concentrations. 

Three different methodologies were applied to define ANN models through GAs to predict 

daily average O3 concentrations. Two of them are threshold models and, despite not 

presenting the best predictive performance, the one that assumes two regimes was selected. 

This model presented less complexity (fitted the data most efficiently) and it describes the 

real relationship between the O3 concentrations and the meteorological variables. In addition, 

it assumes that the meteorological effect on O3 concentrations changed, when O3 

concentrations surpassed 34.6 ppb. Solar radiation, relative humidity and rainfall were 

considered significant for both O3 regimes; however, wind speed (dispersion effect) was 

only significant for high concentrations. The analysis of meteorological effect on O3 

concentration through the model showed that high O3 concentrations are associated to high 

solar radiations, low relative humidity and wind speed. The good predictive performance of 

the GA-ANN models showed that it can be useful to minimize the population exposure 

to high O3 concentration episodes and to improve the political policies regarding 

environmental health planning. 
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Table 1. Structures of artificial neural network models (from Pires et al. (2012c)) 
1 

2 

3 

Model Structure 

GA-ANN1 � = � �� × ��	�
��
�
���  

GA-ANN2 � = ���	�
��
, �� �� ≤ � ��	�
��
, �� �� > � 
GA-ANN3 � =

���
�����	�
��
, �� �� ≤ ����	�
��
, �� �� > �� , �� �� ≤ �� 

���	�
��
, �� � ≤ ����	!
��
, �� � > �� , �� �� > ��
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Table 2. Annual average of meteorological variables and O3 concentrations 
1 

2004 2005 2006 2007 2008 2009 2010 

Th 23.2 23.4 23.5 23.7 23.4 23.5 23.8 

Ta 29.9 29.8 30.2 30.7 29.9 29.7 30.2 

SR 209.0 199.0 205.0 208.9 206.9 197.5 189.1 

RH 66.6 68.1 65.5 62.5 65.7 70.0 64.1 

WS 3.0 3.1 3.1 3.2 5.9 5.8 6.0 

RF 3.3 4.5 3.2 3.4 3.6 4.7 3.4 

O3 15.1 18.0 18.3 20.1 17.3 16.1 18.1 

Th – maximum temperature (ºC), Ta - average temperature (ºC), SR – solar radiation (W m-2), RH - relative humidity 
2 

(%), WS - wind speed (m/s), RF – rainfall (mm), O3 – ozone concentrations (ppb). 
3 
4 

5 



Table 3. GA-ANN models: their input variables, activation functions (AF), number of hidden neurons (HN) and number of model parameters (MP). 1 

2 

3 

4 

Model AF HN MP 

GA-ANN1"�|$%�! = 13 �  �()** +)12. -
+ 145 , 46, "�7
+

13 �  � /01, 02, 34, 45, 13 �  �(01, 02, 34, 83, "�-
net1 – radial 

basis net2 – 

radial basis net3 

– radial basis 

net1 – 8 

net2 – 8 

net3 – 8 

211 

GA-ANN2

"�|$%�! = 9 �  � /01, 02, 34, 45, 145 , 46, "�7 , �� "� ≤ 34.6 1�  � /02, 34, 45 , 83, 46, "�7 , �� "� > 34.6 
net1 – radial basis 

net2 – radial basis 

net1 – 8 

net2 – 5 
114 

GA-ANN3

"�|$%�! = ��
�<�  ()** +)12. -, �� 45 ≤ 41.6

<�  ��()** +)12. -, �� 45 > 41.6 , �� 45 ≤ 65.1�  �()** +)12. -, �� 34 ≤ 197.4�  !()** +)12. -, �� 34 > 197.4 , �� 45 > 65.1
neti – hyperbolic tangent neti – 8 243 
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Table 4. Performance of achieved models in both training and test periods 1 

MBE - mean bias error, MAE - mean absolute error, RMSE - root mean squared errors, d2 - index of agreement, AIC - Akaike Information Criterion. 2 

3 

Model 
Training and validation Test 

MBE MAE RMSE d2 AIC MBE MAE RMSE d2 AIC 

GA-ANN1 -0.02 2.57 3.62 0.94 5661 1.05 1.49 0.96 714 

GA-ANN2 -0.03 2.52 3.52 0.95 5348 

-0.02 

0.12 1.22 1.73 0.95 626 

GA-ANN3 -0.09 2.68 3.89 0.94 6014 -0.93 2.57 4.08 0.78 1509 



Figure Captions 1 

Figure 1. Annual average profiles of O3 concentrations (in ppb) during the analysed period. 
2 

Figure 2. Monthly average values of: (a) average temperature; (b) solar radiation; (c) relative 
3 

humidity; (d) wind speed; (e) and rainfall. 
4 

Figure 3. Temporal variation of linear correlation between O3 concentrations and: (a) average 
5 

temperature; (b) solar radiation; (c) relative humidity; (d) wind speed; (e) and rainfall. 
6 

Figure 4. Model predictions of GA-ANN1 and GA-ANN2 during test period. 
7 

8 

9 

10 

11 

Figure 5. Combined effect of meteorological variables on daily average O3 concentrations 

(ppb) according GA-ANN1 model: (a) maximum temperature and solar radiation; (b) 

maximum temperature and relative humidity; (c) maximum temperature and wind 

speed; (d) solar radiation and relative humidity; (e) solar radiation and wind speed; and (f) 

relative humidity and wind speed. 12 

Figure 6. Combined effect of meteorological variables on daily average O3 concentrations 
13 

(ppb) according GA-ANN2 model for "� ≤ 34.6 ppb (a, c and e) and "� > 34.6 ppb (b, d and 
14 

f): (a) maximum temperature and solar radiation; (b) solar radiation and relative humidity; (c) 
15 

maximum temperature and relative humidity; (d) solar radiation and wind speed; (e) solar 
16 

radiation and relative humidity; and (f) relative humidity and wind speed. 
17 

18 

19 
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(e) 
Figure 2. 1 
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(c) 

(d) 
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(e) 
Figure 3. 1 
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Figure 4. 
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Figure 5. 
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Figure 6.  

 




