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Abstract 

This work studies the role of using cool paints and/or thermal insulation on the 

thermal behavior and energy demand of a residential building. Buildings with thermal 

characteristics representing both old and  new constructions are considered; the results 

were obtained using the  dynamic computer simulator ESP-r. 

For a case-study building in Portugal, in the summer,  it was found that an increase 

in roof and façade value of  total solar reflectance from 50 % to 92 % reduces the 

maximum free-float indoor temperature between 2.0 ºC and 3.0 ºC in old construction  

(without  thermal insulation), and between 1.2 ºC and 2.2 ºC in new construction (with 

thermal insulation). This has as a trade-off effect the decrease of the minimum indoor 

temperature of up to 1.5 ºC. The results of annual energy demand for heating show a 

maximum penalization of about 30 % when using cool paints. However, it was 

demonstrated that the cooling  demand  almost  disappears, thus eliminating the need 

to install air- conditioning devices. 

The analysis of two specific hot periods of real summer weather data shows that the 

sun’s altitude is critical on which solution originates the highest temperature reduction. 

 

 
1. Introduction 

 

Since the 90s, the frequency and intensity of heat waves have increased [1] and weather 

events like these are expected to be more severe in the future [2]. These phenomena have 

a negative impact on human health, decreasing indoor-thermal comfort in buildings and 

thus increasing energy consumption. 

The worldwide energy consumption, particularly to obtain indoor thermal comfort in 
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buildings, has had a constant growth. In Europe, between 1990 and 2005, the absolute 

level of final household energy consumption rose by an average of 1.0% per year and, in 

2005, the residential sector accounted for 26.6% of the final energy consumption [3]. In 

Portugal, the fraction of energy for indoor thermal comfort already has a significant 

impact in global energy demand, approximately 22% of the energy used in residential 

buildings [4]. 

Until 2020, the European Union (EU) is committed to reduce energy use by 20%, referred 

to 1990 [5]. To achieve this goal, the EU has imposed that all Member States must 

implement measures to apply minimum energy performance requirements for buildings 

and ensure the certification of building energy performance [6]. According to these 

guidelines, the Portuguese government decided to classify buildings according to their 

thermal efficiency [7-9]. 

One of the strategies that can be used to decrease energy consumption during the heating 

season is to coat buildings façades and roofs with special coatings called cool paints. 

There are two ways where cool paints may contribute to control the heat load of a 

building: reflecting the incident solar radiation and radiating the heat absorbed by 

emitting infrared (IR) radiation. 

The reflectance is normally characterized by the so-called total solar reflectance index 

(TSR). The value of TSR is obtained by analyzing the reflectance over twenty specific 

wavelengths, which covers the solar spectrum [10]. 

The color of a paint film depends on its visible reflectance spectrum. However, 

increasing the IR reflectance of coatings, which accounts for almost 52% of the total solar 

radiation energy e see Fig. 1, it is possible to increase the solar radiation reflection 

without interfering with the surface color. 

The so-called cool pigments can dramatically contribute to the TSR increase of paints, 

enhancing the reflectance of the IR radiation. 

Most of the paints show very high emissivity values; for example, usual exterior paints 

show emissivity values in the range of 0.90. It means that a paint film when heated 

radiates in the IR spectrum 90% of the energy that a black body would do. The emissivity 

is mostly not disturbed by the surface aging or cleanness. 

In 1931, Paul Kubelka and Franz Munk published an article deriving a mathematical 

equation of the reflectance of achromatic paints as a function between the reflectance of 

the substrate and the coating thickness [12]. Later, in 1947, Kubelka determined the 

validation range of the Kubelka-Munk theory and developed new formulas more 

adapted for practical use [13]. More recently, a great deal of research concerning the 

development and the use of cool paints has been conducted by the Lawrence Berkeley 

National Laboratory (LBNL). Akbari [14] studied the impact of a cool roof real 

application on the energy savings and comfort performance in two small non-residential 

buildings, located in Nevada. This author showed energy savings and drop of 

temperature in the summer. Levinson et al. [15] identified and characterized 87 pigments 

with cool properties, which allowed LBNL to create a pigment database that has free 

access [16]. In addition, Levinson et al. [17] assessed the effect of soiling and cleaning 

(wiping, rinsing, washing and bleaching) on the value of the reflectance of the roof 

coating samples. These authors concluded that wiping restores some of the initial 

reflectance, but rinsing and/or washing are more effective and bleaching does not greatly 

increase the solar reflectance of a washed roof. The same workgroup also assessed the 

solar reflectance variation over three-year weathering tests on asphalt shingles, located 
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in Berkeley, California, and in Houston, Texas. Berdahl et al. [18] observed that after this 

period of time changes in solar reflectance were small. Researchers from the LBNL also 

described methods for creating solar-reflective surfaces. First in 2007, Levinson et al. [19] 

presented how to create non-white surfaces and their application to a wide variety of 

residential roofing materials, including metal, clay tile, concrete tile, wood and asphalt 

shingle and, in 2010, Levinson et al. [20] created a prototype with the demonstration of 

a new process for coating concrete tile and asphalt shingle roofing products that uses a 

two-layer spray coating. 

Other authors made similar studies, for example, Ichinose et al. [21] performed an 

interesting study about the paint performance over time with respect to surface 

contamination and degradation of reflectivity throughout environmental exposure tests. 

This study demonstrates that panels that were coated with high-reflectivity paint can 

preserve thermal conditioning effects longer than the conventional ones. Romeo and 

Zinzi [22] also studied the impact of a cool roof real application on the energy and 

comfort performance in an existing non-residential building located on the west coast of 

Sicily. The effect of cool coatings in mitigating the thermal conditions was demonstrated 

and an average reduction of 2.3 oC of the operative temperature, during the cooling 

season, was observed. This study also recorded a 54% reduction of the cooling energy 

demand. 

Moreover, studies of cool roof performance have been carried out by computer 

simulation. Building simulation helps not only to predict indoor thermal behavior of 

buildings and their energy consumption (annual cooling and heating load), but also to 

develop environmentally-friendly design options. Luxmoore et al. [23] used a dynamic 

and detailed energy simulation tool, DEROB-LTH, to create recommendation actions 

and strategies to mitigate temperature increase in residential buildings in Queensland, 

Australia. These authors concluded that the heat island impacts can be mitigated 

through the use of light colored or high albedo surfaces (roofs, walls, roads and other 

paved areas). Also Wang et al. [24] used a dynamic thermal simulation software, EDSL 

Tas, to assess a retail shed, located in six different locations around the world, and with 

external surfaces painted with reflective coatings. These authors prove that the use of 

solar reflective coatings is effective in reducing cooling loads and overall electricity 

consumption, in particular in hot climates. Han et al. [25] developed a mathematical 

model to assess the energy performance of different colored roof structures. These 

authors showed cooling load reductions of up to 9.3% when the roof color changes from 

black (solar reflectance value of 15%) to white (solar reflectance value of 52%). The study 

of the energy performance of existing or projected buildings has been growing over the 

years. More recently, however, the thermal comfort of buildings in future weather 

scenarios has been considered using simulation tools [27]. 

In this work, the application of cool paints on a building was assessed using an open 

source simulator, ESP-r [26]. ESP-r is an integrated energy modeling tool for the 

simulation of the thermal, visual and acoustic performance of buildings and the 

evaluation of their energy use associated with environmental control systems. 

This paper focuses mainly on assessing the impact of cool paints and/or thermal 

insulation on the thermal behavior and energy demand of a residential building. 

Buildings with different thermal characteristics (representing both old and new 

constructions) and with cool paints applied both on the roof and façade surfaces are 

assessed. The assumptions made concerning the thermal comfort of the various 
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buildings, operational details and reference TSR of the buildings are all based on the 

Portuguese legislation. This study can provide recommendations for house-owners in 

terms of deciding for one or another thermal comfort solution and is of particular 

relevance for the renovation of old houses. Indeed, especially in this case, the use of 

either of these two thermal comfort solutions has not only different outputs but also very 

different costs. 

 
Fig. 1. Terrestrial global spectrum, AM 1,5, 1000 W m-2 – based on ASTM G173-03 [11]. 

 

2. Simulation 

 

In this work, a single villa was modeled on a yearly basis; it had two floors and a partially 

inhabited attic, as indicated in Fig. 2. The ground floor has a living room (LR), a dining 

room (DR), a kitchen (KT), a toilet (TL), a hall (HL) and stairs (ST). The first floor has 

three bedrooms (BD), a suite (SU), a TL, a bathroom (BR), a corridor (CR) and ST. The 

attic has two parts which are inhabited, a playroom (PL) and ST. Although the building 

was made of all these zones, only some of them were considered to obtain the average 

indoor temperature per floor. The zones considered were the LR, DR and the KT on the 

ground floor, the three BD and the SU on the first floor and the PL in the attic. 

According to the Portuguese law [9], a constant value of 0.6 air changes per hour was 

considered. The internal gains of the zones considered in the calculation of the indoor 

temperature were settled to 4 W m-2, also accordingly to the Portuguese law [9]; in the 

remaining zones, it was assumed to have 1 W m-2 of internal gains (except for the two 

inhabited zones in the attic that were assumed to have no internal gains). 

The building has a total area of 26.3 m2 of windows with clear glass. It was taken into 

account the seasons and the existence of venetian blinds on windows. These venetian 

blinds were simulated as an additional layer over the windows, without any control sys-

tem. Between June and September, the venation blinds cover 75% of each window, while 

during the rest of the year it was assumed 50% of coverage. 

The dynamic thermal behavior and energy demand of this residential building were 

simulated using ESP-r [26]. Simulations of a full year were performed, but for the 

thermal behavior discussion only two specific periods were selected: one typical summer 

and one typical winter weeks as recommended by the simulator. According to the 

manual of ESP-r simulator, typical weeks are determined taking into account the average 

and total heating and cooling degree days and solar radiation data. These values are 

compared with the seasonal values and the weeks with the least deviation (applying 
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user supplied weighting factors [28]) are reported. 

Two different simulations were performed: a free-float simulation to evaluate the indoor 

temperature over the year and a simulation to assess the energy demand needed to keep 

the inside temperature within the recommended range, between 20 oC and 25 oC [9]. Two 

old constructions, without thermal insulation, were studied: i) a single wall façade 

(named BD1) and ii) a double wall façade (named BD2). A modern building, with a 

single wall façade with thermal insulation (named BD3), was also studied. The buildings 

were placed in three different cities of Portugal, in the north, center and south (Porto, 

41o9´N8o36´W; Lisbon, 38o43´N 9o8´W and; Faro, 37o02´N 7o55´W, respectively), to cover 

a wide range of moderate climates. The weather data of these three locations were 

obtained from the website of the Energy Efficiency and Renewable Energy [29]. 

 

 
Fig. 2. Plant of the building: a) ground floor, b) first floor and c) attic. 

 

2.1. Building 1 e single wall 
Building 1 (BD1) is a single wall building (building whose exterior walls had masonry 

composed by a single dense layer e the brick layer). This building has no thermal 

insulation, neither on the façades (external walls) nor on the roof (roof slab). The 

construction details of BD1 are given in Table 1, where all layers that compose the 

construction are described, from the exterior to the interior. These construction details 

and the specifications of each layer (e.g. conductivity, density, specific heat, emissivity 

and absorption) follow the recommendations of the national legislation [30]. 

Two different studies were performed for BD1: i) the impact of using cool paints, both 

on roof and façade surfaces, named BD1-CP, and ii) the impact of using thermal 

insulation, named BD1-TI. 

In BD1-CP, the cool paint was assumed to have 92% of TSR and 0.90 of emissivity, which 

correspond to experimental values obtained for a high quality white exterior paint. 

BD1-TI was assessed assuming the use of 60 mm of expanded polystyrene (EPS) 

insulation, both on external walls and on the roof slab, as shown in Table 2. The 

conductivity value of this insulation material was considered to be 0.042 W m-1 K-1. 
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Table 1. Construction details of the building with a single wall façade (BD1) 

 
 

Table 2. Construction details of BD1-T1 – in bold the differences from BD1 

 
 

2.2. Building 2 e double wall 
Building 2 (BD2) has a double wall façade. BD2 has no thermal insulation either on the 

façades (external walls) or on the roof (roof slab). The construction details of BD2 and 

the specifications of each layer (e.g. conductivity, density, specific heat, emissivity and 

absorption) also follow the recommendations of the national legislation [30]. Differences 

on construction details are indicated in bold in Table 3. 

Similarly to the previous case, two different studies were performed: i) the impact of 

using cool paints, both on roof and façade surfaces, named BD2-CP, and ii) the impact 

of using thermal insulation, named BD2-TI. 

Cool paints having also 92% of TSR and 0.90 of emissivity were considered for BD2-CP. 

BD2-TI was assessed also assuming 60 mm of EPS insulation (conductivity of 0.042 W 

m-1 K-1), both on external walls and on the roof slab, as shown in Table 4. 
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Table 3. Construction details of the double wall façade building (BD2) – differences from 

BD1 highlighted in bold. 

 
 

Table 4. Construction details of BD2-TI, where differences from BD2 are highlighted in 

bold. 

 
 

 

2.3. Building 3 e single wall with thermal insulation 
Building 3 (BD3) followed the present Portuguese laws [9] concerning the overall heat 

transfer coefficients. BD3 is a single wall building. This building has thermal insulation 

both on external walls and on the roof slab e construction details given in Table 5. The 

construction details of BD3 and the specifications of each layer (e.g. conductivity, 

density, specific heat, emissivity and absorption) also follow the recommendations of the 

national legislation [30]. 

As BD3 already considers thermal insulation, so the impact of using cool paints, both on 

roof and façade surfaces were only assessed, named BD3-CP. Values of TSR and 

emissivity of cool paints were 92% and 0.90 respectively, as before. 
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Table 5. Construction details of BD3. 

 
 

 

3. Results and discussion 
 

3.1. Porto, Portugal 
In Porto, the typical weeks considered were from June 26th to July 2nd and from January 

22nd to 28th. Based on typical colors of the buildings and according to the Portuguese 

legislation [9], the façades of the reference case in Porto were assumed to have 50% of 

TSR. The emissivity assumed a value of 0.90. The roof was assumed to have 40% of TSR 

and 0.90 of emissivity (clay tile). 

Results of buildings thermal performance are presented in Tables 6 and 7, related to the 

typical summer week and the typical winter week, respectively. In these tables, Tmax is 

the week average daily maximum temperature and Tmin is the week average daily 

minimum temperature. The indoor temperatures of the ground floor, first floor and 

second floor were separately determined as well as the exterior temperature of the 

building. 

Summer results show that the thermal impact of cool paints is more significant on the 

second floor, followed by the first floor and finally the ground floor. Since the second 

floor has a larger exposed area to solar radiation, in BD1 the cool paints can promote a 

higher cooling effect, 3.0 oC on Tmax. On the ground floor the cooling effect was smaller, 

2.1 oC. 

In the typical winter week, BD1-CP shows a non-desirable reduction of Tmin between 0.8 
oC and 1.4 oC. Since cool paints are related to radiation control and the level of radiation 

in winter is expected to be low, these values show otherwise. Indeed, Fig. 3 shows the 

daily direct solar radiation for both typical weeks; the winter irradiation is just 38% 

smaller than the summer irradiation. 

Table 8 shows annual cooling and heating demand of Porto. For BD1-CP, although the 

annual energy demand had a heating load penalization of about 2.9 MWh y-1, it was 
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demonstrated that the cooling demand almost disappears, i.e. the building was 

comfortable even during the peak summer without mechanical cooling. 

In the typical winter week, it was found that BD1-TI led to an increase between 0.7 oC 

and 2.1 oC on Tmin. On the other hand, in the typical summer week, one can see that on 

the ground floor there was a reduction of 0.4 oC on Tmax, while on the first and second 

floors there was a temperature increase of 0.4 oC. The temperature reduction on the 

ground floor is due to the thermal inertia of the ground (soil), which leads to a lower 

ground temperature compared to the exterior air temperature. Therefore, the use of 

thermal insulation helped to keep or to reduce the indoor temperature of the ground 

floor. Table 8 shows that these temperature variations had an impact on the energy 

demand of BD1-TI: a very significant reduction of the cooling demand was observed, 

while a drop in the heating demand of about 1.2 MWh y-1 was noted. 

In order to perform a comparison of thermal insulation (BD1-TI) with the other two 

previous cases (reference case e BD1 e and cool paints e BD1-CP), Fig. 4 shows the hourly 

temperature history over the typical summer week. The exterior air temperature history 

is also presented. 

Although the use of thermal insulation had the greatest reduction on the impact of 

exterior air temperature variations, decreasing the indoor temperature range, BD1-TI 

exhibited, most of the time, the highest indoor temperature. On the other hand, cool 

paints led to a permanent and significant reduction in the indoor temperature. 

It should also be noted that simulations with BD1-CP and BD1-TI having double glazed 

windows were performed; however results showed that the use of double glazed 

windows have no significant impact. 

Results of BD2-CP are similar to those obtained for BD1-CP. The typical summer week 

showed a Tmax reduction between 2.0 oC and 3.0 oC and in the typical winter week a drop 

between 0.8 oC and 1.5 oC on Tmin was observed. Table 8 shows that also in this case the 

cooling demand almost disappeared and the annual heating demand had an increase of 

about 2.8 MWh y-1. 

For BD2-TI, in the typical winter week, an increase between 0.6 oC and 2.7 oC on Tmin was 

observed. In the typical summer week occurred a slight reduction of 0.2 oC of Tmax on the 

ground floor and an increase of 0.8 oC on each of the other floors. In Table 8, one can see 

that these results led to a decrease of about 4.1 MWh y-1 on heating demand and to a 

small raise of the annual cooling demand of BD2-TI. 

In the typical summer week, BD3-CP exhibited a Tmax decrease between 1.2 oC and 2.2 oC 

and, in the typical winter week, a maximum reduction in Tmin of 1.1 oC was observed. 

The annual energy demand had a heating load penalization of about 1.1 MWh y-1, while 

it was demonstrated that cooling demand almost vanishes. 
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Table 6. Tmax over the typical summer week of Porto 

 
 

Table 7. Tmin over the typical winter week of Porto 

 
 

Table 8. Annual energy demand for studied cases, located in Porto  
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Fig. 3. Daily direct solar radiation over the typical weeks. 

 

 
Fig. 4. Hourly temperature history, over typical summer week, for a single wall façade 

building. 

 

3.2. Lisbon, Portugal 
A similar study was performed for buildings located in Lisbon that is ca. 300 km south 

of Porto. In Lisbon, based on typical colors of the buildings and according to the 

Portuguese legislation [9], the TSR of the external wall coating was assumed to be 60% 

for the reference case. The roof was assumed to be clay tile, having 40% of TSR and 0.90 

of emissivity. 

Table 9 shows the average daily maximum temperature e Tmax e over the typical summer 

week of Lisbon and Table 10 exhibits the average daily minimum temperature e Tmin e 

over the typical winter week. In Lisbon, the typical weeks considered were from July 3rd 

to 9th and from January 8th to 14th. 

During the typical summer weeks, the use of cool paints played a more significant role 

in obtaining thermal comfort in Lisbon than in Porto. Table 9 shows that, in BD1-CP Tmax 

decreased between 2.4 oC and 4.6 oC, while in BD2-CP it was observed a minimum 

reduction of 2.0 oC on the ground floor and a maximum drop of 4.7 oC on the second 

floor. In BD3-CP, cool paints represented a maximum decrease in Tmax of 2.9 oC. 

On the other hand, the use of thermal insulation in buildings with old constructions 

types (BD1-TI and BD2-TI) led to a maximum Tmax decrease of 0.4 oC and a maximum 
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rise of 0.9 oC e see also Table 9. 

Table 10 shows that, during the typical winter week, cool paints had a significant impact 

reducing Tmin: a maximum temperature reduction of 1.3 oC was observed. In contrast, 

using thermal insulation Tmin increased between 0.8 oC and 3.1 oC. 

The consequences of these temperature variations on the annual energy demand of the 

building are shown in Table 11. In Lisbon, cool paints represented a maximum reduction 

on cooling demand of about 1.2 MWh y-1 (BD1-CP and BD2-CP) and a maximum heating 

loads penalization of about 31% (BD2-CP). In the winter, the use of thermal insulation 

caused a maximum reduction on heating demand of about 3.5 MWh y-1 (BD1-TI), while 

in summer it had no significant impact on cooling demand values. 

 

Table 9. Tmax over the typical summer week of Lisbon. 

 
 

Table 10. Tmin over the typical winter week of Lisbon. 
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Table 11. Annual energy demand for studied cases, located in Lisbon. 

 
 

3.3. Faro, Portugal 
An equivalent study was performed in Faro, Portugal; Faro is the southernmost city in 

Portugal and it is located ca. 500 km south of Porto and 200 km south of Lisbon. In Faro, 

the typical weeks considered were, in the summer, from August 14th to 20th and, in the 

winter, from January 1st to 7th. For the reference case a TSR value of 60% was considered 

also taking into account the typical colors of the buildings and the Portuguese legislation 

[9] An emissivity of 0.90 was assumed for the external walls. A roof made of clay tile was 

also assumed for Faro with 40% of TSR and 0.90 of emissivity. 

Table 12 presents values of Tmax, over the typical summer week. Since Faro has high solar 

radiation levels, a great impact on using cool paints was observed; a Tmax reduction 

between 1.3 oC and 4.6 oC was noted. The thermal insulation made the maximum Tmax to 

rise of up to 2.1 oC compared with the reference case. 

The results of Tmin obtained over the typical winter week of Faro are presented in Table 

13. Also at this location, cool paints originated a non-desirable Tmin reduction between 

0.4 oC and 1.1 oC, while using thermal insulation originated a positive impact in Tmin that 

increased up to 2.9 oC. 

Table 14 shows the annual energy demand of buildings located in Faro. Cool paints 

always originated a reduction of the annual cooling demand and a maximum increase 

of 2.1 MWh y-1 in the annual heating demand. Compared with the reference case, the 

global impact of using cool paints represented a maximum reduction of 0.5 MWh y-1 in 

the annual energy demand. Table 14 shows that thermal insulation originated a 

maximum decrease on the global energy demand of about 3.3 MWh y-1. 

Soil thermal inertia is noticed in the results shown in Tables 6, 7, 9, 10, 12 and 13, where 

the ground floor temperature is either lower or higher than that of the first floor during 

the summer or winter time, respectively. 

 

 

 

 

 

 

 

 

 

Table 12. Tmax over the typical summer week of Faro. 
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Table 13. Tmin over the typical winter week of Faro. 

 
 

Table 14. Annual energy demand for studied cases, located in Faro. 

 
 

3.4. Thermal comfort analysis during specific real weather periods 
Since the climate file uses typical averaged weather data, especially hot or cold weeks 

are not considered, although in reality they occur. These outlier conditions significantly 

influence the decision of house-owners in terms of deciding for one or another thermal 
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comfort solution. 

 

3.4.1. Porto, Portugal 

Fig. 5 presents two real hot periods in Porto, from July 4th to 7th of 2010 and from 

September 2nd to 6th of 2012. Data shows daily maximum values of global solar 

radiation of about 1000 W m-2 and maximum temperatures overpassing 30 oC. 

Simulations considering the building with a single wall façade (BD1) were performed 

and the indoor temperature difference be-tween the reference case (BD1) and, the 

reference case with thermal insulation (BD1-TI) and the reference case coated with cool 

paints (BD1-CP) were calculated. The average of these temperature differences, Taverage, 

for each period of time are shown in Tables 15 and 16. 

For the first period (July 4th to 7th), BD1-TI showed the greatest indoor temperature 

reduction compared with the reference case. However, it should be emphasized that on 

the second floor, BD1-CP showed the highest temperature reduction, 4.2 oC. 

Interestingly, the opposite is observed in the second period (September 2nd to 6th): the 

greatest indoor temperature reductions were always obtained with BD1-CP. To 

understand these results it is necessary to note that the first period of time is close to the 

summer solstice, when the sun reaches 71o of maximum altitude, and the second period 

happens when the sun reaches 55o of maximum altitude. Since for the second period the 

sun strikes more strongly on the house’s walls, the use of cool paints originates higher 

temperature reductions. 

 

3.4.2. Bragança, Portugal 

Bragança is a city in north-eastern Portugal (41o45´N 6o44´W), located 255 km northeast 

of Porto and 515 km from Lisbon, in a plateau at ca. 700 m high. Bragança receives 

especially high solar irradiance and the exterior temperature is not especially hot. These 

are the best conditions for cool paints to prove their value on the thermal comfort of 

buildings. It was selected the period from August 2nd to 8th of 2004 e Fig. 6. 

Table 17 shows the temperature differences, Taverage, for this period of time. One can see 

a significant Taverage reduction in BD1- CP: a decrease of 5.0 oC was observed on the second 

floor. On the other hand, in BD1-TI a reduction of 0.9 oC was observed on the ground 

floor, a null impact was noted on the first floor, while a Taverage increase of 0.6 oC was 

assessed on the second floor. 

 

Table 15. Taverage for the period of July 4th to 7th of 2010. 

 
 

 

 

 

Table 16. Taverage for the period of September 2nd to 6th of 2012. 
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Fig. 5. Exterior air temperature and global solar radiation histories: a) from July 4th to 7th 

of 2010 and b) from September 2nd to 6th of 2012. 

 

 
Fig. 6. Exterior air temperature and global solar radiation histories from August 2nd to 8th 

of 2004. 

 

 

 

 

 

 

 

 

 

Table 17. Taverage for the period of August 2nd to 8th of 2004.   
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4. Conclusions 
 

The thermal and energy performances of a residential building were simulated using the 

dynamic simulator ESP-r, assessing the impact of using cool paints and/or thermal 

insulation. Buildings with different thermal characteristics, representing both old and 

new constructions, were assessed. 

In Portugal, although the use of cool paints can lead to null annual cooling demand, the 

annual heating demand penalization was ca. 30% compared with the reference cases 

(building of a given type not incorporating cool paints nor additional insulation). On the 

other hand, the use of thermal insulation in buildings BD1 and BD2, which is presently 

mandatory according to the Portuguese legislation, originated a null impact or a 

decrease on the cooling needs and saved on average ca. 43% of the heating needs 

compared to the reference case. 

The analysis of two specific hot periods of real summer weather data of Porto, showed 

that the maximum altitude of the sun is critical as to which cool paint or thermal 

insulation solutions originate the highest temperature reduction; it was also concluded 

that for lower sun altitudes the cool paints performed better. For the selected real 

summer periods it was concluded that the cool paints play a critical role in controlling 

the high temperatures especially compared to the use of thermal insulation. The role of 

the cool paints is enhanced in locations that have high values of global solar radiation 

and high exterior temperatures. These conditions are especially observed in Bragança, a 

northeaster city in Portugal located at ca. 700 m of altitude. For this city, the role of the 

cool paints during an especially hot summer period is really dramatic and a maximum 

reduction of 5 oC was observed, from 28.0 oC to 23.0oC, which is an acceptable indoor 

temperature. 

It was concluded that cool paints are the best approach to minimize the impact of the 

hottest days of the year in regions with similar weather as Portugal (40o N) and a cheap 

thermal comfort controlling solution, especially concerning upgrading existing 

buildings. However, the use of thermal insulation showed to be preferable in terms of 

energy savings, when both heating and cooling seasons are considered simultaneously, 

while the most effective solution was using both in conjunction. 
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