
Abstract

This paper concerns arbitrary active constrained layer damping (ACLD) treatments
applied to beams. In order to suppress vibration, hybrid active-passive treatments
composed of piezoelectric and viscoelastic layers are mounted on the substrate beam
structure. These treatments combine the high capacity of passive viscoelastic mate-
rials to dissipate vibrational energy at high frequencies with the active capacity of
piezoelectric materials at low frequencies. The aim of this research is the develop-
ment of a generic analytical formulation that can describe these hybrid couplings in
an accurate and consistent way. The analytical formulation considers a partial layer-
wise theory, with an arbitrary number of layers, both viscoelastic and piezoelectric,
attached to both surfaces of the beam. A fully coupled electro-mechanical theory for
modelling the piezoelectric layers is considered. The equations of motion, electric
charge equilibrium and boundary conditions are presented. A one-dimensional finite
element (FE) model is developed, with the nodal degrees of freedom being the axial
and transverse displacements and the rotation of the centreline of the host beam, the
rotations of the individual layers and the electric potentials of each piezoelectric layer.
The damping behavior of the viscoelastic layers is modeled by the complex modu-
lus approach. Three frequency response functions were measured experimentally and
evaluated numerically: acceleration per unit force, acceleration per unit voltage into
the piezoelectric actuator and induced voltage per unit force. The numerical results
are presented and compared with experimental results to validate the FE model.

Keywords: beam, viscoelastic, piezoelectric, active constrained layer damping, finite
element.
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1 Introduction

Passive damping treatments have been extensively used in engineering to reduce vi-
bration and noise radiation. The simplest form of passive damping is the one where
single layers of viscoelastic materials are attached to the host structure. When the
structure vibrates energy is dissipated in the viscoelastic layer. Increasing the thick-
ness and length of the viscoelastic treatment would increase the energy dissipation and
consequently the damping. However, in applications where the weight is of critical
importance, a more efficient treatment is required, and other alternatives to increase
damping must be found.

It is well recognized that the inclusion of elastic constraining layers covering the
viscoelastic layer can enhance the energy dissipation through an increase in shear de-
formations. That is known aspassive constrained layer damping(PCLD). However,
while passive damping treatments can greatly improve damping of the system, there
are limitations. Viscoelastic materials have frequency and temperature dependent me-
chanical properties which can make the damping change, bringing limitations to the
effective temperature and frequency range of the treatment. In order to provide ade-
quate damping over a broad frequency band, different viscoelastic materials must be
chosen which often complicates analysis and design of the system. Therefore, while
viscoelastic treatments are easy to apply, the damping is often of limited bandwidth.

In the last decadeactive constrained layer damping(ACLD) treatments have been
applied to structures. Those are hybrid treatments with constraining layers made of
piezoelectric materials. One of the unique features of piezoelectric materials is that
they can serve both as sensors and actuators. If utilized as actuators, and according
to an appropriate control law, the active constraining layer can increase the shear de-
formation of the viscoelastic layer and overcome some of the PCLD limitations. The
ACLD treatments combine the high capacity of passive viscoelastic materials to dis-
sipate vibrational energy at high frequencies with the active capacity of piezoelectric
materials at low frequencies. Therefore, in the same damping treatment, a broader
band control is achieved benefiting from the advantages of both passive (simplicity,
stability, fail-safe, low-cost) and active (adaptability, high-performance) systems.

Various configurations of active and passive layers have been proposed in an at-
tempt to improve performance. In general so-called hybrid active-passive (or arbitrary
ACLD) treatments involving arbitrary arrangements of constraining and passive lay-
ers, integrating piezoelectric sensors and actuators, might be utilized. A survey of
advances in hybrid active-passive vibrations and noise control via piezoelectric and
viscoelastic constrained layer treatments can be found in references [1,2].

Modeling this kind of structural system often requires a coupled model of the struc-
ture, which comprises piezoelectric, viscoelastic and elastic layers. These treatments
are applied to beams, plates and shells. They can be modeled as either lumped or dis-
tributed parameter systems, and usually have complicated geometries that make ana-
lytical solution of the equations of motion difficult, if not impossible. Alternatively,
various discretization techniques, such as finite element (FE) modelling, modal analy-
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sis, and lumped parameters models, allow the approximation of the partial differential
equations by a finite set of ordinary differential equations.

The temperature and frequency dependent material properties of the viscoelastic
materials put some difficulties on the mathematical model, increasing its complexity.
Usually the temperature is assumed constant and only models concerning frequency
dependence are utilized. The simplest way of modelling those materials is achieved by
a complex modulus approach(CMA) where the material properties are assumed fre-
quency independent. The CMA is a frequency domain method that is limited to steady
state vibrations and single-frequency harmonic excitations [3]. Time domain models
such as theGolla-Hughes-McTavish(GHM) model [4],anelastic displacement fields
(ADF) approach [5] orfractional calculus approach[6], have been developed in the
last few years and represent good alternatives to the CMA when the study of transient
response is of interest.

In the development of FE models with piezoelectric actuators or sensors, different
assumptions can be taken into account in the theoretical model when considering the
electro-mechanical coupling. A survey on the advances in FE modelling of piezo-
electric adaptive structures is presented by Benjeddou [7]. These assumptions regard
mainly the use (or not) of electric degrees of freedom (DoF) and the approximations
of the through-the-thickness variation of the electric potential. Therefore, they lead
to decoupled, partial and fully coupled electro-mechanical theories, which in turn can
lead to different modifications of the structure’s stiffness and different approximations
of the physics of the system.

When designing hybrid active-passive treatments it is important to know the con-
figuration of the structure and treatment that gives optimal damping. For simulation
the designer needs a model of the system in order to define the optimal locations,
thicknesses, configurations, control law, etc. The alternatives are diverse. The aim of
this work is the development of a generic analytical model that can account for the
hybrid couplings in an accurate and consistent way. It can therefore be seen as an
initial step from which different analytical and discretization methods can be used for
the solution of arbitrary hybrid active-passive treatments on beams. We start by pre-
senting the structural analytical model of a composite beam with an arbitrary number
of layers of elastic, piezoelectric and viscoelastic materials, attached to both surfaces
of the beam. The kinematic assumptions, based in a partial layerwise theory, are
first presented. Then, the electric model assumptions for the piezoelectric materials
which account for a fully coupled electro-mechanical theory are described. Moreover,
the damping behavior of the viscoelastic layers, modeled by the CMA, is presented.
Hamilton’s principle is utilized to derive the equations of motion and electric charge
equilibrium, and the electro-mechanical boundary conditions. The strong forms of the
general analytical model of the composite beam with an arbitrary number of layers
are then presented by a set of partial differential equations. A FE model solution is
presented and a composite beam FE is derived from the weak forms of the analytical
model. Finally, the developed FE is used in the prediction of three frequency response
functions: acceleration per unit force and voltage into the piezoelectric actuator and
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induced voltage per unit force. Numerical results are presented and compared with
experimental results to validate the FE numerical tool.

2 Analytical Model

In this section the analytical model for a beam with arbitrary ACLD treatments is
developed. For the sake of brevity some intermediate steps on the development of the
equations of motion and boundary conditions are omitted. The reader is referred to
the work of Vasques et al. [8] for further details.

2.1 Displacements and Strains

Consider the layered beam illustrated in Figure 1. The composite beam consists of a
host beam, layer0, of thickness2h0, to which other layers (treatments) are attached.
In order to be able to model several configurations of the treatments, the composite
beam theory allows an arbitrary number of layers of elastic, piezoelectric and vis-
coelastic materials in arbitrary positions. The displacement field is defined according
to a partial layerwise theory where the axial and transverse displacements,ũk(x, zk, t)
andw̃k(x, t), of the top (n = 1, . . . , n̄), core (c = 0) and bottom (m = m̄, . . . ,−1)
layers are given by

ũn(x, zn, t) = u0(x, t) + h0θ0(x, t) +
n−1∑
i=1

2hiθi(x, t) + (zn + hn)θn(x, t),

ũc(x, zc, t) = u0(x, t) + z0θ0(x, t),

ũm(x, zm, t) = u0(x, t)− h0θ0(x, t)−
−1∑

i=m+1

2hiθi(x, t) + (zm − hm)θm(x, t),

w̃k(x, t) = w̃n(x, t) = w̃c(x, t) = w̃m(x, t) = w0(x, t), (1)

where2hk is the thickness of thek-th layer (k = m̄, . . . ,−1, 0, 1, . . . , n̄), u0(x, t),
w0(x, t) andθ0(x, t) are, respectively, the generalized axial and transverse displace-
ments and the rotation of the beam’s mid-plane, andθn(x, t) and θm(x, t) are the
rotation of eachn-th top andm-th bottom layer. It is worth noting that positive in-
dices are used to denote the top layers and negative indices are used to the bottom
ones, i.e.,n > 0 andm < 0. Thez-coordinates in Equations (1) are measured from
the interface between layersn andn − 1 (zn + hn) andm andm + 1 (zm − hm).
They represent a translation of the rotation axis of each top and bottom layer from the
layer mid-plane to the interface of the adjacent layer. Note that axial displacement
continuity at the interfaces of the layers is assured, leading to coupling terms in the
axial displacements of the layers, and that a constant through-the-thickness transverse
displacementw0(x, t) is assumed.

According to the displacement field (1) the extensional and shear strains of the
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Figure 1: Layerwise displacement field of the beam with arbitrary ACLD treatments.

layers are determined by the usual linear strain-displacement relations, to be

Sn
xx =

∂ũn

∂x
= u′

0 + h0θ
′
0 +

n−1∑
i=1

2hiθ
′
i + (zn + hn)θ′n,

Sc
xx =

∂ũc

∂x
= u′

0 + z0θ
′
0,

Sm
xx =

∂ũm

∂x
= u′

0 − h0θ
′
0 −

−1∑
i=m+1

2hiθ
′
i + (zm − hm)θ′m,

Sk
xz =

∂w̃k

∂x
− ∂ũk

∂zk

= w′
0 − θk, (2)

where the notation(·)′ is used to denote the spatial derivative in thex-direction. Note
that the kinematic hypotheses considered previously lead to null transverse strains and
a first-order shear deformation theory (FSDT) for all the layers.

2.2 Constitutive Equations

Consider a general piezoelectric layer. The material of the piezoelectric layers is as-
sumed to be orthotropic with the axes of orthotropy parallel to the axes of the beam.
These materials are polarized in the transverse direction and have the behavior of nor-
mal piezoelectric materials, with the symmetry properties of an orthorhombic crystal
of the classmm2 [9]. The linear piezoelectric constitutive equations are

T = cES− eTE, D = eS + εSE, (3a,b)

whereT, S, E andD are, respectively, the stress, strain, electric field and electric
displacement vectors, andcE, eT andεS are, respectively, the elasticity (at constant
electric field), transpose piezoelectric and dielectric (at constant strain) matrices ap-
propriate for the material.
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The displacement field considered in (1) is independent of they-axis and null along
that direction. Hence the constitutive equations of a generic top or bottom piezoelec-
tric layerp can be written in the following reduced form,{

T p
xx

T p
xz

}
=

[
c∗p11 0
0 cp

55

]{
Sp

xx

Sp
xz

}
−

[
0 e∗p31

ep
15 0

]{
Ep

x

Ep
z

}
, (4a){

Dp
x

Dp
z

}
=

[
0 ep

15

e∗p31 0

]{
Sp

xx

Sp
xz

}
+

[
εp
11 0
0 ε∗p33

]{
Ep

x

Ep
z

}
, (4b)

with

c∗p11 = cp
11 −

cp
13

2

cp
33

, e∗p31 = ep
31 − ep

33

cp
13

cp
33

, ε∗p33 = εp
33 +

ep
33

2

cp
33

. (5a-c)

The modification of constantscp
11, ep

31 andεp
33 is due to the transverse stress assump-

tion, T p
zz ≈ 0. Furthermore, for the characterization of the core layer or any other

viscoelastic or elastic layer, Equation (4a) can also be used by setting the piezoelec-
tric contantse∗p31 andep

15 to zero and by using the appropriate values for the elasticity
matrix.

2.3 Piezoelectric Materials Model

In the present work, a fully coupled electromechanical theory which takes into account
the direct piezoelectric effect with a non-linear distribution of the electric potential is
utilized. The electric displacement vector in Equation (4b) can be written as{

Dp
x

Dp
z

}
=

[
εp
11 0
0 ε∗p33

]{
Ep

x − Ēp
x

Ep
z − Ēp

z

}
, with Ēp

x = −ep
15

εp
11

Sp
xz, Ēp

z = −e∗p31

ε∗p33

Sp
xx, (6)

whereĒp
x andĒp

z are the electric fields induced by the mechanical strains.

According to reference [10], for electroded layers with the electric potential being
prescribed and with the assumption of zero electric displacement in thex-direction,
the axial and transverse electric fields,Ep

x andEp
z , and the electric potentialϕp are

given by

Ep
x = Ēp

x, Ep
z = −

φp

2hp

+ Ēp
z −

1

2hp

∫ hp

−hp

Ēp
z dzp, (7a,b)

ϕp =
φp

2hp

(zp + hp)−
∫ zp

−hp

Ēp
z dzp +

(zp + hp)

2hp

∫ hp

−hp

Ēp
z dzp, (8)

whereφp denotes the electrical potential difference of the electrodes at each piezoelec-
tric layer. Substituting into Equations (7) and (8) the induced electric fields in (6) and
considering the strain definitions in (2), the electric field and potential become [11]

Ep
x = −ep

15

εp
11

(w′
0 − θp) , Ep

z = −
φp

2hp

− e∗p31

ε∗p33

zpθ
′
p, (9a,b)

ϕp =
φp

2hp

(zp + hp) +
1

2

e∗p31

ε∗p33

(
zp

2 − hp
2
)
θ′p. (10)
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It is worth noting that the first part of Equation (10) is a linear through-the-thickness
electric potential term concerning the applied electric potential difference and the sec-
ond part is a parabolic term concerning the induced potential due to the mechanical
strains.

2.4 Viscoelastic Materials Model

Viscoelastic materials are a class of materials which exhibit a strong temperature and
frequency dependent constitutive behavior. They can be characterized in the frequency
domain by a complex shear or extensional modulus,G (ω) or E (ω), and a loss fac-
tor η (ω) which accounts for energy dissipation effects. Considering simple harmonic
excitation and a fixed temperature, it is possible to use the CMA to describe the vis-
coelastic behavior, by putting

G (ω) = G′ (ω) + jG′′ (ω) , (11)

whereG′ (ω) is the shear storage modulus,G′′ (ω) is the shear loss modulus,ω is the
frequency andj =

√
−1. Defining Equation (11) in terms of the loss factor yields

G (ω) = G′ (ω) [1 + jη (ω)] , η (ω) =
G′′ (ω)

G′ (ω)
. (12a,b)

If we consider a linear, homogeneous and isotropic viscoelastic material, the Young
storage modulusE ′ (ω) and shear storage modulusG′ (ω) are related by

G′ (ω) =
E ′ (ω)

2 [1 + ν (ω)]
, (13)

whereν (ω) is the Poisson’s ratio. In general, the complex moduliE (ω) andG (ω)
are not proportional because the Poisson’s ratio is also frequency dependent and the
loss factorsηE (ω) andηG (ω) are not equal. However, for simplicity one can relax
that condition and putηE (ω) = ηG (ω) = η (ω).

2.5 Variational Formulation

In order to derive the electromechanical equations of motion and boundary conditions
of the composite beam with ACLD treatments, Hamilton’s principle is used, where the
Lagrangian and the applied forces work are adapted for the electrical and mechanical
contributions [12], so that∫ t1

t0

(δT − δH + δW ) dt = 0, (14)

wheret0 andt1 define the time interval,T is the kinetic energy,H is the electrome-
chanical enthalpy (energy stored in the piezoelectric and non-piezoelectric layers) and
W denotes the work done by the applied mechanical forces and electrical charges. In
the following, it will be assumed that all the top and bottom layers are piezoelectric.
However, the formulation still holds for non piezoelectric layers by considering only
the mechanical virtual work terms for those layers.
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2.5.1 Virtual Work of the Internal Electromechanical Forces

The work of the internal electromechanical forces is given by the sum of the vir-
tual work contributions of all the layers. Considering a generic piezoelectric layer
p = n, m = m̄, . . . ,−1, 1, . . . , n̄, and separating the total virtual workδHp into
mechanicalδHp

uu, piezoelectricδHp
uφ andδHp

φu, and dielectricδHp
φφ terms, for the

piezoelectric layers of volumeVp, yields

δHp = δHp
uu − δHp

uφ − δHp
φu − δHp

φφ, (15)

where

δHp
uu =

∫
Vp

(δSp
xxc

∗p
11S

p
xx + δSp

xzc
p
55S

p
xz) dVp, (16)

δHp
uφ =

∫
Vp

(δSp
xxe

∗p
31E

p
z + δSp

xze
p
15E

p
x)dVp, (17)

δHp
φu =

∫
Vp

(δEp
ze

∗p
31S

p
xx + δEp

xe
p
15S

p
xz)dVp, (18)

δHp
φφ =

∫
Vp

(δEp
xε

p
11E

p
x + δEp

zε
∗p
33E

p
z )dVp. (19)

As can be seen in Equation (10) the electric field definitions are expressed in terms
of the electric potential difference and mechanical strains. Thus, Equations (17)-(19)
can be partitioned in the electro-mechanical terms,δH

p(φ)
uφ , δH

p(φ)
φu and δH

p(φ)
φφ , ex-

pressed in terms of the electrical potential difference and mechanical strains, and in
the induced termsδH̄p(φ)

uφ , δH̄
p(φ)
φu andδH̄

p(φ)
φφ , which are expressed only in terms of

the bending and shear mechanical strains, yielding

δHp
uφ = −δH

p(φ)
uφ − δH̄

p(φ)
uφ , δHp

φu = −δH
p(φ)
φu − δH̄

p(φ)
φu , (20a,b)

δHp
φφ = δH

p(φ)
φφ + δH̄

p(φ)
φφ . (21)

Therefore, the electro-mechanical terms expressed only in terms of the strains can be
summed with the pure mechanical ones,δHp

uu, yielding

δHp(φ)
uu = δHp

uu + δH̄
p(φ)
uφ + δH̄

p(φ)
φu − δH̄

p(φ)
φφ , (22)

and Equation (15) becomes

δHp = δHp(φ)
uu + δH

p(φ)
uφ + δH

p(φ)
φu + δH

p(φ)
φφ . (23)

Expression (22) represents the stiffness increase due to the direct piezoelectric effect
where the effects of the axial and transverse induced electric fields are condensed in
Equation (16). See [8] for further details.

Considering in Equation (23) the strain definitions (2) and the first part of the trans-
verse electric field in Equation (9b) and integrating by parts, we have for the core, top
and bottom layers,

δHc
uu = δĤc

uu − δH̃c
uu, (24)
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δHn(φ)
uu = δĤn(φ)

uu − δH̃n(φ)
uu , δHm(φ)

uu = δĤm(φ)
uu − δH̃m(φ)

uu , (25a,b)

where

δĤc
uu =

[
δu0c

∗c
11Acu

′
0 + δw0 (cc

55Acw
′
0 − cc

55Acθ0) + δθ0c
∗c
11Icθ

′
0

]L

0
, (26)

δH̃c
uu =

∫
L

[
δu0c

∗c
11Acu

′′
0 + δw0 (cc

55Acw
′′
0 − cc

55Acθ
′
0)

+ δθ0 (c∗c11Icθ
′′
0 + cc

55Acw
′
0 − cc

55Acθ0)
]
dL (27)

and

δĤn(φ)
uu =

[
δu0

(
c∗n11Anu

′
0 + c∗n11h0Anθ

′
0 + c∗n11

n−1∑
i=1

2hiAnθ
′
i + c∗n11 Īnθ

′
n

)
+ δw0

(
c̄
n(φ)
55 Anw

′
0 − c̄

n(φ)
55 Anθn

)
+ δθ0

(
c∗n11h0Anu

′
0 + c∗n11h0

2Anθ
′
0

+ c∗n11h0

n−1∑
i=1

2hiAnθ
′
i + c∗n11h0Īnθ

′
n

)
+

n−1∑
i=1

δθi

(
c∗n112hiAnu

′
0 + c∗n112hih0Anθ

′
0

+ c∗n114hi

n−1∑
j=1

hjAnθ
′
j + c∗n112hiĪnθ

′
n

)
+ δθn

(
c∗n11 Īnu

′
0 + c∗n11h0Īnθ

′
0

+ c∗n11

n−1∑
i=1

2hiĪnθ
′
i + c̄

n(φ)
11 Inθ

′
n

)]L

0
, (28)

δH̃n(φ)
uu =

∫
L

[
δu0

(
c∗n11Anu

′′
0 + c∗n11h0Anθ

′′
0 + c∗n11

n−1∑
i=1

2hiAnθ
′′
i + c∗n11 Īnθ

′′
n

)
+ δw0

(
c̄
n(φ)
55 Anw

′′
0 − c̄

n(φ)
55 Anθ

′
n

)
+ δθ0

(
c∗n11h0Anu

′′
0 + c∗n11h0

2Anθ
′′
0

+ c∗n11h0

n−1∑
i=1

2hiAnθ
′′
i + c∗n11h0Īnθ

′′
n

)
+

n−1∑
i=1

δθi

(
c∗n112hiAnu

′′
0 + c∗n112hih0Anθ

′′
0

+ c∗n114hi

n−1∑
j=1

hjAnθ
′′
j + c∗n112hiĪnθ

′′
n

)
+ δθn

(
c∗n11 Īnu

′′
0 + c∗n11h0Īnθ

′′
0

+ c∗n11

n−1∑
i=1

2hiĪnθ
′′
i + c̄

n(φ)
11 Inθ

′′
n + c̄

n(φ)
55 Anw

′
0 − c̄

n(φ)
55 Anθn

)]
dL. (29)

Similar expressions to (28) and (29) can be found for the bottom layers, cf. [8]. Fur-
thermore, integrating the electrical terms in Equation (23) by parts yields

δH
n(φ)
uφ = δĤ

n(φ)
uφ − δH̃

n(φ)
uφ , δH

m(φ)
uφ = δĤ

m(φ)
uφ − δH̃

m(φ)
uφ , (30a,b)

where

δĤ
n(φ)
uφ =

[ e∗n31

2hn

φn

(
Anδu0 + h0Anδθ0 +

n−1∑
i=1

2hiAnδθi + Īnδθn

)]L

0
, (31)

δH̃
n(φ)
uφ =

∫
L

e∗n31

2hn

φ′
n

(
Anδu0 + h0Anδθ0 +

n−1∑
i=1

2hiAnδθi + Īnδθn

)
dL. (32)
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Again, similar expressions to (31) and (32) can be found for the bottom layers.

In the previous equations integration with respect tozk across the layer was carried
out whereL is the length of the beam andAk, Īp andIk represent the zero, first and
second order moments of area, respectively. They are given by

Ak = 2hkb, Īn =
(2hn)2b

2
, Īm = −(2hm)2b

2
, Ip =

(2hp)
3b

3
, Ic =

(2hc)
3b

12
, (33a-e)

whereb is the width of the beam. The stiffness increase due to the induced electric
fields expressed in Equation (22) is represented by the so-called effective stiffness
parameters [11],

c̄
p(φ)
11 = c∗p11 +

e∗p31
2

4ε∗p33

, c̄
p(φ)
55 = cp

55 +
ep
15

2

εp
11

. (34a,b)

As can be seen in (28) and (29), the parameterc̄
p(φ)
11 only affects the bending stiffness

and it represents the effects of the induced parabolic electric potential. Regarding
c̄
p(φ)
55 , it represents the stiffness increase due to the assumption that thex-component

of the electric displacement vector vanishes and it affects only the shear stiffness.

Finally, the total virtual work of the internal electromechanical forces in all the
layers (elastic, piezoelectric or viscoelastic layers) is given by

δH = δHc
uu +

n̄∑
p=m̄
p6=0

(
δHp(φ)

uu + δH
p(φ)
uφ + δH

p(φ)
φu − δH

p(φ)
φφ

)
. (35)

2.5.2 Virtual Work of the Inertial Forces

The virtual work of the inertial forces in a generic layerk is given by

δT k = −
∫

Vk

ρk

(
δũk

¨̃uk + δw̃k
¨̃wk

)
dVk, (36)

whereρk is the density of the material into layer. Substituting the displacement field
in Equation (1) into (36) gives, after integration, for the core and generic top layers,

δT n = −
∫

L

[
δu0

(
ρnAnü0 + ρnh0Anθ̈0 + ρn

n−1∑
i=1

2hiAnθ̈i + ρnĪnθ̈n

)
− δθ0

(
ρnh0Anü0 + ρnh0

2Anθ̈0 + ρnh0

n−1∑
i=1

2hiAnθ̈i + ρnh0Īnθ̈n

)
−

n−1∑
i=1

δθi

(
ρn2hiAnü0 + ρn2hih0Anθ̈0 + ρn4hi

n−1∑
j=1

hjAnθ̈j + ρn2hiĪnθ̈n

)
− δθn

(
ρnĪnü0 + ρnh0Īnθ̈0 + ρn

n−1∑
i=1

2hiĪnθ̈i + ρnInθ̈n

)
− δw0ρnAnẅ0

]
dL,

(37)
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δT c = −
∫

L

(
δu0ρcAcü0 + δθ0ρcIcθ̈0 + δw0ρcAcẅ0

)
dL. (38)

As before, a similar expression to Equation (37) is obtained for the bottom layers.

The total virtual work of the inertial forces is then given by the sum of the virtual
work of all the layers, i.e.,

δT = δT c +
n̄∑

n=1

δT n +
−1∑

m=m̄

δTm =
n̄∑

k=m̄

δT k. (39)

2.5.3 Virtual Work of the External Forces

In the determination of the virtual work of the mechanical external forces, two types of
applied mechanical forces are considered, namely, axialF k

x and transverseF k
z volume

forces. The virtual work of those forces for the generic layerk is given by

δW k
u =

∫
Vk

(
F k

x δũk + F k
z δw̃k

)
dVk. (40)

Substituting the displacement field (1) in (40) and integrating, yields

δW n
u =

∫
L

[(
δu0 + h0δθ0 +

n−1∑
i=1

2hiδθi + hnδθn

)
Xn + δθnMn + δw0Zn

]
dL, (41)

δW c
u =

∫
L

(
δu0Xc + δθ0Mc + δw0Zc

)
dL, (42)

where (
Xk, Mk, Zk

)
=

∫
Ak

(
F k

x , zkF
k
x , F k

z

)
dAk. (43)

Similar expressions to (41) can be found for the bottom layers. Thus, the total virtual
work accomplished by the mechanical forces is given by

δWu = δW c
u +

n̄∑
n=1

δW n
u +

−1∑
m=m̄

δW n
u =

n̄∑
k=m̄

δW k
u . (44)

The virtual work of the electric charge density in a generic piezoelectric layer is
defined by

δW p
φ = −

∫
Ae

p

δϕpτ pdAe
p = −

∫
L

δφpbτ pdL, (45)

whereAe
p is the electrode area andτ p is the applied electric charge density at the

electrode. Note that from the definition of the electric potential (10), and considering
only the applied potential term, one finds thatϕp (zp = −hp) = 0 andϕp (zp = hp) =
φp. The total virtual work of the applied electric charge density is given by

δWφ =
n̄∑

n=1

δW n
φ +

−1∑
m=m̄

δW n
φ =

n̄∑
p=m̄
p6=0

δW p
φ . (46)
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Finally, the total virtual workδW of the applied external forces, comprising the
virtual work of the applied mechanical forcesδWu and that of the applied electric
charge density at the electrodesδWφ, is given by

δW = δWu + δWφ =
n̄∑

k=m̄

δW k
u +

n̄∑
p=m̄
p6=0

δW p
φ . (47)

2.5.4 Strong Forms

The equations of motion are obtained from the Hamilton’s principle by substituting
expressions (35), (39) and (47) into (14), integrating by parts and collecting the terms
involving the variationsδu0, δw0, δθ0, δθn̂ (n̂ = 1, . . . , n̄ − 1), δθn̄, δθm̄ andδθm̂

(m̂ = m̄ + 1, . . . ,−1), independent and arbitrary in the interval[0, L]. The resultant
equations have no solution other than the trivial one, and the differential equations of
motion, with the total number of piezoelectric layers given byp̄ = n̄− m̄ and the total
number of generalized displacements equal tok̄− 1, with k̄ = p̄ + 4, are given by the
following:

δu0 :

Y(1,1)u
′′
0 + Y(1,3)θ

′′
0 +

n̄−1∑̂
n=1

Y(1,n̂+3)θ
′′
n̂ + Y(1,n̄+3)θ

′′
n̄ + Y(1,n̄+4)θ

′′
m̄

+
−1∑

m̂=m̄+1

Y(1,k̄+m̂)θ
′′
m̂ +

n̄∑
n=1

P(n,1)φ
′
n +

−1∑
m=m̄

P(p̄+1+m,1)φ
′
m + F(1) = J(1,1)ü0

+J(1,3)θ̈0 +
n̄−1∑̂
n=1

J(1,n̂+3)θ̈n̂ + J(1,n̄+3)θ̈n̄ + J(1,n̄+4)θ̈m̄ +
−1∑

m̂=m̄+1

J(1,k̄+m̂)θ̈m̂, (48)

δw0 :

G(2,2)w
′′
0 + G(2,3)θ

′
0 +

n̄−1∑̂
n=1

G(2,n̂+3)θ
′
n̂ + G(2,n̄+3)θ

′
n̄ + G(2,n̄+4)θ

′
m̄

+
−1∑

m̂=m̄+1

G(2,k̄+m̂)θ
′
m̂ + F(2) = J(2,2)ẅ0, (49)

δθ0 :

Y(3,1)u
′′
0 + Y(3,3)θ

′′
0 +

n̄−1∑̂
n=1

Y(3,n̂+3)θ
′′
n̂ + Y(3,n̄+3)θ

′′
n̄ + Y(3,n̄+4)θ

′′
m̄ +

−1∑
m̂=m̄+1

Y(3,k̄+m̂)θ
′′
m̂

−G(3,2)w
′
0 −G(3,3)θ0 +

n̄∑
n=1

P(n,3)φ
′
n +

−1∑
m=m̄

P(p̄+1+m,3)φ
′
m + F(3) = J(3,1)ü0

+J(3,3)θ̈0 +
n̄−1∑̂
n=1

J(3,n̂+3)θ̈n̂ + J(3,n̄+3)θ̈n̄ + J(3,n̄+4)θ̈m̄ +
−1∑

m̂=m̄+1

J(3,k̄+m̂)θ̈m̂, (50)
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δθn̂ :

Y(n̂+3,1)u
′′
0 + Y(n̂+3,3)θ

′′
0 +

n̂−1∑
i=1

Y(n̂+3,i+3)θ
′′
i + Y(n̂+3,n̂+3)θ

′′
n̂ +

n̄−1∑
j=n̂+1

Y(n̂+3,j+3)θ
′′
j

+Y(n̂+3,n̄+3)θ
′′
n̄ −G(n̂+3,2)w

′
0 −G(n̂+3,n̂+3)θn̂ + P(n̂,n̂+3)φ

′
n̂ +

n̄∑
i=n̂+1

P(i,n̂+3)φ
′
i

+F(n̂+3) = J(n̂+3,1)ü0 + J(n̂+3,3)θ̈0 +
n̂−1∑
i=1

J(n̂+3,i+3)θ̈i + J(n̂+3,n̂+3)θ̈n̂

+
n̄−1∑

j=n̂+1

J(n̂+3,j+3)θ̈j + J(n̂+3,n̄+3)θ̈n̄, (51)

δθn̄ :

Y(n̄+3,1)u
′′
0 + Y(n̄+3,3)θ

′′
0 +

n̄−1∑̂
n=1

Y(n̄+3,n̂+3)θ
′′
n̂ + Y(n̄+3,n̄+3)θ

′′
n̄ −G(n̄+3,2)w

′
0

−G(n̄+3,n̄+3)θn̄ + P(n̄,n̄+3)φ
′
n̄ + F(n̄+3) = J(n̄+3,1)ü0 + J(n̄+3,3)θ̈0

+
n̄−1∑̂
n=1

J(n̄+3,n̂+3)θ̈n̂ + J(n̄+3,n̄+3)θ̈n̄, (52)

δθm̄ :

Y(n̄+4,1)u
′′
0 + Y(n̄+4,3)θ

′′
0 + Y(n̄+4,n̄+4)θ

′′
m̄ +

−1∑
m̂=m̄+1

Y(n̄+4,k̄+m̂)θ
′′
m̂ −G(n̄+4,2)w

′
0

−G(n̄+4,n̄+4)θm̄ + P(p̄+1+m̄,k̄+m̄)φ
′
m̄ + F(n̄+4) = J(n̄+4,1)ü0 + J(n̄+4,3)θ̈0

+J(n̄+4,n̄+4)θ̈m̄ +
−1∑

m̂=m̄+1

J(n̄+4,k̄+m̂)θ̈m̂, (53)

δθm̂ :

Y(k̄+m̂,1)u
′′
0 + Y(k̄+m̂,3)θ

′′
0 + Y(k̄+m̂,n̄+4)θ

′′
m̄ +

m̂−1∑
j=m̄+1

Y(k̄+m̂,k̄+j)θ
′′
j + Y(k̄+m̂,k̄+m̂)θ

′′
m̂

+
−1∑

i=m̂+1

Y(k̄+m̂,k̄+i)θ
′′
i −G(k̄+m̂,2)w

′
0 −G(k̄+m̂,k̄+m̂)θm̂ +

m̂−1∑
i=m̄

P(p̄+1+i,k̄+m̂)φ
′
i

+P(p̄+1+m̂,k̄+m̂)φ
′
m̂ + F(k̄+m̂) = J(k̄+m̂,1)ü0 + J(k̄+m̂,3)θ̈0 + J(k̄+m̂,n̄+4)θ̈m̄

+
m̂−1∑

j=m̄+1

J(k̄+m̂,k̄+j)θ̈j + J(k̄+m̂,k̄+m̂)θ̈m̂ +
−1∑

i=m̂+1

J(k̄+m̂,k̄+i)θ̈i. (54)

In a similar way, the charge equations of electrostatics are obtained by collecting the
terms related to the variationsδφn (n = 1, ..., n̄) andδφm (m = −1, ..., m̄), giving

δφn :

P(n,1)u
′
0 + P(n,3)θ

′
0 +

n−1∑
i=1

P(n,i+3)θ
′
i + P(n,n+3)θ

′
n + C(n,n)φn = τ (n), (55)
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δφm :

P(p̄+1+m,1)u
′
0 + P(p̄+1+m,3)θ

′
0 + P(p̄+1+m,k̄+m)θ

′
m +

−1∑
i=m+1

P(p̄+1+m,k̄+i)θ
′
i

+C(p̄+1+m,p̄+1+m)φm = τ (p̄+1+m). (56)

The electromechanical boundary conditions atx = 0, L are derived from the applied
mechanical forces and electric potentials, and they are defined as

δu0

(
Y(1,1)u

′
0 + Y(1,3)θ

′
0 +

n̄−1∑̂
n=1

Y(1,n̂+3)θ
′
n̂ + Y(1,n̄+3)θ

′
n̄ + Y(1,n̄+4)θ

′
m̄

+
−1∑

m̂=m̄+1

Y(1,k̄+m̂)θ
′
m̂ +

n̄∑
n=1

P(n,1)φn +
−1∑

m=m̄

P(p̄+1+m,1)φm

)
= 0, (57)

δw0

(
G(2,2)w

′
0 + G(2,3)θ0 +

n̄−1∑̂
n=1

G(2,n̂+3)θn̂ + G(2,n̄+3)θn̄ + G(2,n̄+4)θm̄

+
−1∑

m̂=m̄+1

G(2,k̄+m̂)θm̂

)
= 0, (58)

δθ0

(
Y(3,1)u

′
0 + Y(3,3)θ

′
0 +

n̄−1∑̂
n=1

Y(3,n̂+3)θ
′
n̂ + Y(3,n̄+3)θ

′
n̄ + Y(3,n̄+4)θ

′
m̄

+
−1∑

m̂=m̄+1

Y(3,k̄+m̂)θ
′
m̂ +

n̄∑
n=1

P(n,3)φn +
−1∑

m=m̄

P(p̄+1+m,3)φm

)
= 0, (59)

δθn̂

(
Y(n̂+3,1)u

′
0 + Y(n̂+3,3)θ

′
0 +

n̂−1∑
i=1

Y(n̂+3,i+3)θ
′
i + Y(n̂+3,n̂+3)θ

′
n̂

+
n̄−1∑

j=n̂+1

Y(n̂+3,j+3)θ
′
j + Y(n̂+3,n̄+3)θ

′
n̄ + P(n̂,n̂+3)φn̂ +

n̄∑
i=n̂+1

P(i,n̂+3)φi

)
= 0, (60)

δθn̄

(
Y(n̄+3,1)u

′
0+Y(n̄+3,3)θ

′
0+

n̄−1∑̂
n=1

Y(n̄+3,n̂+3)θ
′
n̂+Y(n̄+3,n̄+3)θ

′
n̄+P(n̄,n̄+3)φn̄

)
= 0, (61)

δθm̄

(
Y(n̄+4,1)u

′
0 + Y(n̄+4,3)θ

′
0 + Y(n̄+4,n̄+4)θ

′
m̄ +

−1∑
m̂=m̄+1

Y(n̄+4,k̄+m̂)θ
′
m̂

+P(p̄+1+m̄,k̄+m̄)φm̄

)
= 0, (62)

δθm̂

(
Y(k̄+m̂,1)u

′
0 + Y(k̄+m̂,3)θ

′
0 + Y(k̄+m̂,n̄+4)θ

′
m̄ +

m̂−1∑
j=m̄+1

Y(k̄+m̂,k̄+j)θ
′
j + Y(k̄+m̂,k̄+m̂)θ

′
m̂

+
−1∑

i=m̂+1

Y(k̄+m̂,k̄+i)θ
′
i + P(p̄+1+m̂,k̄+m̂)φm̂ +

m̂−1∑
i=m̄

P(p̄+1+i,k̄+m̂)φi

)
= 0. (63)
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The symmetric inertial termsJ(i,j) = J(j,i), extensional stiffness termsY(i,j) = Y(j,i),
shear stiffness termsG(i,j) = G(j,i), piezoelectric equivalent stiffness termsP(l,i) and
capacitance termsC(l,l) (i, j = 1, . . . , k̄ − 1 andl = 1, . . . , p̄) in Equations (48)-(63),
are given by

J(1,1) =
n̄∑

k=m̄

ρkAk, J(1,3) =
n̄∑

n=1

ρnh0An −
−1∑

m=m̄

ρmh0Am, J(1,n̂+3) =
n̄∑

i=n̂+1

ρi2hn̂Ai

+ρn̂Īn̂, J(1,n̄+3) = ρn̄Īn̄, J(1,n̄+4) = ρm̄Īm̄, J(1,k̄+m̂) = −
m̂−1∑
i=m̄

ρi2hm̂Ai + ρm̂Īm̂,

J(2,2) =
n̄∑

k=m̄

ρkAk, J(3,3) =
n̄∑

n=1

ρnh
2
0 An +

−1∑
m=m̄

ρmh 2
0 Am + ρ0I0,

J(3,n̂+3) = 2h0hn̂

n̄∑
i=n̂+1

ρiAi + ρn̂h0Īn̂, J(3,n̄+3) = ρn̄h0Īn̄, J(3,n̄+4) = −ρm̄h0Īm̄,

J(3,k̄+m̂) = 2h0hm̂

m̂−1∑
i=m̄

ρiAi − ρm̂h0Īm̂, J(n̂+3,n̂+3) =
n̄∑

i=n̂+1

ρi4hn̂
2Ai + ρn̂In̂,

J(n̂+3,j+3) =
n̄∑

i=j+1

ρi4hn̂hjAi + ρj2hn̂Īj, J(n̂+3,n̄+3) = ρn̄2hn̂Īn̄, J(n̄+3,n̄+3) = ρn̄In̄,

J(n̄+4,n̄+4) = ρm̄Im̄, J(n̄+4,k̄+m̂) = −ρm̄2hm̂Īm̄, J(k̄+m̂,k̄+m̂) =
m̂−1∑
i=m̄

ρi4hm̂
2Ai + ρm̂Im̂,

J(k̄+m̂,k̄+i) =
m̂−1∑
j=m̄

ρj4hm̂hiAj − ρm̂2hiĪm̂, (64)

Y(1,1) =
n̄∑

k=m̄

c∗k11Ak, Y(1,3) =
n̄∑

n=1

c∗n11h0An −
−1∑

m=m̄

c∗m11 h0Am, Y(1,n̂+3) =
n̄∑

i=n̂+1

c∗i112hn̂Ai

+c∗n̂11 Īn̂, Y(1,n̄+3) = c∗n̄11 Īn̄, Y(1,n̄+4) = c∗m̄11 Īm̄, Y(1,k̄+m̂) = −
m̂−1∑
i=m̄

c∗i112hm̂Ai + c∗m̂11 Īm̂,

Y(3,3) =
n̄∑

n=1

c∗n11h0
2An +

−1∑
m=m̄

c∗m11 h0
2Am + c∗011I0, Y(3,n̂+3) = 2h0hn̂

n̄∑
i=n̂+1

c∗i11Ai

+c∗n̂11h0Īn̂, Y(3,n̄+3) = c∗n̄11h0Īn̄, Y(3,n̄+4) = −c∗m̄11 h0Īm̄, Y(3,k̄+m̂) = 2h0hm̂

m̂−1∑
i=m̄

c∗i11Ai

−c∗m̂11 h0Īm̂, Y(n̂+3,n̂+3) =
n̄∑

i=n̂+1

c∗i114hn̂
2Ai + c̄

n̂(φ)
11 In̂, Y(n̂+3,j+3) =

n̄∑
i=j+1

c∗i114hn̂hjAi

+c∗j112hn̂Īj, Y(n̂+3,n̄+3) = c∗n̄112hn̂Īn̄, Y(n̄+3,n̄+3) = c̄
n̄(φ)
11 In̄, Y(n̄+4,n̄+4) = c̄

m̄(φ)
11 Im̄,

Y(n̄+4,k̄+m̂) = −c∗m̄11 2hm̂Īm̄, Y(k̄+m̂,k̄+m̂) =
m̂−1∑
i=m̄

c∗i114hm̂
2Ai + c̄

m̂(φ)
11 Im̂,

Y(k̄+m̂,k̄+i) =
m̂−1∑
j=m̄

c∗j114hm̂hiAj − c∗m̂11 2hiĪm̂, (65)
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G(2,2) =
n̄∑

n=1

c̄
n(φ)
55 An+c0

55A0+
−1∑

m=m̄

c̄
m(φ)
55 Am, G(2,3) = −c0

55A0, G(2,n̂+3) = −c̄
n̂(φ)
55 An̂,

G(2,n̄+3) = −c̄
n̄(φ)
55 An̄, G(2,n̄+4) = −c̄

m̄(φ)
55 Am̄, G(2,k̄+m̂) = −c̄

m̂(φ)
55 Am̂, G(3,3) = c0

55A0,

G(n̂+3,n̂+3) = c̄
n̂(φ)
55 An̂, G(n̄+3,n̄+3) = c̄

n̄(φ)
55 An̄, G(n̄+4,n̄+4) = c̄

m̄(φ)
55 Am̄,

G(k̄+m̂,k̄+m̂) = c̄
m̂(φ)
55 Am̂, (66)

P(n,1) =
e∗n31

2hn

An, P(n,3) =
e∗n31

2hn

h0An, P(n,i+3) =
e∗n31

2hn

2hiAn, P(n,n+3) =
e∗n31

2hn

Īn,

P(p̄+1+m,1) =
e∗m31

2hm

Am, P(p̄+1+m,3) = − e∗m31

2hm

h0Am, P(p̄+1+m,k̄+m) =
e∗m31

2hm

Īm,

P(p̄+1+m,k̄+i) = − e∗m31

2hm

2hiAm, (67)

C(n,n) = −ε∗n33An

4hn
2

, C(p̄+1+m,p̄+1+m) = −ε∗m33 Am

4hm
2

. (68)

Finally, the applied mechanical forcesF(i) and electric charge densitiesτ (l) terms are
defined as

F(1) =
n̄∑

k=m̄

Xk, F(2) =
n̄∑

k=m̄

Zk, F(3) =
n̄∑

n=1

h0Xn + M0 −
−1∑

m=m̄

h0Xm,

F(n̂+3) = hn̂Xn̂ +
n̄∑

i=n̂+1

2hn̂Xi + Mn̂, F(n̄+3) = hn̄Xn̄ + Mn̄,

F(n̄+4) = −hm̄Xm̄ + Mm̄, F(k̄+m̂) = −hm̂Xm̂ −
m̂−1∑
i=m̄

2hm̂Xi + Mm̂, (69)

τ (n) = −bτn, τ (p̄+1+m) = −bτm. (70)

Equations (48)-(63) represent the analytical electro-mechanical model of the lay-
ered beam with arbitrary ACLD treatments where the electric potential differences and
the generalized mechanical displacements are the unknown independent variables.

3 Finite Element Model

In this section a FE model based on the weak forms of Equations (48)-(56), governing
the motion and electric charge equilibrium of the layered beam with piezoelectric
and viscoelastic layers, is developed. For convenience, the generalized mechanical
displacements and electric potential differences are grouped in the generalized vectors
of displacement and potential difference,

u(x, t) = {u0(x, t), w0(x, t), θ0(x, t), θ1(x, t), . . . , θn̄(x, t), θm̄(x, t), . . . , θ−1(x, t)}T ,
(71)

φ (x, t) =
{
φ1(x, t), . . . , φn̄(x, t), φm̄(x, t), . . . , φ−1(x, t)

}T
. (72)

16



The weak forms are given by∫
L

[
δuTJü + δuT(LT

xxYLxx + LT
xzGLxz)u + δuTLT

xxP
Tφ

]
dL =

∫
L

δuTF dL,

(73)∫
L

(δφTPLxxu + δφTCφ)dL =

∫
L

δφTτ dL. (74)

The non-zero terms of the symmetric positive definite inertia matrixJ and of the
symmetric semi-positive definite extensional and shear stiffness matricesY andG, of
size [(̄k−1)×(k̄−1)], are defined in (64), (65) and (66), respectively. The piezoelectric
equivalent stiffness and capacitance matricesP andC, of sizes [̄p×(k̄−1)] and (̄p× p̄)
respectively, have non-zero terms defined by (67) and (68). The applied mechanical
forces and electric charge density vectorsF andτ , of size [(̄k − 1)×1] and (̄p × 1),
respectively, have elements defined by (69) and (70). The differential operators

Lxx = diag

(
∂

∂x
, 0,

∂

∂x
, · · · ,

∂

∂x

)
, Lxz = diag

(
0,

∂

∂x
, 1, · · · , 1

)
. (75)

of size [(̄k− 1)×(k̄− 1)] are used for the definition of the generalized extensional and
shear strains.

With the purpose of obtaining an approximated solution of Equations (73) and (74),
the FE method involving a transformation of the global integral forms to a represen-
tation composed of the sum of the elemental integral forms is utilized, leading to the
definition of the local (elemental) matrices and vectors. Thus, the beam’s total length
L is divided and the domain of integration is discretized intoq finite elements of length
Le, leading to a FE mesh composed ofq +1 nodal points. With the sum taken over all
q elements the global weak forms become

q∑
e=1

∫
Le

δueT
[
Jüe +

(
LT

xxYLxx + LT
xzGLxz

)
ue + LT

xxP
Tφe − F

]
dLe = 0, (76)

q∑
e=1

∫
Le

δφeT(PLxxu
e + Cφe − τ e) dLe = 0. (77)

The mechanical (and its second time derivative) and electrical variablesue(x, t) and
φe(x, t) of (76) and (77) are restricted to the domain of integration and the approxi-
mation is considered at a local level in each sub-domain. Furthermore, only the nodal
values of the variables at the element boundaries contribute to the approximation.

For the definition of the local approximation of the generalized mechanical and
electrical DoFs in each sub-domain, a generic element with two nodes (1 and2) is
isolated from the FE mesh (Figure 2). The correspondence between each node of the
element and the global node enumeration is established through the mechanicalRe

u

and electricalRe
φ connectivity matrices,

ūe = Re
uū, φ̄

e
= Re

φφ̄, (78a,b)
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with the mechanical̄ue and electrical̄φ
e

elemental DoF vectors defined as

ūe =
{

ū1
0, w̄

1
0, θ̄

1
0, θ̄

1
1, · · · , θ̄

1
n̄, θ̄

1
m̄, · · · , θ̄

1
−1, ū

2
0, w̄

2
0, θ̄

2
0, θ̄

2
1, · · · , θ̄

2
n̄, θ̄

2
m̄, · · · , θ̄

2
−1

}T
,

(79)

φ̄
e
=

{
φ̄1, · · · , φ̄n̄, φ̄m̄, · · · , φ̄−1

}T
. (80)

The connectivity matrices are of size [k̄(q + 1)×k̄(q + 1)] and (̄pq× p̄q), respectively,
and the superscript1 or 2 denotes the node at which the DoF is defined, while the
subscript identifies the layer to which the DoF refers. As usual, a variable from the
global DoF mechanical vector appears on two DoF elemental vectors, except for the
boundary nodes of the global domain. However, for the electrical case this is not the
case because continuity of the electric potential difference between adjacent FEs is
not assured.
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Figure 2: One-dimensional FE of the beam with arbitrary ACLD treatments.

From the differential operators (75) it is possible to see that the variational Equa-
tions (73) and (74) contain at most first order derivatives of the generalized displace-
ments and zero order derivatives of the electric potential differences. Thus, the dis-
placement variables within each element domain must be, at least, approximated by
linear interpolation functions. For the electric potential differences, constant functions
are utilized and the electric potential difference becomes constant in each element.
The interpolation functions are grouped in the mechanical and electrical interpolation
matricesNu andNφ. Therefore, the generalized displacement and electric potential
vectors in each sub-domain are approximated by

ue (x, t) = Nuū
e, φe (x, t) = Nφφ̄

e
. (81a,b)

Considering the relations in (81), the Equations (76) and (77) can be written as

q∑
e=1

δūeT
(
Me

uu
¨̄u

e
+ Ke

uuū
e + Ke

uφφ̄
e − Fe

)
= 0, (82)

q∑
e=1

δφ̄
eT (

Ke
φuū

e + Ke
φφφ̄

e −Qe
)

= 0, (83)
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where the elemental matrices and vectors are defined as

Me
uu =

∫
Le

NT
uJNu dLe, Ke

uu =

∫
Le

(BT
xxYBxx + ksB

T
xzGBxz) dLe, (84a,b)

Ke
uφ = KeT

φu =

∫
Le

BT
xxP

T dLe, Ke
φφ =

∫
Le

NT
φCNφ dLe, (85a,b)

Fe =

∫
Le

NT
uF dLe, Qe =

∫
Le

NT
φτ dLe, (86a,b)

and the extensional and shear deformation matrices utilized are given by

Bxx = LxxNu, Bxz = LxzNu. (87a,b)

A shear correction factorks is introduced in order to approximate the effects of the
non-linear shear deformation distribution [13]. Furthermore, reduced integration of
the higher order terms of the shear stiffness matrix should be used in order to overcome
the overstiffening of the element at low thickness (shear locking).

Considering relations (78) and substituting them into (82) and (83), the global equa-
tions of motion and electric charge equilibrium of the discrete system take the form

∀δū : Muu¨̄u + Kuuū + Kuφφ̄ = F, (88)

∀δφ̄ : Kφuū + Kφφφ̄ = Q, (89)

with the global matrices and vectors defined by

Muu =
q∑

e=1

ReT
u Me

uuR
e
u, Kuu =

q∑
e=1

ReT
u Ke

uuR
e
u, (90a,b)

Kuφ = KT
φu =

q∑
e=1

ReT
u Ke

uφR
e
φ, Kφφ =

q∑
e=1

ReT
φ Ke

φφR
e
φ, (91a,b)

F =
q∑

e=1

ReT
u Fe, Q =

q∑
e=1

ReT
φ Qe. (92a,b)

The FE model of the beam with arbitrary ACLD treatments is described by the
elemental matrices and vectors in Equations (84)-(86) and by the global FE equations
of motion and charge equilibrium in Equations (88)-(89).

4 Experimental Validation

In order to validate the presented FE model some measurements were taken on an alu-
minium beam with a partial ACLD treatment (viscoelastic layer sandwiched between
the piezoelectric patch and the base beam). The analysis concerned free-free bound-
ary conditions. The beam was400 mm long,2.92 mm thick and30 mm wide, and the
ACLD treatment was50 mm long and30 mm wide, with viscoelastic and piezoelectric
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layers of thickness0.127 mm and0.5 mm, respectively. Taking one end of the beam
to bex = 0, the ACLD treatment was positioned slightly off-center on the beam, start-
ing atx = 202 mm, and was realized with a passive viscoelastic layer of a material
manufactured by 3M (ISD112) and a piezoelectric constraining patch manufactured
by PI (PIC255). The shear storage modulus and loss factor of the viscoelastic ma-
terial at the experiment temperature (22 oC) were extracted from the manufacturer’s
nomogram [14]. The mechanical and electrical material properties of the aluminium
beam, viscoelastic layer and piezoelectric patch, are presented in Table 1.

Aluminium
c∗11 69 GPa
c55 26.54 GPa
ρ 2700 Kg/m3

3M ISD112
—
—

1130 Kg/m3

PIC 255
c∗11 62.11 GPa e∗31 −11.18 C/m2

c55 23.89 GPa e15 11.94 C/m2

ρ 7800 Kg/m3 ε11 12.6 ×10−9 F/m
ε∗33 9.96× 10−9 F/m

Table 1: Properties of the aluminium, viscoelastic layer and piezoelectric patch.

The FE model implementation was realized in MATLABR© and an hysteretic damp-
ing model with a loss factor equal to2 ×10−3 was considered in the numerical evalu-
ations. Three frequency response functions were measured experimentally and evalu-
ated numerically: acceleration per unit force (accelerance), acceleration per unit volt-
age into the piezoelectric patch and induced voltage per unit force. The excitation and
response locations were atx = 275 mm. The results are shown in Figures 3 to 5.
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Figure 3: Frequency response function (acceleration per unit force) of the beam with
ACLD treatment:l l l , numerical;lllll , experimental.

As can be seen, there is very good agreement between the numerical and experi-
mental results. Both the dynamics of the system and the actuating and sensing capa-
bilities of the piezoelectric patch are validated.

20



100 200 300 400 500 600 700 800 900 1000

−60

−40

−20

0

20

Freq. [Hz]

M
ag

. [
dB

] 
(r

ef
. 1

m
s−

2 /V
)

Figure 4: Frequency response function (acceleration per unit voltage) of the beam
with ACLD treatment:l l l , numerical;lllll , experimental.
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Figure 5: Frequency response function (voltage per unit force) of the beam with
ACLD treatment:l l l , numerical;lllll , experimental.

5 Conclusion

In this paper a generic analytical formulation and FE solution for the study of arbitrary
ACLD treatments in beams was presented. The ability of the method to accurately
model the hybrid behavior, elastic, viscoelastic and piezoelectric materials, was vali-
dated against experimental results. The analytical formulation can be used for other
solution methods and the FE model can be used in the simulation of active control
systems in beams with arbitrary ACLD treatments.
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