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Abstract

This paper concerns arbitrary active constrained layer damping (ACLD) treatments
applied to beams. In order to suppress vibration, hybrid active-passive treatments
composed of piezoelectric and viscoelastic layers are mounted on the substrate beam
structure. These treatments combine the high capacity of passive viscoelastic mate-
rials to dissipate vibrational energy at high frequencies with the active capacity of
piezoelectric materials at low frequencies. The aim of this research is the develop-
ment of a generic analytical formulation that can describe these hybrid couplings in
an accurate and consistent way. The analytical formulation considers a partial layer-
wise theory, with an arbitrary number of layers, both viscoelastic and piezoelectric,
attached to both surfaces of the beam. A fully coupled electro-mechanical theory for
modelling the piezoelectric layers is considered. The equations of motion, electric
charge equilibrium and boundary conditions are presented. A one-dimensional finite
element (FE) model is developed, with the nodal degrees of freedom being the axial
and transverse displacements and the rotation of the centreline of the host beam, the
rotations of the individual layers and the electric potentials of each piezoelectric layer.
The damping behavior of the viscoelastic layers is modeled by the complex modu-
lus approach. Three frequency response functions were measured experimentally and
evaluated numerically: acceleration per unit force, acceleration per unit voltage into
the piezoelectric actuator and induced voltage per unit force. The numerical results
are presented and compared with experimental results to validate the FE model.

Keywords: beam, viscoelastic, piezoelectric, active constrained layer damping, finite
element.



1 Introduction

Passive damping treatments have been extensively used in engineering to reduce vi-
bration and noise radiation. The simplest form of passive damping is the one where
single layers of viscoelastic materials are attached to the host structure. When the
structure vibrates energy is dissipated in the viscoelastic layer. Increasing the thick-
ness and length of the viscoelastic treatment would increase the energy dissipation and
consequently the damping. However, in applications where the weight is of critical
importance, a more efficient treatment is required, and other alternatives to increase
damping must be found.

It is well recognized that the inclusion of elastic constraining layers covering the
viscoelastic layer can enhance the energy dissipation through an increase in shear de-
formations. That is known gsassive constrained layer dampi{igCLD). However,
while passive damping treatments can greatly improve damping of the system, there
are limitations. Viscoelastic materials have frequency and temperature dependent me-
chanical properties which can make the damping change, bringing limitations to the
effective temperature and frequency range of the treatment. In order to provide ade-
quate damping over a broad frequency band, different viscoelastic materials must be
chosen which often complicates analysis and design of the system. Therefore, while
viscoelastic treatments are easy to apply, the damping is often of limited bandwidth.

In the last decadactive constrained layer dampif@CLD) treatments have been
applied to structures. Those are hybrid treatments with constraining layers made of
piezoelectric materials. One of the unique features of piezoelectric materials is that
they can serve both as sensors and actuators. If utilized as actuators, and according
to an appropriate control law, the active constraining layer can increase the shear de-
formation of the viscoelastic layer and overcome some of the PCLD limitations. The
ACLD treatments combine the high capacity of passive viscoelastic materials to dis-
sipate vibrational energy at high frequencies with the active capacity of piezoelectric
materials at low frequencies. Therefore, in the same damping treatment, a broader
band control is achieved benefiting from the advantages of both passive (simplicity,
stability, fail-safe, low-cost) and active (adaptability, high-performance) systems.

Various configurations of active and passive layers have been proposed in an at-
tempt to improve performance. In general so-called hybrid active-passive (or arbitrary
ACLD) treatments involving arbitrary arrangements of constraining and passive lay-
ers, integrating piezoelectric sensors and actuators, might be utilized. A survey of
advances in hybrid active-passive vibrations and noise control via piezoelectric and
viscoelastic constrained layer treatments can be found in references [1, 2].

Modeling this kind of structural system often requires a coupled model of the struc-
ture, which comprises piezoelectric, viscoelastic and elastic layers. These treatments
are applied to beams, plates and shells. They can be modeled as either lumped or dis-
tributed parameter systems, and usually have complicated geometries that make ana-
lytical solution of the equations of motion difficult, if not impossible. Alternatively,
various discretization techniques, such as finite element (FE) modelling, modal analy-



sis, and lumped parameters models, allow the approximation of the partial differential
equations by a finite set of ordinary differential equations.

The temperature and frequency dependent material properties of the viscoelastic
materials put some difficulties on the mathematical model, increasing its complexity.
Usually the temperature is assumed constant and only models concerning frequency
dependence are utilized. The simplest way of modelling those materials is achieved by
a complex modulus approag®MA) where the material properties are assumed fre-
guency independent. The CMA is a frequency domain method that is limited to steady
state vibrations and single-frequency harmonic excitations [3]. Time domain models
such as thé&olla-Hughes-McTavisiGHM) model [4],anelastic displacement fields
(ADF) approach [5] offractional calculus approaci6], have been developed in the
last few years and represent good alternatives to the CMA when the study of transient
response is of interest.

In the development of FE models with piezoelectric actuators or sensors, different
assumptions can be taken into account in the theoretical model when considering the
electro-mechanical coupling. A survey on the advances in FE modelling of piezo-
electric adaptive structures is presented by Benjeddou [7]. These assumptions regard
mainly the use (or not) of electric degrees of freedom (DoF) and the approximations
of the through-the-thickness variation of the electric potential. Therefore, they lead
to decoupled, partial and fully coupled electro-mechanical theories, which in turn can
lead to different modifications of the structure’s stiffness and different approximations
of the physics of the system.

When designing hybrid active-passive treatments it is important to know the con-
figuration of the structure and treatment that gives optimal damping. For simulation
the designer needs a model of the system in order to define the optimal locations,
thicknesses, configurations, control law, etc. The alternatives are diverse. The aim of
this work is the development of a generic analytical model that can account for the
hybrid couplings in an accurate and consistent way. It can therefore be seen as an
initial step from which different analytical and discretization methods can be used for
the solution of arbitrary hybrid active-passive treatments on beams. We start by pre-
senting the structural analytical model of a composite beam with an arbitrary number
of layers of elastic, piezoelectric and viscoelastic materials, attached to both surfaces
of the beam. The kinematic assumptions, based in a partial layerwise theory, are
first presented. Then, the electric model assumptions for the piezoelectric materials
which account for a fully coupled electro-mechanical theory are described. Moreover,
the damping behavior of the viscoelastic layers, modeled by the CMA, is presented.
Hamilton’s principle is utilized to derive the equations of motion and electric charge
equilibrium, and the electro-mechanical boundary conditions. The strong forms of the
general analytical model of the composite beam with an arbitrary number of layers
are then presented by a set of partial differential equations. A FE model solution is
presented and a composite beam FE is derived from the weak forms of the analytical
model. Finally, the developed FE is used in the prediction of three frequency response
functions: acceleration per unit force and voltage into the piezoelectric actuator and



induced voltage per unit force. Numerical results are presented and compared with
experimental results to validate the FE numerical tool.

2 Analytical Model

In this section the analytical model for a beam with arbitrary ACLD treatments is
developed. For the sake of brevity some intermediate steps on the development of the
equations of motion and boundary conditions are omitted. The reader is referred to
the work of Vasques et al. [8] for further details.

2.1 Displacements and Strains

Consider the layered beam illustrated in Figure 1. The composite beam consists of a
host beam, laye, of thicknes2h, to which other layers (treatments) are attached.

In order to be able to model several configurations of the treatments, the composite
beam theory allows an arbitrary number of layers of elastic, piezoelectric and vis-
coelastic materials in arbitrary positions. The displacement field is defined according
to a partial layerwise theory where the axial and transverse displacemgnts;y, t)
andwy(x,t), of the top ¢ = 1,...,n), core ¢ = 0) and bottom{» = m, ..., —1)

layers are given by

n—1
Un (T, 2n, t) = up(,t) + hobo(z,t) + > 2hi0;(x,t) + (25 + hy)On (2, 1),
i=1

Ue(x, ze, t) = up(x,t) + z000(x, 1),

—1
U (T, Zm, t) = ug(z,t) — hobo(x,t) — > 2h0;(z,t) + (2 — han)Om (2, 1),

1=m-+1
Wi (2, 1) = Wn (2, 1) = We(x, 1) = W (2, ) = wo(z, 1), 1)
where2h,, is the thickness of thé-th layer(k = m,...,—1,0,1,...,7n), uo(z,1t),

wo(x,t) andby(z,t) are, respectively, the generalized axial and transverse displace-
ments and the rotation of the beam’s mid-plane, apd,t) andé,,(z,t) are the
rotation of eachn-th top andm-th bottom layer. It is worth noting that positive in-
dices are used to denote the top layers and negative indices are used to the bottom
ones, i.e.n > 0 andm < 0. The z-coordinates in Equations (1) are measured from
the interface between layersandn — 1 (z, + h,) andm andm + 1 (z,, — hy,).

They represent a translation of the rotation axis of each top and bottom layer from the
layer mid-plane to the interface of the adjacent layer. Note that axial displacement
continuity at the interfaces of the layers is assured, leading to coupling terms in the
axial displacements of the layers, and that a constant through-the-thickness transverse
displacementuy(x, t) is assumed.

According to the displacement field (1) the extensional and shear strains of the
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Figure 1: Layerwise displacement field of the beam with arbitrary ACLD treatments.

layers are determined by the usual linear strain-displacement relations, to be

~ n—1
i i=1
Ot
Sew = al; = uy + 200,
m 8'&m / ! - / /

SIJ? = —_— = U‘O — hOQO — Z 2h291 + (Zm - hm)emi

ox i=m+1

ow ot
Sk:ﬂ—ﬂ:w{)—ﬁk, (2)

e ox 0z,

where the notatiof)’ is used to denote the spatial derivative in thdirection. Note
that the kinematic hypotheses considered previously lead to null transverse strains and
a first-order shear deformation theory (FSDT) for all the layers.

2.2 Constitutive Equations

Consider a general piezoelectric layer. The material of the piezoelectric layers is as-
sumed to be orthotropic with the axes of orthotropy parallel to the axes of the beam.
These materials are polarized in the transverse direction and have the behavior of nor-
mal piezoelectric materials, with the symmetry properties of an orthorhombic crystal
of the classnm?2 [9]. The linear piezoelectric constitutive equations are

T =cPS—e'E, D=eS+¢°E, (3a,b)

whereT, S, E andD are, respectively, the stress, strain, electric field and electric
displacement vectors, ard', e ande® are, respectively, the elasticity (at constant
electric field), transpose piezoelectric and dielectric (at constant strain) matrices ap-
propriate for the material.



The displacement field considered in (1) is independent ajt#as and null along
that direction. Hence the constitutive equations of a generic top or bottom piezoelec-
tric layerp can be written in the following reduced form,

T _ |ar 0 fSE, 0 er| JE}
{sz} B |:0 C€5:| {ng}_[é% 0 Ef , (4a)

Dy _ 0 621)5 St 811)1 0 E?
{Df} B Lé;’f 0} {S§Z}+[0 n) e (40)
with 22 » -
* * * 6
e = ¢l — %1 ey = €5 — €§3£7 €33 = €53 + % (5a-c)

The modification of constantg,, e, andet, is due to the transverse stress assump-
tion, 72, ~ 0. Furthermore, for the characterization of the core layer or any other
viscoelastic or elastic layer, Equation (4a) can also be used by setting the piezoelec-
tric contantse;] andel; to zero and by using the appropriate values for the elasticity
matrix.

2.3 Piezoelectric Materials Model

In the present work, a fully coupled electromechanical theory which takes into account
the direct piezoelectric effect with a non-linear distribution of the electric potential is
utilized. The electric displacement vector in Equation (4b) can be written as

Dr e, O ] {Ep - Ep} L E €5 i €31
T = . o Zrs with EP = ——=28P EP = ——2SP = (6)
([0 2 {s -5 %

whereE? and EP are the electric fields induced by the mechanical strains.

According to reference [10], for electroded layers with the electric potential being
prescribed and with the assumption of zero electric displacement in-theection,
the axial and transverse electric fields; and £7, and the electric potentiat, are
given by

_ ¢ _ 1 hp  _
EP = EP, EP = ——2 4 F7 — —/ Erdz, (7a,b)
2h,, 2hy J 1, b
QS Zp B (Z + h ) hp B
0o = 5t ) - / B+ U / B, (®)

whereg, denotes the electrical potential difference of the electrodes at each piezoelec-
tric layer. Substituting into Equations (7) and (8) the induced electric fields in (6) and
considering the strain definitions in (2), the electric field and potential become [11]

D ¢ ei"p
r_ p 31 9/ ’ 9a1b
2h, e3h PV ( )

o= 20 +h)+1€—¥(z2—h2)9'. (10)
P 2h, PP 2B NP pop



It is worth noting that the first part of Equation (10) is a linear through-the-thickness
electric potential term concerning the applied electric potential difference and the sec-
ond part is a parabolic term concerning the induced potential due to the mechanical
strains.

2.4 Viscoelastic Materials Model

Viscoelastic materials are a class of materials which exhibit a strong temperature and
frequency dependent constitutive behavior. They can be characterized in the frequency
domain by a complex shear or extensional modulugy) or E (w), and a loss fac-

tor  (w) which accounts for energy dissipation effects. Considering simple harmonic
excitation and a fixed temperature, it is possible to use the CMA to describe the vis-
coelastic behavior, by putting

Gw) =G (w)+jG" (w), (11)
whereG’ (w) is the shear storage modulés; (w) is the shear loss modulus,is the
frequency ang = \/—1. Defining Equation (11) in terms of the loss factor yields

G() =G @+ i), 1) = G,
If we consider a linear, homogeneous and isotropic viscoelastic material, the Young
storage modulug’ (w) and shear storage modulG$(w) are related by
E'(w)
2[1+v(w)]’
wherevr (w) is the Poisson’s ratio. In general, the complex moduliv) andG (w)
are not proportional because the Poisson’s ratio is also frequency dependent and the

loss factors), (w) andn (w) are not equal. However, for simplicity one can relax
that condition and put, (w) = ¢ (w) = 1 (w).

(12a,b)

G (w) = (13)

2.5 Variational Formulation

In order to derive the electromechanical equations of motion and boundary conditions
of the composite beam with ACLD treatments, Hamilton’s principle is used, where the
Lagrangian and the applied forces work are adapted for the electrical and mechanical
contributions [12], so that

t1
/ (0T —6H + 6W) dt = 0, (14)
to

wheret, andt, define the time intervall” is the kinetic energyH is the electrome-
chanical enthalpy (energy stored in the piezoelectric and non-piezoelectric layers) and
W denotes the work done by the applied mechanical forces and electrical charges. In
the following, it will be assumed that all the top and bottom layers are piezoelectric.
However, the formulation still holds for non piezoelectric layers by considering only
the mechanical virtual work terms for those layers.



2.5.1 Virtual Work of the Internal Electromechanical Forces

The work of the internal electromechanical forces is given by the sum of the vir-
tual work contributions of all the layers. Considering a generic piezoelectric layer
p =nm = m,...,—1,1,...,n, and separating the total virtual woti{? into
mechanicab i}, piezoelectricH,, and§H},, and dielectrici i, terms, for the

piezoelectric layers of volumg,, yields

SHP = §H?, — 6H”, — §HY, — 6HY,, (15)
where
312, = [ (OSLASE, +35L.SL) oV, (16)
ST, = [ (5Lt + oSLet DAY, (17)
oy, = [ GBSy, + 6Bl SN, (18)
SHY, = / (GEPe? EP + SEP<EPYV, (19)

P

As can be seen in Equation (10) the electric field definitions are expressed in terms
of the electric potential difference and mechanical strains. Thus, Equations (17)-(19)
can be partitioned in the electro-mechanical terofg)”, sH"'" and§H"\”, ex-
pressed in terms of the electrical potential difference and mechanical strains, and in
the induced terms A%\, 677" and 6 ", which are expressed only in terms of
the bending and shear mechanical strains, yielding

SH?, = —sH"Y — sHYY), §HY, = —6H!\Y — sH77, (20a,b)
SHY, = 6HY + 6HY. (21)

Therefore, the electro-mechanical terms expressed only in terms of the strains can be
summed with the pure mechanical oneg? , yielding

SHY =61, + §HYS + 6HDY — 517, (22)

and Equation (15) becomes
SH? = §HY + 6HYY + 6HD + sHYY. (23)

Expression (22) represents the stiffness increase due to the direct piezoelectric effect
where the effects of the axial and transverse induced electric fields are condensed in
Equation (16). See [8] for further details.

Considering in Equation (23) the strain definitions (2) and the first part of the trans-
verse electric field in Equation (9b) and integrating by parts, we have for the core, top
and bottom layers,

6HS, = 6HS, — 6H

uu’

(24)



SHM9) = 5[};11505) _ 5}}375@, SH™9) = 5f[£(¢) _ 5[}&(@’ (25a,b)
where

A L
SHE, = [mocﬁAcug + wo (s Al — ¢ Aby) + 000ciS10L| |, (26)
0
SHS, = / [(MOC’ﬁAcug + dwp (cis Acwy — cEs Acby)
L
4600 (S LAY+ s Ay — 5 A, By) ] dL 27)

and

X n—1 _
SHM®) = [(5u0 (a;mnug F e ho Al + TS 20 A0+ c;?lneg)
=1
+ dw (a"“”A wh — &9 A0 ) 466 (c*”h At + ¢ ho? A6,
0\ %55 n%o 55 nYn 0\ “117%04nY%0 11700 “AinYo
n—1 _ n—1
+citho X2 2hiAnl + cihoLd, ) + X2 005 (li2hi Aty + cii2hito Anbl
=1 =1
n—1 _ _ _
+eifahs X A+ Ci2hiT 0, ) + 60 (i Tty + ciiho L0,
]:
n—1 _ L
et X 2hidb+ 18, (28)
=1
~ n—1 _
SH"®) — / [(5u0 (c*{’fAnug’ + G Tho A0y + &1 ST 20 AL0Y + c’{?InHZ)
L =1
+ o (é§é¢)Anw{{ - a@}g@Ane;) + 36, (c’{?hoAnu{)’ + 2 ALG!
n—1 _ n—1
=1 =1
n—1 _ _ _
Feifah T A0+ c’{?thIneﬁ) + 86, (a{f;[nug + o L00
J:
n—1

e S o0+ &L+ DA, — agg‘b)Anen)} dL. (29)

=1
Similar expressions to (28) and (29) can be found for the bottom layers, cf. [8]. Fur-
thermore, integrating the electrical terms in Equation (23) by parts yields

SHIY = sa" — 61, sHIN = sHIY — sHI, (30a,b)
where
. *M n—1 ~ I
SIS = [ 526, (Auduo + hoAudlo + X2 2hiAnd0; + L,o0,) | | (3D)
n =1 0

5 *n n—1 3
SH™® — / 26;1 & (Anéuo F hoAndlo + S 2hi Aol + Jnaen) dL. (32
L n =1



Again, similar expressions to (31) and (32) can be found for the bottom layers.

In the previous equations integration with respecfitacross the layer was carried
out whereL is the length of the beam antl,, I, and I, represent the zero, first and
second order moments of area, respectively. They are given by

(2h,)%b (2h)%b (2h,)3b (2h,)%b

Ap = 2hb, I, = 2 2 1 — =2l 7 e T (33a-e
k k 9 2 P 3 12 ( )

whereb is the width of the beam. The stiffness increase due to the induced electric
fields expressed in Equation (22) is represented by the so-called effective stiffness
parameters [11],

e*PQ ep 2
& =+ 2, P =+ (34a,b)
degs SiH1
As can be seen in (28) and (29), the paraméffé’} only affects the bending stiffness
and it represents the effects of the induced parabolic electric potential. Regarding
é§§¢), it represents the stiffness increase due to the assumption thaicthraponent
of the electric displacement vector vanishes and it affects only the shear stiffness.

Finally, the total virtual work of the internal electromechanical forces in all the
layers (elastic, piezoelectric or viscoelastic layers) is given by

SH = 6HS, + 3 (5Hgg¢) +SHMY 4 S — 5Hg$>). (35)
p=m
p#0

2.5.2 Virtual Work of the Inertial Forces
The virtual work of the inertial forces in a generic layeis given by
5T — — / o (méik + mkqbk)dv,ﬂ, (36)
Vi

wherep, is the density of the material into layer. Substituting the displacement field
in Equation (1) into (36) gives, after integration, for the core and generic top layers,

. n—1 . .
5T — / (510 (P Ao + pohoAnb + p X 2hiAndi + p, 1.6
L =1
. n—1 . .
— 86, <pnhoAnii0 ¥ poho? Anbo + poho S 2hiA0; + pnh0[n9n>
=1
n—1 . n—1 . .
~ ¥ 80, <pn2h,~And0 + p,2hihoAnbo + p,Ah: S B ALD; + pn2hi1n9n>
i=1 Jj=1
_ . n—1 o .
=1
(37)
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5T = — / (5u0pcAciL0 + 600p, B0 + 6w0pCACoIJ0>dL. (38)
L

As before, a similar expression to Equation (37) is obtained for the bottom layers.

The total virtual work of the inertial forces is then given by the sum of the virtual
work of all the layers, i.e.,

n —1 n
6T =86T°+ Y. 61"+ Y. §T™ = > 6T". (39)
m=m k=m

n=1

2.5.3 Virtual Work of the External Forces

In the determination of the virtual work of the mechanical external forces, two types of
applied mechanical forces are considered, namely, &%iaind transvers&” volume
forces. The virtual work of those forces for the generic ldyes given by

SWE = / (Fj(sak +Ff5wk)dvk. (40)
Vi
Substituting the displacement field (1) in (40) and integrating, yields
n—1
SWn = / [(mo + hodlo + 3 2000, + hn60n>Xn 60, M,, + dwoZ, | dL, (41)
L =1

SWE = / <5u0XC + 600 M, + 5w0Zc> dL, (42)
L

where
(Xk, M, Zk> _ / <F’“ 2, Ff)dAk. (43)
Ap
Similar expressions to (41) can be found for the bottom layers. Thus, the total virtual
work accomplished by the mechanical forces is given by

n —1 n
SW, =W+ 3 sWr 4 S 6Wr =3 Wk, (44)

The virtual work of the electric charge density in a generic piezoelectric layer is
defined by

oW} = — /AE 6, TpdAS = —/Léqbprde, (45)
where A7 is the electrode area ang is the applied electric charge density at the
electrode. Note that from the definition of the electric potential (10), and considering
only the applied potential term, one finds thgt(z, = —h,) = 0 andy, (z, = h,) =
¢,. The total virtual work of the applied electric charge density is given by

n —1 n
Wy =2 6Wi+ S Wi =3 6W2. (46)
n=1 m=m p=m
p#0

11



Finally, the total virtual workéW of the applied external forces, comprising the
virtual work of the applied mechanical forcésl’, and that of the applied electric
charge density at the electrodd#’,, is given by

SW = W, + Wy = z SWh+ z SWY. (47)

k=
p#O

2.5.4 Strong Forms

The equations of motion are obtained from the Hamilton’s principle by substituting
expressions (35), (39) and (47) into (14), integrating by parts and collecting the terms
involving the variation®ug, dwq, 66y, 06; (n = 1,...,n — 1), d05, 00, and b,

(m =m+1,...,—1), independent and arbitrary in the intery@l L]. The resultant
equations have no solution other than the trivial one, and the differential equations of
motion, with the total number of piezoelectric layers giverpby n — m and the total
number of generalized displacements equai to1, with & = p + 4, are given by the
following:

(S’LLO .

n—1
Yiunyu + Yzt + Z Yias + Yoarn 0y + Yaarat,

m

+ Z Yr(lk—‘rm 0” + Z P(nl ¢ + Z Pp+1+m1 ¢ +F J(l,l)uO

m=m-+1

n—1
+J(1390+2J1n+39 +J1n+39 +J1n+49 + Z J1k+m6ma (48)

m=m-+1

5’[1)0 .

n—1

Gaywy + Gezly+ 30 Gonrslh + Gaarnty + Genaly,
n=1
-1
+ Y Gagpln + Foy = Jao)to, (49)
m=m-+1

(590 .

Yisyug + Yis5)600 +Zy(3n+39 + Yignt3)0n + Y00 + Z Y(3k+m9//

m=m-+1

—Gaywy — Gezbo + Z Py @, + Z Ppi14m,3) b + Fizy = J(3.1)to
n=1 T

+J(3390+Zj3n+39 +J3n+39 +J3n+49 + Z J3k+m9ma (50)

n=1 m=m-1

12



59ﬁ .

n—1 n—1
Yiaranug + Yiarazto + Zl Yiarsir)ti + Yiarsarnls + 2 Yiarsjia0)
i= j=it1

+Yintsa+3)0n — Gars2wy — Gutsnts)fa + PantsyPn + . Puats) @
i=at1
) L Al . .
+Fi43) = Jars o + Jars )00 + D Jaasienli + Jisats)Oa
=1

7

ﬁf J(ﬁ+3,j+3)éj + J(ﬁ+3,ﬁ+3)éﬁ1 (51)
j=n+1
005 -
Yiasyug + Yiasa st + ﬁii Yintsn+)0n + Yitsars0n — Gars 2wy
—G (a13,n+3)0n + P(n,n+3)¢lﬁ + Fays) = Jmsstio + J(n+3,3)éo
+ nii Jinrsirn0n + JnrsnssOn, (52)
00 :

1
Yinranyug + Yiaraslo + Yoranialn, + > Y(ﬁ+477f+m)€:7{1 — Gnra2)W
m=m+1

—G (ta,n44)0m + P(p+1+m,]2+m)¢;ﬁ + Flata) = Jmraytio + J(ﬁ+4,3)éo

. _1
+J (it aa+4)0m + A > Jaragrm i (53)

m=m+1

(Sem .
m—1
Y(z;+m,1)u3 + Y(E+m,3)‘%/ + Y(l’c-s-m,ﬁ+4)6;% + ) Z—H Y(l_c-i-m,l_c-kj)‘g;‘/ + }/(l_f—i-'rh,l_ﬂ—&-fn)e;;z
j=m
m—1

-1
+ ‘ Z . Y(l%+m,l€:+z‘)9g - G(E+m,2)w6 - G(l’c+m,l}+m)9m + Z P(ﬁ+1+i,l%+m)¢§
i=rm+ 1=m

Pty i + Fliem) = Jemniio + Jiims)00 + JErmarafm
1 -1

+ 2 X it )05 + Tty Om + 22 1 T hsrnioriy O (54)
J=mt i=rh+

In a similar way, the charge equations of electrostatics are obtained by collecting the
terms related to the variation®,, (n = 1, ...,n) anddg,, (m = —1, ..., m), giving

0,

n—1
P yug + Pyt + Zl Pinit3)0; + Pty + Cuny®p = Ty, (55)
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00,
—1
Pi1emyty + Poriems)0y + P(ﬁ+1+m,l‘c+m)9;n + > : P(ﬁ+1+m,15+i)9;
i=m-+

+C(ﬁ+1+m,ﬁ+1+m) Gy = T (p+1+m)- (56)

The electromechanical boundary conditions at 0, L. are derived from the applied
mechanical forces and electric potentials, and they are defined as

-1
dug <Y(1,1)u6 + Y300 + X Yaursl, + Y 0s + Yaara b,
A=l

—1 n —1
+ > Yujgrmbfa + 21 Pna)@, + 2 P(ﬁ+1+m,1)¢m> =0, (57)

m=m+1

i1
dwo (G(Q,z)w6 + G2,3)00 + Z G2,n+3)04 + G2ne3)0n + G2nr4)0m

n=1

-1
+ > G(z,mm)@m):(), (58)

m=m+1

-1
60 <Y(3,1)U6 + Y3500 + Y Yiaarsl, + Yl + Yiaaia b,
=1

—-1 n —1
+ > Yaiimfa + Zl Pln3)0,, + Zﬁ P(ﬁ+1+m,3)¢m> =0, (59)

m=m+1

A—1
00 <Y(ﬁ+3,1)U6 + Yiars)0o + 2 Yiassirnti + Yiarsnrs 0
i=1

n—1 n
+ 2 Yiarsjes0; + Yiarsarny + Paass)®n + 2 P(i,ﬁ+3)¢i) =0, (60)
j=n+1 i=n+1

-1
005 <Y(ﬁ+3,1)U6+Y(ﬁ+3,3)96+ > Y(ﬁ+3,ﬁ+3)9%‘|'Y(ﬁ+3,ﬁ+3)‘9%+P(ﬁ,ﬁ+3)¢ﬁ> =0, (61)
A=l

—1
007, <Y(ﬁ+4,1)% + Yaran0o + Yaraarnln + 2 Yirarem s

m=m+1

+P(ﬁ+1+m,l%+m)¢m> =0, (62)

h—1
005, <Y(I‘c+m,1)U6 + Y(E+m,3) 96 + Y(E+m,ﬁ+4) 9;71 + ' ZH Y(l'c+m,l‘c+j)9;‘ + Y(E+m,l‘e+m) 9;%
Jj=m

-1 m—1
+ 2 Yarmin?i + Poricmbin P ; P(p+1+i7]}+m)¢i> =0. (63)

i=m+1
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The symmetric inertial termgy; ;) = J(; ), extensional stiffness term§; ;) = Y,

shear stiffness termS; ;) = G(;), piezoelectric equivalent stiffness termg; and
capacitance termS; ;) (i,j = 1,...,k —landl = 1,...,p) in Equations (48)-(63),
are given by

Jay = Z PrAis J( Z nhoAn — Z PmhoAm, Jaav3) = Z pi2hq A
n=1 i=n+1
_ _ _ m—1 _
Toalis Jam+3) = Prdin Jaare) = Pt Jakrmy = — 22 Pi2hiaAi + pg L,

n

n -1
= 2. PeAr, Ji3) = 21 puhig An + E_ Py A + polo,

k=m

Jatrs) = 2hoha Y. piAi + ppholi, Jsi43) = paholn, Jaaray = —pmholm,

i=ht1
-1 ~ n

Jairmy = 2hoh 3o pi A — paholi, Jarsarsy = 2 pdha*Ai + pals,
i=m i=n+1

n

Jiisjen = 2 PidhahiAi+ p2hily, Jiisass) = pr2haln, Jaisass) = Palns

i=j+1
m—1

Jaranta) = Padin Jasagom) = —Pm2hidny Jwmpem = 2 pithin’ Ai + padi,

-1 ~
J(E+m,l}+i) = 2 Pj4hmhiAj — pi2hil, (64)
j=m
7l n ,
Yo = Z AR Y = E cirhoAn Z AT hoAm, Yaats) = D0 c112had;
m—1

+0 T, Yiats) = & n, Yaara = A1 I, Y igm) = — Z i 2hs Ai 4 T Ly,

n -1 n .
Y(373) = Z CTTILhO2An + Z CﬁnhOQAm + CT?]O; Y(gﬁ_i_g) = QhOhﬁ Z CTZIAZ
n=1 m=m

i=ft1
A L o m—1
+eithola, Yisnes) = citholn, Yisnray = =11 holim, Y3 fpmy = 2hohi - i1 A
—ciT oL, Yiraars = > Cidha® A+ 817 L, Yogsjm = Y ciidhahj Ay
i=n+1 i=7+1

+EA2ha 15, Yinsanis) = ¢ii2haln, Yintanis) = A, Y(ﬁ+4,ﬁ+4) = Eﬁ(d))fm,

m—1

Yinsarm = —Ci1 2hiln, Yiksmpim) =
el o
Y(E—i—fn,fc-}—i) = Z idhmhi Ay — 2Nl (65)
j=m
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5

m=m

e _ & 7”(¢)A 0 4 < 7m(¢)A G = — A An. Gio - __J‘(qb)AA
(2,2) = 2165 ntCs5 A0+ z_ Cs5 Amy G(2,3) = —Cs5540, G(2,a43) = —Cs5 Ans

Gty =~ An, Ganrgy = —C” Am, Gojimy = —Con D Ay Gag) = S5 Ao,
G(ﬁ+3,ﬁ+3) = 5?5@))147% G(ﬁ+3,n+3) = 525(¢)Aﬁ, G(ﬁ+4,ﬁ+4) = EE%(@Am,
_ =M(¢)
G(E—i—ﬁz,fc—i—ﬁm) =G5 A, (66)
e*n e*n e*’n e*n _
Py = 221 Any Pingy = 2;1 hoAn, Pnitsy = %%An, Punys)y = ﬁfn,
esr’ ey’ est’ 7
Plpt14m,1) = WAW Plpt14m3) = 94 hoAm, P(ﬁ-‘rl-i—m,fc-‘rm) - me’
_ e
P(ﬁ+1+m,l€+i) = _ththAm' (67)
e A, exlv A,
C(n,n) = —%, C(ﬁ+1+m,ﬁ+1+m) = - 22 5 - (68)

Finally, the applied mechanical forcé%; and electric charge densitieg) terms are
defined as
n n n —1
Foy= 3 Xy Foy= 30 Zi, Fgy = 32 hoXp + Mo — 30 hoXom,
k=m k=m n=1 m=m
F(ﬁ-i—d) - hﬁXﬁ + Z 2hﬁXz + Mﬁ, F(ﬁ+3) = hﬁXﬁ + Mﬁ,
i=n+1

m—1

=m

(70)

Tn) = —bTn, T(r14m) = —0Tp,.

Equations (48)-(63) represent the analytical electro-mechanical model of the lay-
ered beam with arbitrary ACLD treatments where the electric potential differences and
the generalized mechanical displacements are the unknown independent variables.

3 Finite Element Model

In this section a FE model based on the weak forms of Equations (48)-(56), governing
the motion and electric charge equilibrium of the layered beam with piezoelectric
and viscoelastic layers, is developed. For convenience, the generalized mechanical
displacements and electric potential differences are grouped in the generalized vectors

of displacement and potential difference,

u(z,t) = {uo(x, t), wo(x,t), 0o (2, 1), 01(x, 1), ..., 0n(ax,t), 02, 1), ..., 0_1(x,8)},
(71)

¢(I,t> = {¢1(x7t>7 v 7¢ﬁ<x7t)7 ¢m(x7t)> T 7¢—1($7t>}T' (72)
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The weak forms are given by

/ [6u"Jii + 6u' (L], YL,, + L], GL,.)u+ 0u'L] PT¢] dL = / su'F dL,
L L
(73)

/ (6¢"PLyu+ 6" Cop)dL = / §¢'T dL. (74)
L L

The non-zero terms of the symmetric positive definite inertia makrend of the
symmetric semi-positive definite extensional and shear stiffness ma¥ieaslG, of

size [(k—1)x(k—1)], are defined in (64), (65) and (66), respectively. The piezoelectric
equivalent stiffness and capacitance matrieesdC, of sizes px (k—1)] and (o x p)
respectively, have non-zero terms defined by (67) and (68). The applied mechanical
forces and electric charge density vectBrandr, of size [ — 1)x1] and (¢ x 1),
respectively, have elements defined by (69) and (70). The differential operators

_ 0 0 0 , 0
wa - dlag (%707%7'” 7%) !sz - dZCLg (nga]-)"' al) . (75)

of size [(k — 1) x(k — 1)] are used for the definition of the generalized extensional and
shear strains.

With the purpose of obtaining an approximated solution of Equations (73) and (74),
the FE method involving a transformation of the global integral forms to a represen-
tation composed of the sum of the elemental integral forms is utilized, leading to the
definition of the local (elemental) matrices and vectors. Thus, the beam’s total length
Lis divided and the domain of integration is discretized intimite elements of length
L., leading to a FE mesh composed;cf 1 nodal points. With the sum taken over all
q elements the global weak forms become

i su’ [Ji° + (L], YL,, + L],GL,.) u* + L] PT¢° — F] dL. =0, (76)

e=1J L,

i §¢°" (PL,,u® + C¢° — 1) dL, = 0. (77)

e=1J L,

The mechanical (and its second time derivative) and electrical variablest) and
¢°(z,t) of (76) and (77) are restricted to the domain of integration and the approxi-
mation is considered at a local level in each sub-domain. Furthermore, only the nodal
values of the variables at the element boundaries contribute to the approximation.

For the definition of the local approximation of the generalized mechanical and
electrical DoFs in each sub-domain, a generic element with two nddasd?2) is
isolated from the FE mesh (Figure 2). The correspondence between each node of the
element and the global node enumeration is established through the mecligpical
and electricaR; connectivity matrices,

i° =Rid, ¢'=R;o, (78a,b)
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with the mechanicaii® and electricalp” elemental DoF vectors defined as

al a2 Al 5 - 5 5 oNT
ﬁe:{a}),wg,eé,e},...,9;,9;,...,eil,ag,wg,eg,ef,...76279;,...7931} ,
(79)
. _ o o
¢ = {¢17"' 7¢ﬁ7¢m7"' 7¢_1} . (80)

The connectivity matrices are of size(§ + 1) xk(q + 1)] and (g x pq), respectively,

and the superscript or 2 denotes the node at which the DoF is defined, while the
subscript identifies the layer to which the DoF refers. As usual, a variable from the
global DoF mechanical vector appears on two DoF elemental vectors, except for the
boundary nodes of the global domain. However, for the electrical case this is not the
case because continuity of the electric potential difference between adjacent FEs is
not assured.

@, w
0. b
P - - ;R
‘9;1 T ¢17"'7¢77 512
1

U g Q‘ .2) B T

50'1 S~ (5,71,...,571 p— —(]2
NS ' ~_ 07

m

Figure 2. One-dimensional FE of the beam with arbitrary ACLD treatments.

From the differential operators (75) it is possible to see that the variational Equa-
tions (73) and (74) contain at most first order derivatives of the generalized displace-
ments and zero order derivatives of the electric potential differences. Thus, the dis-
placement variables within each element domain must be, at least, approximated by
linear interpolation functions. For the electric potential differences, constant functions
are utilized and the electric potential difference becomes constant in each element.
The interpolation functions are grouped in the mechanical and electrical interpolation
matricesN,, andIN,;. Therefore, the generalized displacement and electric potential
vectors in each sub-domain are approximated by

u® (z,t) = N, @i ¢°(v,t) = Nyo". (81a,b)

Considering the relations in (81), the Equations (76) and (77) can be written as

1 22 € e =e e ¢ e

622151-1” (Mg, 0" + K, u° + K, ,¢" —F°) =0, (82)
1 —eT e —e e ¢ e
62215¢ (K5, u°+ K0 —Q°) =0, (83)
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where the elemental matrices and vectors are defined as

M, = [ N/IN,dL, K¢, = / (B! YB,, + kB! _GB,.)dL,, (84a,b)
Le Le
e __ eT T T e T
F¢ = / N, FdL, Q= [ NjrdL, (86a,b)
e Le

and the extensional and shear deformation matrices utilized are given by

A shear correction factak, is introduced in order to approximate the effects of the
non-linear shear deformation distribution [13]. Furthermore, reduced integration of
the higher order terms of the shear stiffness matrix should be used in order to overcome
the overstiffening of the element at low thickness (shear locking).

Considering relations (78) and substituting them into (82) and (83), the global equa-
tions of motion and electric charge equilibrium of the discrete system take the form

Vol Myt + Ky, + Kyy¢ = F, (88)
Vid: Kyt+ Kypp = Q, (89)

with the global matrices and vectors defined by

q q
M., = > RIM¢ RE, K, = > RITKE, RY, (90a,b)
e=1 e=1
q q
K, =K}, = ; RIKS RS, Ky = ; RSKS RS, (91a,b)
q9 q
F=3RJF, Q=3 RJQ" (92a,b)
e=1 e=1

The FE model of the beam with arbitrary ACLD treatments is described by the
elemental matrices and vectors in Equations (84)-(86) and by the global FE equations
of motion and charge equilibrium in Equations (88)-(89).

4 Experimental Validation

In order to validate the presented FE model some measurements were taken on an alu-
minium beam with a partial ACLD treatment (viscoelastic layer sandwiched between
the piezoelectric patch and the base beam). The analysis concerned free-free bound-
ary conditions. The beam wds0 mm long,2.92 mm thick and30 mm wide, and the

ACLD treatment was0 mm long and30 mm wide, with viscoelastic and piezoelectric
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layers of thicknes$.127 mm and0.5 mm, respectively. Taking one end of the beam
to bex = 0, the ACLD treatment was positioned slightly off-center on the beam, start-
ing atx = 202 mm, and was realized with a passive viscoelastic layer of a material
manufactured by 3M (ISDI2) and a piezoelectric constraining patch manufactured
by PI (PIC255). The shear storage modulus and loss factor of the viscoelastic ma-
terial at the experiment temperatu22 °C) were extracted from the manufacturer’s
nomogram [14]. The mechanical and electrical material properties of the aluminium
beam, viscoelastic layer and piezoelectric patch, are presented in Table 1.

Aluminium 3M ISD112 PIC 255
& 69GPa — G 6211GPa ¢, _1L18CIn?
Cs5 26.54 GPa — cs5 23.89 GPa €15 11.94 C/m?

p  2700Kgini 1130Kgimi p 7800 Kg/m®* e 12.6 x10~° F/m
ek 9.96 x 1072 F/m

Table 1: Properties of the aluminium, viscoelastic layer and piezoelectric patch.

The FE model implementation was realized in MATLARRBNd an hysteretic damp-
ing model with a loss factor equal fox 10~2 was considered in the numerical evalu-
ations. Three frequency response functions were measured experimentally and evalu-
ated numerically: acceleration per unit force (accelerance), acceleration per unit volt-
age into the piezoelectric patch and induced voltage per unit force. The excitation and
response locations wereat= 275 mm. The results are shown in Figures 3 to 5.

Mag. [dB] (ref. 1ms2/N)

N I I T B T B SR ]
100 200 300 400 500 600 700 800 900 1000
Freg. [HZz]

Figure 3: Frequency response function (acceleration per unit force) of the beam with
ACLD treatment_ _ _, numerical, , experimental.

As can be seen, there is very good agreement between the numerical and experi-
mental results. Both the dynamics of the system and the actuating and sensing capa-
bilities of the piezoelectric patch are validated.
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Figure 4: Frequency response function (acceleration per unit voltage) of the beam
with ACLD treatment_ _ _, numerical, , experimental.

40

N
o

|
N
o

Mag. [dB] (ref. 1V/N)
o

o

200 300 400 500 600 700 800 900 1000
Freq. [HZz]

100

Figure 5: Frequency response function (voltage per unit force) of the beam with
ACLD treatment_ _ _, numerical, , experimental.

5 Conclusion

In this paper a generic analytical formulation and FE solution for the study of arbitrary
ACLD treatments in beams was presented. The ability of the method to accurately
model the hybrid behavior, elastic, viscoelastic and piezoelectric materials, was vali-
dated against experimental results. The analytical formulation can be used for other
solution methods and the FE model can be used in the simulation of active control
systems in beams with arbitrary ACLD treatments.
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