
1 23

The Mathematical Intelligencer
 
ISSN 0343-6993
Volume 34
Number 2
 
Math Intelligencer (2012) 34:56-62
DOI 10.1007/s00283-012-9287-y

Geometric Orbits

Maria Carvalho & Mika Hager



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Geometric Orbits
MARIA CARVALHO* AND MIKA HAGER

�

II
n the year 2006, the award of the eleventh edition of the
Pirelli International Prize in the category of Science
Communication of Mathematics was granted to a multi-

media work created by David Gale at the University of
California, Berkeley, USA. The jury stressed how efficiently
Gale’s contribution provided the wider public with an infor-
mal and interactive approach to complex mathematics. As
soonas thewinner was announced,wehurried toknowmore
about the laureate’s website.

1 Enticed by the section concern-
inggeometryanddynamicalsystems,2westarted tracingorbits
and guessing their asymptotic behaviour. This is an account of
that experience, with proofs of the properties we found.

Consider, on the plane, a triangle with sides labelled
a, b, c, a point P and its trajectory as it visits each side of the
triangle in alphabetical order, always taking the shortest route.

We may iterate this process, and then repeat it after
changing either the initial point

or the triangle.

After inspecting a few orbits in a number of different
triangles, we notice that, for each triangle, there is a limit
figure, which is another triangle that does not depend on
the choice of the starting point. Looking more closely, this
limit triangle seems similar to the original one, although
rotated by 90 degrees. Moreover, if we reverse the order in
which the trajectories touch the sides of the triangle, from
a, b, c to b, a, c, then the limit triangles (the red one for
a, b, c, the blue one for b, a, c) look congruent, with the
six vertices lying on the same circle.

*Partially supported by FCT through CMUP.
�Supported by Calouste Gulbenkian Foundation through the Program Novos Talentos em Matemática.

1http://mathsite.math.berkeley.edu/main.html
2http://mathsite.math.berkeley.edu/geometricOrbits/geometricOrbits.html
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To prove these and other properties the experiments
suggest, we formalized this iterative process as a mapping
of one side of the triangle into itself. After this was done,
we analysed a more general setting where the sides of the
fixed triangle are visited through routes that may not be the
shortest ones and may not respect the alphabetical order.

Dynamical Systems
A discrete dynamical system on a space X is a function
F : N0 � X ! X defined by Fðn; xÞ ¼ /nðxÞ; where / :
X ! X is a map, /0 ¼ IdentityX and /n is the composition

of / with itself n times. In this way, we assign to each
x 2 X a sequence /nðxÞð Þn2N0

; called the orbit of x by /. In
the study of F ; we aim at a complete description of the set
of accumulation points of the orbit of each x (the so called
x-limit of x) and how it varies with the initial point x.

For instance, if /ðxÞ ¼ x; x 2 R; then each point has the
simplest possible orbit, the constant sequence equal to x. If
/ðxÞ ¼ 1� x; x 2 R; then there is a fixed point, x ¼ 1

2 ; and
all other orbits are periodic with period two (that is, if
x 6¼ 1

2 ; then /(x) = x and / � /ðxÞ ¼ x). If /ðxÞ ¼ x2; x 2
½0; 1�; then there are two fixed points, x = 0 and x = 1, and
all the other orbits converge to 0, which is appropriately
called an attracting fixed point. If /ðxÞ ¼ 1þ 1

x ; x 2 �0;1½;
then again / is a contraction on a neighbourhood of its
unique fixed point, 1þ

ffiffi

5
p

2 ; and all the other orbits approach
it, although not monotonically. (In particular, this is true for
the orbit of 1, whose elements are the sequence of the
ratios of consecutive Fibonacci numbers, that is, the con-
vergents of the continued fraction of the golden number).

The foregoing examples seem simpler than the orbits on a
triangle, and that is sonot onlybecause thosemapsaredefined
onsubsets of the real lineandwemay follow their iterationson
their graphs. Now we have no fewer than three maps – each
corresponding to one side of the triangle – and, in each itera-
tion, we can choose one of them at will. More precisely, if we
denote by pa, pb, and pc the three orthogonal projections on
the sides of a triangle T ; we may combine these maps in
several ways. For instance, we may take:

(i) The map /ab : R2 ! R
2; which assigns to each point P

in the plane its image after the composition of the two
orthogonal projections pa and pb.

(2i) The map /abc : R2 ! R
2; defined by the composition of

the three projections pa, pb, and pc, in this precise order.
(3i) The map /bac : R2 ! R

2; defined by the composition
of the three projections pb, pa, and pc, in this order.

(4i) A random sequence of letters from {a, b, c}, say k ¼
ðknÞn2N; and the corresponding dynamics /k whose
iterates are given by

ð/kÞ0 ¼ Identity

ð/kÞn ¼ pkn
� pkn�1

� � � � � pk1

.........................................................................................................................................................
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Faculdade de Ciências da Universidade

do Porto

Rua do Campo Alegre, 687

4169-007 Porto

Portugal

e-mail: samuli.hager@gmail.com

� 2012 Springer Science+Business Media, LLC, Volume 34, Number 2, 2012 57

Author's personal copy



where, for each Q 2 R
2; the point pkj

(Q) denotes the
orthogonal projection of Q on the side labelled by kj.

All these arrangements of the three maps give rise to an
iterated function system (see [1]), because each projection is
essentially a contraction on T – or rather, on a small compact
extension ET of the sides ofT ; since theorthogonal projections
ofonesideonanothermaywell fall outsideT : In fact, eachmap
ps satisfies (denoting by k � k the usual Euclidean norm)

8P;Q 2 R
2 kpsðPÞ � psðQÞk� kP � Qk

withequality if andonly if the segmentPQ isparallel to the side
labelledbys. Thus, ifwestartwith twopointsPandQona side
of T ; their orthogonal projections on the other sides of the
triangle are strictly closer to each other. In general, we are
dealing with contractions with rates no larger than j ¼
maxfj cosðaÞj; j cosðbÞj; j cosðcÞjg\1; and, therefore, it is no
surprise that we find global attractors in this context, although
the geometrical properties they exhibit are quite astonishing.

Orthogonal Projections
Let T be a triangle with sides a, b, c and angles a, b, c (all
different from zero and p), and P a point in the plane. To
simplify the calculations, we may use coordinates, assum-
ing that P = (P1, P2), the side b lies on the x-axis and a is
on the line that goes through (0,0) at an angle equal to c.
Then the points of the sequence ð/abÞnðPÞð Þn2N; where
/ab ¼ pb � pa; lie on the x-axis and converge to (0,0). In
fact, if a~¼ ðcosðcÞ; sinðcÞÞ is a unit vector generating the
line that contains the side a, then

/abðPÞ ¼ pb � paðPÞ ¼ pbð\P;a~[ a~Þ
¼ \P;a~[ cosðcÞ; 0ð Þ

where \,[denotes the usual inner product in R
2: There-

fore,

ð/abÞ2ðPÞ ¼ \/abðPÞ;a~[ cosðcÞ; 0ð Þ
¼ \ð\P;a~[ cosðcÞ; 0Þ;a~[ cosðcÞ; 0ð Þ
¼ ð\P;a~[ cos2ðcÞÞ cosðcÞ; 0
� �

¼ cos2ðcÞ/abðPÞ

and, in general,

ð/abÞnðPÞ ¼ cos2ðn�1ÞðcÞ/abðPÞ:

Thus, if c ¼ p
2 ; then the sequence ð/abÞnðPÞð Þn2N is con-

stant and equal to (0, 0), the point of intersection of the
sides a and b; if c 2 �0; p

2 ½; then ð/abÞnðPÞð Þn2N also con-
verges to (0, 0), and this sequence essentially lies inside the
angle defined by c; the limit is again (0,0) if c 2 � p2 ; p½;
although now the sequence ð/abÞnðPÞð Þn2N mainly lies on
the complement of this angle. Similar conclusions are valid
for the pairs {b, c} and {a, c}.

We now proceed considering the three projections
together, starting with the simplest case.

Right Triangles

As before, we position the triangle in a favourable corner:
the side a lies on the x-axis (so it is generated by the vector
(1,0)), b on the y-axis (generated by (0,1)), and the side c
lies on the line that passes through the point (0, Y0) with
direction given by the vector ð� cosðbÞ; sinðbÞÞ; where
Y0 ¼ jbj ¼ jaj tanðbÞ:3

Given P = (P1, P2), we have

/abcðPÞ ¼ pc � pb � paðPÞ ¼ pc � pbðP1; 0Þ ¼ pcð0; 0Þ
¼ Y0 cosðbÞ sinðbÞ; cosðbÞð Þ
¼ jaj sinðbÞ sinðbÞ; cosðbÞð Þ;

a point, say Fabc; that lies on the side c and is independent
of P. It is the x-limit of any point P of the plane by the
dynamics /abc.

Let A, B, and C denote the vertices of T (with right
angle \ðACBÞ) and A0 ¼ C ¼ ð0; 0Þ;B0 ¼ Fabc and C 0 ¼
paðFabcÞ ¼ ðjajðsinðbÞÞ

2; 0Þ the three points of the orbit of
Fabc: The latter are the vertices of a new triangle T 1 we will
now compare with T :

Since we are dealing with orthogonal projections, the
angle \ðA0C 0B0Þ ¼ p

2 ; and so \ðA0C 0B0Þ ¼ \ðACBÞ: More-

over, \ðB0A0C 0Þ ¼ \ðB0A0BÞ ¼ a; and therefore the
triangles T and T 1 are similar. In fact, T 1 is the image of T

3The figures illustrating the following pages were drawn by Manuel Arala Chaves (Mathematics Department, University of Porto).
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by a homothety with ratio jA0C 0 j
jAC j ; that is, jaj sin2ðbÞ

jaj tanðbÞ ¼
sinðbÞ cosðbÞ; followed by a 90 degree rotation. Moreover,
the quotient of the areas of T 1 and T is equal to

jA0C 0j2

jAC j2
¼ sinðbÞ cosðbÞð Þ2:

which only depends on the angles of T and attains a
maximum value, equal to 1

4 ; when b ¼ p
4 ; that is to say,

when T is isosceles.
If we change the order in which the sides of T are vis-

ited, from abc to bac, then a similar argument proves that
/bac also has a global attracting fixed point, say Fbac; in the
side c of the triangle, which in fact coincides with Fabc:
However, its images by pb and pa � pb build up a different
limit triangle, say T 2; whose vertices are A00 ¼ C ¼ ð0; 0Þ;
B00 ¼ B0 ¼ Fabc; and C 00 ¼ pbðFabcÞ ¼ ð0; jaj sinðbÞ cosðbÞÞ:

The triangle T 2 is similar to T ; and so is similar to T 1:
Moreover, T 1 and T 2 have one side in common, A0B0 of the
former, A00B00 of the latter; thus T 1 and T 2 are congruent.
And the rotation by 180 degrees around O ¼ 1

2 Fabc sends
one onto the other. Finally, observe that, as O is the mid-
point of the hypotenuses of both T 1 and T 2; it is also the
common circumcenter of both triangles – so, the six verti-
ces lie on the same circle.

General Case

Let now T be any triangle with vertices A, B, C, sides
a, b, c, and opposite angles a, b, c. As before, we may
position it so that A = (0, 0), the side a = AB passes
through (0,0) with slope determined by b, the side c = AC
lies on the x-axis, and b = BC is on the line that crosses the
y-axis at the point (0, Y0), where Y0 ¼ jcj tanðaÞ:

If a~ and b~ denote unit vectors in the direction of the side
a (that is, a~¼ ðcosðbÞ; sinðbÞÞ), and the side b (that is,
b~¼ ð� cosðaÞ; sinðaÞÞ), respectively, then, given a point
P = (P1, P2) in the plane, we have

/abcðPÞ ¼ pc � pb � paðPÞ ¼ pc � pbð\P;a~[ a~Þ
¼ pc½ðY0 sinðaÞ cosðaÞ;Y0ðcosðaÞÞ2Þ

þ\P;a~[ \a~; b~[ b~�
¼ ðY0 sinðaÞ cosðaÞ �\P;a~[ \a~; b~[ cosðaÞ; 0Þ
¼ ðY0 sinðaÞ cosðaÞ � ½P1 cosðbÞ þ P2 sinðbÞ�
� cosðaÞ cosðcÞ; 0Þ:

If we restrict /abc to the line that contains the side c – which
is the x-axis – we are reduced to the analysis of the one-
dimensional dynamics

u : x 2 R! Y0 sinðaÞ cosðaÞ � x cosðaÞ cosðbÞ cosðcÞ:

Theequation/abc(P) = P (or equivalentlyuðxÞ ¼ x)may
now be solved to reveal a unique fixed point, Gabc; with
coordinates

G1 ¼
Y0 sinðaÞ cosðaÞ

1þ cosðaÞ cosðbÞ cosðcÞ
G2 ¼ 0:

Moreover, Gabc is a global attractor. To prove this, it is
enough to verify that u is a contraction. Given x 2 R; by
the Mean-Value Theorem, there exists some n such that

uðxÞ � G1 ¼ u0ðnÞ½x � G1� ¼ � cosðaÞ cosðbÞ cosðcÞ½x � G1�

which is zero, as expected, in the case of a right
triangle. If the triangle is not right, we proceed using
Lagrange multipliers to find the extremes of the deriva-
tive given by � cosðaÞ cosðbÞ cosðcÞ: Consider the real-
valued map f : ðx; y; zÞ ! � cosðxÞ cosðyÞ cosðzÞ restric-
ted to the set fðx; y; zÞ 2 ðRþÞ3 : x þ y þ z ¼ pg: Take
g : ðx; y; zÞ ! x þ y þ z � p and the gradients

rg ¼
1
1
1

0

@

1

A and rf ¼
sinðxÞ cosðyÞ cosðzÞ
cosðxÞ sinðyÞ cosðzÞ
cosðxÞ cosðyÞ sinðzÞ

0

@

1

A:

Then the equality rf = lrg is equivalent to tanðxÞ ¼
tanðyÞ ¼ tanðzÞ; which can only happen if either p 2
fx; y; zg or x ¼ y ¼ z ¼ p

3 : The map f attains a minimum,
equal to � 1

8 ; in the latter case, and a maximum, equal to
1, in the former. But, since within the triangles no angle
can be equal to p, we may guarantee that
� 1

8 � cosðaÞ cosðbÞ cosðcÞ\1: Therefore, for any point
P, the sequence ð/abcÞnðPÞð Þn2N converges to Gabc:

Concerning the shape and position of the triangle T 1 with
vertices A0 ¼ Gabc;B

0 ¼ paðGabcÞ and C 0 ¼ pb � paðGabcÞ; we
recall that\ACB ¼ a;\BAC ¼ b;\ABC ¼ c and, moreover,
that the line A0C 0 is vertical, the line B0C 0 is orthogonal to the
side b, and the line A0B0 is orthogonal to a. Therefore
\A0C 0B0 ¼ a;\B0A0C 0 ¼ b; and \C 0B0A0 ¼ c; which means
that the triangle T 1 is similar to the original one but is rotated
by 90 degrees. Furthermore, the areas of T 1 and T have ratio
equal to
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jA0C 0j2

jAC j2
¼ sinðaÞ cosðaÞ þ sinðaÞ cosðbÞ cosðcÞ

1þ cosðaÞ cosðbÞ cosðcÞ

� �2

;

which only depends on the angles of T :

Changing the Order

Analogous calculations show that /bac has a global attrac-
ting fixed point, too, say Gbac; in the side c of the triangle T ;
given by

Gbac ¼
Y0 cosðaÞ cosðbÞ sinðcÞ

1þ cosðaÞ cosðbÞ cosðcÞ ; 0
� �

:

(If the triangle is right, with b ¼ p
2 ; then this fixed point is

(0, 0), as expected.) The point Gbac and its first iterates by
pb and pa � pb build up a triangle T 2; similar to T ; which is
congruent to T 1 but rotated by 180 degrees. In fact, the
sides of T 1 are pairwise parallel to those of T 2 and,
moreover,

kA0 � B0k ¼ kA00 � B00k ¼ Y0 cosðaÞ sinðbÞ sinðcÞ
1þ cosðaÞ cosðbÞ cosðcÞ :

The common circumcenter is the point of intersection of
the diagonals of the rectangle with vertices A0;B0;A00;B00;
and so it is the midpoint of the segments A0A00 and B0B00:

Other Periodic Arrangements

The iteration of /ab is related to the choice of the periodic
sequence ababab…, with period 2, in the space of letters
fa; b; cgN: As we verified, the global attractor this dynamic
presents – the intersection of the sides a and b – is a fixed
point (with period two if seen distinctly by a and b). Analo-
gously, /abc and /bac correspond to choices of period-
three sequences, namely abcabc… and bacbac…, and the
global attractor they exhibit is a fixed point on c whose
projections on the other sides of T build up a period-three
orbit for the iteration of those projections in the specified
order. We may conjecture that, for any other k-periodic
sequence k ¼ k1. . .kkk1. . .kk. . .ð Þ in fa; b; cgN; the associ-
ated dynamical system /k has a globally attracting fixed
point whose images by all pkj

s make up a polygon with a
number of sides somehow determined by k (some of these
k points may coincide, as happens with the combination
abcb on a right triangle with legs a and b).

The proof of this conjecture is similar to the one described
previously for abcabc…. The key reason why this property
holds is the already mentioned fact that, given a finite block
of letters from a, b, c, with minimum period k and no two
equal consecutive letters (a redundancy we may discard in

advance), say s1s2 � � � sk; the map /s1s2���sk
is a contraction on

ET at a rate better than or equal to j. Moreover, as a conse-
quence of Theorems 3.7.1 and 4.2.1 of [1], the set of periodic
orbits of the iterated function system / is dense in T :

Nonperiodic X-Limits
What happens if we choose a nonperiodic sequence
k ¼ ðknÞn2N in fa; b; cgN? If, although not being periodic, it
uses only two of the three possible letters, then there are no
novelties: the x-limit of each orbit is the intersection point of
the two lines that contain the chosen sides of T ; although the
convergence may be slower than that detected for abab. . .:
However, if k uses all the three letters and is random enough,
then the asymptotic behaviourmay change from theperiodic
pattern. For instance, we may find a sequence k ¼ ðknÞn2N in
fa; b; cgN such that the dynamics of /k has a dense orbit on T
in the following way.

(I) For any pair of points P and Q in T and any
neighbourhood I of Q in T ; we can choose a finite block r

of letters in fa; b; cgN and, starting at P, reach I by iter-
ating /r.

Take an �[ 0; points P;Q 2 T and an open segment I
on the side of T where Q is, containing Q and with length
smaller than � (this arc may end at a vertex of T if Q is a
vertex). As mentioned previously, there is a point R 2 I
that belongs to a global attracting periodic orbit of period p
associated to the dynamics of a map /r ¼ prp

� prp�1
� � � � �

pr1
: Then, iterating the map /r a large enough number

NP;Q;� of times, the orbit of P by /r comes �-close to R, and
so to Q.

(II) For any point P 2 T ; we may find a sequence r of
letters in fa; b; cgN such that the orbit of P by /r visits every
neighbourhood in T :

Fix a point P 2 T and a positive �; and let D ¼
fD1;D2; . . .Dk; . . .g be a countable dense subset of T : By (I),
there are N 1 ¼ N P;D1;� 2 N and a finite choice
r11,…, r1N1

, such that the distance between D1 and the point

R1 ¼ pr1N1
� � � � � pr11

ðPÞ

is less than �: Similarly, there are N 2 ¼ N R1;D2;� 2 N and a
finite choice r21, …, r2N2

, such that the distance between D2

and the point

R2 ¼ pr2N2
� � � � � pr21

ðR1Þ

is less than �: Thus, the distance between D2 and the point

R2 ¼ pr2N2
� � � � � pr21

� pr1N1
� � � � � pr11

ðPÞ

is also smaller than �: Proceeding recursively, we find a
sequence r, made up of the countable union of the finite
blocks of the previous rij’s, such that, by the corresponding
/r, the point P comes �-near to all points of D; and there-
fore �-close to any point in T :

(III) There is a random enough sequence of letters whose
corresponding dynamics has a dense orbit.

Fix again P 2 T and D as previously mentioned, and
take � ¼ 1: As T is compact, there is a finite subcovering by
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triangle-segments I i;1 ¼�Di � 1;Di þ 1½\T ;where i belongs
to some set {k11, …, k12}. Apply now the previous argument
to obtain a finite block t11t12 � � � t1l1

of letters in {a, b, c} such
that the set of iterates

fpt1l1
� � � � � pt11

ðPÞ; � � � � � � ; pt21
� pt11

ðPÞ; pt11
ðPÞg

intersects all the arcs I i;1:
Repeat the procedure with � ¼ 1

2 and the subcovering
I i;12
¼ �Di � 1

2 ;Di þ 1
2 ½\T ; where i belongs to some set

{k21, …, k22}. Consider the point Pl1
¼ pt1l1

� � � � � pt11
ðPÞ:

By a similar reasoning, there exists a finite block t21

t22 � � � t2l2
of {a, b, c} such that the set of iterates

fpt2l2
� � � � � pt21

ðPl1
Þ; � � � � � � ; pt22

� pt21
ðPl1
Þ; pt21

ðPl1
Þg

intersects all the arcs I i;12
:

In general, for any natural j [ 1, take � ¼ 1
j ; a subcov-

ering I i;1j
¼�Di � 1

j ;Di þ 1
j ½\T ; where i belongs to some set

{kj1, …, kj2}, the previously defined point Plj�1
and a finite

block tj1tj2 � � � tjll
of {a, b, c} such that the set of iterates

fptjll
� � � � � ptj1

ðPlj�1
Þ; � � � � � � ; ptj2

� ptj1
ðPlj�1

Þ; ptj1
ðPlj�1

Þg

intersects all the arcs I i;1j
: If k 2 fa; b; cgN is defined by gluing

together all these finite blocks in the order determined by
increasing j, then the orbit ð/kÞnðPÞð Þn2N is dense in T :

Moreover,

(IV) The dynamics ð/kÞnð Þn2N on T is minimal.

Consider P 2 T and the sequence k 2 fa; b; cgN obtained
in (III) for P, so that the orbit of P by /k is dense in T : If we
take another point X 2 T ; we may find an iterate of P arbi-
trarily close to X. Moreover, from this moment on, each
projection contracts distances, so the orbit of X by /k shad-
ows that of P and, therefore, is dense, too.

Generalizations
If we consider another angle to project, or three different
angles, one for each side of T ; not all the above-mentioned
properties manage to survive.

Nonorthogonal Projections

Given an angle h 2 � � p
2 ;

p
2 ½; let pd

h denote the projection on
the side labelled by d along a line that makes with the
orthogonal direction to that side an oriented angle equal to
h. When h = 0 (or very close to 0), we go back to the
setting of the first section. Consider then, for a choice
k ¼ ðknÞn2N in fa; b; cgN; the dynamics defined by

ðwh
kÞ

0 ¼ Identity

ðwh
kÞ

n ¼ ph
kn
� ph

kn�1
� � � � � ph

k1
:

We detect two caveats: The existence of a global attractor
for wab

h , wabc
h and wbac

h is no longer guaranteed, because pd
h

may fail to contract distances; and the calculations become
nastier and explicit expressions of the possible fixed point
and its derivative are rather hard to obtain. So let us just
sketch the main procedure to deal with this case; further
analysis may be performed numerically for definite values
of h.

Label the elements of the triangle, and position them
favourably as we did before. Consider a point P = (P1, P2)
in the plane and the vectors

a~¼ðcosðbÞ; sinðbÞÞ
: a generator of the line that contains the side a

o~¼ðsinðbÞ;� cosðbÞÞ
: a generator of the orthogonal line to the side a

v~¼ðsinðb� hÞ;� cosðb� hÞÞ
: a generator of the line with slope h from o~:

Then pa
h(P) is the intersection of the lines fta~ : t 2 Rg and

fP þ tv~ : t 2 Rg: Straightforward calculations show that
pa

h(P) has coordinates

P1 þ
P2 cosðbÞ � P1 sinðbÞ

cosðhÞ

� �

sinðb� hÞ

and

P2 �
P2 cosðbÞ � P1 sinðbÞ

cosðhÞ

� �

cosðb� hÞ:

Assume, for the moment, that the side b lies on the x-axis.
Then ph

b � ph
aðPÞ is realized through the intersection of the

lines fðt; 0Þ : t 2 Rg and fph
aðPÞ þ th~ : t 2 Rg; where h~¼

ð� sinðhÞ;� cosðhÞÞ is a vector that makes an angle h with
the perpendicular line to the side b. So, in this special
position of the two sides a and b, the second coordinate of
wab

h (P1,P2) is zero, and the first is given by

P1 þ
P2 cosðbÞ � P1 sinðbÞ

cosðhÞ

� �

sinðb� hÞ�

� tanðhÞ P2 �
P2 cosðbÞ � P1 sinðbÞ

cosðhÞ

� �

cosðb� hÞ
� �

:

Hence, wd
h(0, 0) = (0, 0) and the derivative along the

direction b at (0,0) of wab
h is equal to

1� sin2ðbÞ
cos2ðhÞ ;

an expression whose absolute value may fail to be less than
1. (Check, for instance, what happens when b ¼ p

2 and
h[ p

4 :)
By a similar vectorial analysis, we may determine pb

h pa
h(P)

in a more general position. We then deduce that if wabc
h has a

globally attracting fixed point (sayHabc ¼ ðH1; 0Þ) at the line
that contains the side c, then it is a vertex of a triangle S1

similar to T but rotated through an angle of 90 - h degrees,
whose other vertices are the images of Habc by the projec-
tions pb

h, and pa
h. Moreover, if T has angles a, b, and c, and

|c| denotes the length of the side c, then the quotient of the
areas of S1 and T is equal to

area of S1

area of T ¼
jcj � H1

jcj½sinðhÞ þ cotðaÞ cosðhÞ�

� �2

:

Unsurprisingly, wbac
h has a fixed point, too, which is a

vertex of a triangle S2 congruent to S1; and each triangle is
the image of the other by a rotation of 180 degrees around
the common circumcenter.
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Different Angles of Projection

We get different results if the angles of projection vary with
the sides of the triangle. One can adapt the previous cal-
culations to three different angles of projection, say
h1, h2, and h3, belonging to ]� p

2 ;
p
2 ½: As expected, the

explicit formulas are more difficult to unravel. Numerical
experiments indicate that, although there still may be a
global attracting fixed point at the side c, the distortion may
be too strong, and the limit-triangle no longer inherits
significant traits of the original one.

Indeed, if the triangle T has sides a, b, c, and angles
a, b, c, and each point in the plane travels along lines that
intersect T at angles h1, h2, and h3, respectively, then the
angles of the limit triangle T 1 for wh1h2h3

abc ; if it exists, are
aþ h2 � h3; bþ h3 � h1; and cþ h1 � h2: If T 1 does not
degenerate, there seems to exist also a limit triangle T 2 for
wh2h1h3

bac ; which is congruent to T 1 and whose sides are
pairwise parallel to those of T 1:

To Know More

We leave the reader with two of many questions that we
have not addressed in this article:

1. May we generalize most of these properties when other
polygons replace the triangle? For instance, being a
parallelogram is preserved under this type of dynamics.
What else?

2. What is the asymptotic behaviour if, instead of the
plane, the projections act on a 2-sphere (where two
similar triangles are congruent), a nonflat 2-torus, or the
Poincaré disk?
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