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1. Introduction

It is acknowledged that air pollution is a social as well as an environmental problem, leading to a
multitude of adverse effects on humanhealth, ecosystems and the built environment. Several research
studies, systematic reviews and meta-analysis have been carried out to analyse health effects of air
pollutants: Shin et al. (2008) considered these issues by monitoring the risk of death associated with
outdoor air pollution; McCarthy et al. (2009) used ambient monitoring data to determine the relative
importance of individual air toxics for chronic cancer and noncancer exposures; Lai et al. (2013)
analysed the risk estimates for mortality and morbidity outcomes due to air pollutants; Keramatinia
et al. (2016) studied the relationship between exposure to NO2 and breast cancer incidence; and
Song et al. (2016) conducted a systematic review to provide an association between air pollution and
cardiac arrhythmia. In fact, the European Environment Agency, EEA (2015) considers air pollution
the single largest environmental health risk in Europe. Thus the need for accurate assessment of air
pollution arises not only to investigate the linkage between ambient exposure and health effects but
alsowith regard to compliancewith legislated regulatory standards to control levels of environmental
exposure. The above considerations advance the need for statistical models aimed at characterizing
and predicting air quality events and assessing policies over specified areas.

In Portugal, estimation of the index of air quality involvesmeasurements of the following chemical
elements: carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3) and
fine particulate matter as PM10. The index is based on the pollutant with the highest concentration
relative to the Portuguese annual limit values for the protection of human health. This work focus on
NO2 concentrations, which is considered a primary pollutant, formed naturally in the atmosphere
by lightning and produced by plants, soil and water (Carslaw, 2005). However, the major sources
are the fossil fuel combustion processes, the emissions from electricity generating stations and road
traffic. Furthermore, NO2 concentration levels closely follow vehicle emissions, in many situations,
thus providing a reasonable marker exposure to traffic. Nitrogen dioxide is toxic by inhalation
and there is evidence that long-term exposure to NO2 at high concentrations has adverse health
effects, namely in respiratory and cardiovascular systems, Ricciardolo et al. (2004). NO2 and other
nitrogen oxides are also precursor of ozone and particulate matter, whose effects on human health
and the environment are well documented. Concentrations of NO2 have been analysed extensively
in many urban areas (Carslaw, 2005; Grice et al., 2009; Roberts-Semple et al., 2012) as well as in
background sites (Donnelly et al., 2011; Menezes et al., 2016). Moreover, these studies acknowledge
that meteorological conditions influence NO2 levels (Shi and Harrison, 1997; Donnelly et al., 2011;
Russo and Soares, 2014). Thus the overall results indicate recurrent multiple seasonal patterns
resulting from anthropogenic activity and the influence of meteorological variables. Fassó and Negri
(2002) propose a non-linear statistical model to deal with the problem of high frequency andmultiple
frequency periodicities underlying environmental data dynamics. DeLivera et al. (2011) also consider
complex seasonal patterns into their modelling proposals, using exponential smoothing. The former
works restrict their applications to one geographical location.

This work purposes a methodology to characterize the spatial and high resolution temporal evo-
lution of spatio-temporal data using geostatistical approaches. The approach takes into account that
environmental data often incorporate distinct recurring patterns in time and considering the influ-
ence of meteorological variables. The suggested framework is applied to hourly NO2 concentration
levels in Portugal. Spatio-temporal statistical modelling aims at revealing dependencies and spatio-
temporal dynamics e.g. Cameletti et al. (2011) and, in our particular case, at obtaining hourly con-
centration predictions over the country. To this end the model by Menezes et al. (2016) is extended
to hourly data and meteorological variables are included. A block bootstrap procedure is proposed
to correctly assess uncertainty of parameters estimates, as well as to produce reliable confidence re-
gions for (space–time) NO2 concentrations. The model is potentially useful in many areas including
assessment of environmental impact and environmental policies.

The paper is organized as follows. Section 2 describes the data chosen as a motivating example,
as well as the results of the preliminary study. In Section 3, we present a brief review of the spatio-
temporal methodology, highlighting the proposed approach based on a geostatistical framework. In
Section 4, we show the application of the previously described methodology to the characterization
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Fig. 1. Histogram of NO2 concentrations.

of NO2 concentrations in the Portugal case. Section 5 is devoted to make space–time prediction and
forecasting for NO2 concentrations, as well as to analyse scenarios. Section 6 ends up with some
discussion and main concluding remarks.

2. The Portuguese data set

This study analyses hourly measurements of NO2 obtained from the online database on air quality
(Qualar, 2015) of the Portuguese Environment Agency, whose mission is to propose, develop and
monitor the public policies for the environment and sustainable development. The database on air
quality provides hourly measurements, resulting from monitoring activities, for various pollutants,
including NO2. The available data include information about the type of the site where the station
is placed (background, industrial or traffic) and the environment of the zone (urban, suburban or
rural). The most serious drawback of QualAr is that validated data are only available in October of
the following year.

The hourly NO2 concentrations under analysis concern 49 stations located over Portugal
(mainland) from October 1st to December 31st in 2014, in a total of 108192 observations. From the
49 stations, 33 are classified as background, 10 as traffic and 6 as industrial, 29 are located in urban
areas, 11 in rural areas and 9 in suburban areas. The selected period corresponds to the highest NO2
levels along the year, according (Menezes et al., 2016), who analysed NO2 data during 8 years. This
study has about 18% of missing data in the hourly levels of NO2.

The NO2 concentrations have a mean of 20.6 µg/m3, standard deviation of 21.9 and median of
13 µg/m3. The histogram of NO2 concentrations, represented in Fig. 1, reveals asymmetry indicating
departure from Gaussianity.

A periodogram analysis of the data reveals periodicities at 12, 24 and 168 h, which corresponds to
intra-daily, daily and weekly periods. These recurring patterns are clearly observed in Fig. 2, which
represents mean hourly values for both weekdays and weekends. NO2 levels show two daily peaks,
one in the morning (8:00) and one in the afternoon (18:00) which coincide with rush-hour traffic,
with the second peak being more pronounced than the first. Moreover, the mean NO2 concentrations
are much lower on weekends (particularly on Sunday) than on weekdays, displaying, also, smaller
variations on weekends, which reflect reduced levels of vehicular emissions on non-working days.
Thus, the two main seasonal effects in the data: intra-day as well as intra-week periodicities, may be,
at least partially, explained by characteristics of the station. In fact, Fig. 3 illustrates the influence
of the location and the environment of the station in values of NO2. It is clear that the stations
located in traffic areas and urban zones present higher values for their NO2 quartiles as well higher
variability. This analysis indicates that the type of site and the environment zone must be considered
as explanatory variables.
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Fig. 2. Mean NO2 concentrations, for workdays and weekends. The grey line identifies the trigonometric representation based
on Fourier series of the cyclical component, Section 3.

Fig. 3. Boxplots of NO2 concentrations, by type of site and type of environment.

Since it is acknowledged that meteorological variables influence NO2 levels, hourly data from the
followingmeteorological variableswere obtained fromWeather Underground (2015), which provides
weather data collected hourly from around the world: wind speed (km/h); air temperature (°C) and
relative humidity (%). The analysis of the correlation between these meteorological variables and NO2
levels identified the well known negative associations among them. High NO2 concentrations are
favoured by cold and drierweather; on the other hand, an increase ofwind-speed, generally, promotes
dilution and dissipation of the pollutants, thus yielding lower levels of NO2, in accordance with
(Shi and Harrison, 1997). Additionally Spearman’s rank correlation coefficient between NO2 and the
meteorological variables for several lags, represented in Fig. 4 indicates that the strongest correlations
occur at 6-h lag with air temperature, 1-h lag with wind-speed and 5-h lag with relative humidity.
Therefore, thesemeteorological variables at the identified lags are considered as explanatory variables
for NO2 levels.

The above exploratory analysis indicates two main seasonal effects in the temporal dynamics
of NO2 levels: daily and weekly. This preliminary study also shows that the variables type of site
(background, industrial or traffic) and type of environment (urban, suburban or rural), together with
the meteorological variables air temperature (6-h lag), wind speed (1-h lag) and relative humidity (5-
h lag) are possible explanatory variables for the NO2 levels. Further analysis, not reported here, shows
the presence of strong spatial dependence in the NO2 data set as widely reported in environmental
pollution data literature.

These remarks evidence the importance of using a spatio-temporal model incorporating multiple
seasonalities for describing the complex structure and dynamics of the phenomenon.
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Fig. 4. Spearman’s rank correlation coefficient between hourly NO2 and the meteorological variables for several lags.

3. Methodology

Consider a spatio-temporal stochastic process Z (s, t) indexed in space by s ∈ Rd and in time by
t ∈ N. The process can be represented as

Z (s, t) = µ (s, t) + δ (s, t) (1)

where µ (s, t) = E(Z (s, t)) represents a spatio-temporal mean field modelling the trend, usually
referred to as the large-scale variation component and δ (s, t) is a zero-mean smooth stationary
spatio-temporal process that models the small-scale variation (hereafter referred to as stationary
residual).

3.1. Large-scale variation

The mean component µ (·) in the above model may be a deterministic function when the physics
of the underlying phenomenon is known. However, in the large majority of problems and spatio-
temporal data sets such knowledge is unavailable and we must resort to stochastic specifications
which aim at representing the patterns of the observed variability. Accordingly, in the specification
of the mean component we include regression variables observed jointly with the response variables
and incorporate, also, complex nested or non nested seasonal and cyclic effects. In fact, many time
series exhibit multiple seasonal patterns: hourly pollution levels reveal a daily pattern with period of
12 or 24 as well as a weekly pattern with period 24× 7 = 168 and a long series might also exhibit an
annual seasonal pattern with period 24 × 365, resulting from the natural cycles and anthropogenic
activity. Thus, a flexible approach to model (1) consists on considering the generalized linear model
(GLM) which combines three components:

• A randomcomponent specifying the conditional distribution of the response variable Z (s, t), given
the values of explanatory variables. This conditional distribution may be any from the exponential
family thus avoiding transformations of the response variable.

• A systematic component which specifies a linear predictor that is a function of a set of explanatory
variables X

η (s, t) = AX (2)

where A is a matrix of real coefficients and X a matrix of regressors.
A smooth and invertible linearizing link function g(·) which transforms the expectation of the

response variable E(Z (s, t)) = µ (s, t) into the linear predictor η (s, t) = g (µ (s, t)).

Matrix X contains the K regression variables Xi (s, t) , i = 1, . . . , K observed jointly with
the response Z (s, t), and the periodic regressors that capture the periodicities in the time series.
Assume that there are L identified periods (m1, . . . ,mL) and assume for each cyclic component
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at time t , St,l a trigonometric representation based on Fourier series with the form St,l =kl
j=1


φj,1 cos


2π jt
ml


+ φj,2 sin


2π jt
ml


, where kl represents the number of harmonics required for
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where α, βi, φj,1, φj,2 ∈ R are regression parameters.

3.2. Small-scale variation

It is now necessary to consider the space–time dependence structure underlying the stationary
spatio-temporal residual δ (s, t). Many methods have been proposed in the literature to define valid
models for the spatio-temporal dependence structures e.g. Gneiting (2002) and De Cesare et al.
(2001). For a comparative review of the characteristics of many of these currently accepted and
implemented models see De Iaco (2010). One of the main distinctions between these models is
based on the notion of separability. A separable space–time covariance function can be written as
the product of a purely spatial component and a purely temporal component. This allows for efficient
estimation (especially computationally), and inference but the separability is restrictive and often
require unrealistic assumptions (Bruno et al., 2003), and a major disadvantage of these models is that
they cannot incorporate the space–time interaction. Thus, in our study, the attention has shifted to
non-separable covariance structures, namely the product-sum and sum-metric models, which are
widely used in the literature. Other parametric families of non-separable models are discussed in
Cressie and Huang (1999), Ma (2008) and Rodrigues and Diggle (2010). For more general classes of
non-separable covariance functions see Fonseca and Steel (2011) and Ip and Li (2015).

The product-sum model can be defined in terms of the semivariogram as

γst (hs, ht) = γs (hs) + γt (ht) − kγs (hs) γt (ht) (4)

where γs and γt are the corresponding valid semivariogram functions in space and time, (hs, ht) ∈ R
and

k =
sills + sillt − sillst

sillssillt
where sills and sillt represent the sill of the marginal semivariograms in space and time, respectively,
and sillst is the global sill.

The sum-metric model can be defined:

γst (hs, ht) = γs (hs) + γt (ht) + γ (|hs| + α |ht |) (5)

with α ∈ R and γs e γt the semivariograms.

3.3. Parameter estimation and inference by block bootstrap

The estimation of model (1) is accomplished in a 2-step approach which estimates separately the
trend (large-scale variation) and the spatio-temporal dependence structure (small-scale variation)
components. First obtain point estimates for the regression parameters using maximum likelihood
(ML) and relaxing the assumption of non-correlated errors, underlying ML estimation in GLM. Then
fit a valid non-separable space–time variogram to the residuals resulting from the previous step, fully
accomplishing the estimation of the spatio-temporal correlation in the data.
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An important issue arising in the first step as a consequence of relaxing the assumption of
uncorrelated residuals is that of assessing the statistical significance of the estimated parameters.
To handle this issue we resort a bootstrap procedure for serially correlated data. We consider a
modification of the so called block bootstrap (Kreiss and Paparoditis, 2011), based on moving and
overlapping blocks in the time dimension, when taking fixed data in the space dimension. The main
idea consists of dividing the temporal data, (X1, . . . , XT ) say, into blocks of consecutive observations
of length l, (Xt , . . . , Xt+l−1). The first block corresponds to (X1, . . . , Xl) and each new block slides M
time units, becoming (X1+k×M , . . . , Xl+k×M) with k = 1, . . . , K , M ≪ l and l + K × M ≤ T , allowing
for a total of K + 1 blocks. This bootstrap approach is particularly appropriate when one has long
time series, as it is usually the case with hourly data, collected at a small number of geographical
locations. This bootstrap approach further allows to obtain a confidence band for large-scale variation
predictions.

The estimation of the parameters in the semivariograms (4) and (5) relies in a least-squares
approach over a space–time empirical variogram. At this stage the sample marginal variograms
in space and time, defined in De Iaco and Posa (2012) are important to give some guidance for
the selection of the one-dimensional variogram components in (4) and (5). In fact, the selection of
adequatemodels in (4) and (5) is crucial to guarantee that the resulting function is valid for prediction
using kriging tools. Myers (2004) provide some guidelines that may be useful for model selection. To
evaluate the final variograms, a cross-validation approach originally introduced in Stone (1974), and
meanwhile adapted to the context of dependent data, is used. This procedure consists on eliminating
one observation from the whole set and then predicting its value from the remaining data through a
krigingmethodology. Repeating the procedure for all the observations, theMean Square Error (MSE) of
the resulting errors can be used to choose between several (variogram)models. Following an adequate
choice of a spatio-temporal variogram, a block bootstrap procedure is oncemore resorted to correctly
assess uncertainty in its parameters estimates.

4. Results

The preliminary data analysis of NO2 concentrations in Portugal carried out in Section 2, indicates
that the underlying process presents several characteristics such as non Gaussianity, multiple
periodicities and spatial dependence, for which model (1) introduced in Section 3may be particularly
useful. The 2-step estimation procedure proposed is carried out leading to the characterization of the
mean or large-scale variation component in Section 4.1, and that of the stationary residual or small-
scale variation component in Section 4.2. The estimation procedure is implemented in R environment
(R Core Team, 2015) and the following packages are used: gstat (Pebesma, 2004), sp and space–time
(Bivand et al., 2013).

4.1. Large-scale variation

Firstly, we model the trend of NO2 data using a Generalized Linear Model as given in Eq. (3). In
the case of NO2 concentrations, exploratory analysis revealed that it is a continuous variable with an
asymmetric distribution, in particular, we assume that the response variable is gamma distributed
with log-link. As the gamma distribution is only defined for strictly positive values, we make a trans-
lation of the data set by 0.0001. We consider six explanatory variables: type of site, type of environ-
ment, if weekend, air temperature (6-h lag effect), wind speed (1-h lag effect) and relative humidity
(5-h lag effect). Other factors were also considered, like the distinction between the days of the week-
end (week, Saturday and Sunday), but this did not result in significant improvements. Furthermore,
we consider other hour lag effects for meteorological variables, however, the best model is selected
under Akaike information criterion and by graphical observation of NO2 fitted values vs. NO2 levels.

For modelling the seasonal effects in the data set, we proceed as represented in (3), assuming a
trigonometric representation for each cyclic component. The dominant frequencies of the data were
estimated, based on those stations without missing values, which made it possible to identify two
important periodicities equal to 12 and 24 h. Consequently, although we have tested distinct periodic
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Table 1
Estimates of the gamma regression coefficients for hourly NO2 concentrations, together with the corresponding
standard errors obtained by bootstrap.

Parameter Estimate Over-optimistic Bootstrap
Std. Errora Std. Error

Intercept 2.452 0.019 0.259
Type of site (baseline: Background)
Industrial −0.517 0.009 0.026
Traffic 0.489 0.008 0.031
Day of the week (baseline: Weekend)
Week 0.202 0.007 0.024
Environment (baseline: Rural)
Suburban 1.147 0.010 0.128
Urban 1.310 0.008 0.153
Air temperature −0.008 0.0006 0.015
Wind speed −0.029 0.0004 0.002
Relative humidity −0.006 0.0002 0.002
sin( 2π t

12 ) −0.228 0.004 0.019
cos( 2×2π t

12 ) −0.015 0.004 0.007
sin( 2×2π t

12 ) 0.033 0.004 0.011
cos( 4×2π t

12 ) 0.008 0.004 0.002
cos( 2π t

24 ) 0.093 0.005 0.039
sin( 2π t

24 ) −0.167 0.005 0.018
cos( 3×2π t

24 ) 0.018 0.004 0.008
sin( 3×2π t

24 ) 0.102 0.004 0.012
cos( 5×2π t

24 ) 0.016 0.004 0.005
sin( 5×2π t

24 ) −0.021 0.004 0.004
a The standard errors given were obtained by GLM when relaxing the assumption of non-correlated residuals.

regressors, including one for theweekly cycles, the simplermodel restricted to the daily (or half-daily)
cycles proved to be preferable.

The results of the gamma regression of the hourly NO2 concentrations are summarized in Table 1.
The standard errors were obtained using a moving block bootstrap in the time dimension, each block
with 5 weeks sliding 3 h, generating 456 replicates. All 49 monitoring stations were kept as fixed.
According to the notation presented in Section 3, the block length l = 5 × 7 × 24 = 840 h,
δ = 3 h and K = 455. Two weeks blocks were also considered, however, these were not able to
capture patterns of intra- and inter-day variability, meaning that the seasonal components became
no significant in the trend model. From the results in Table 1, we conclude that the values of NO2
concentrations are greater during the week and in monitoring stations where the environment is
urban or suburban and the type of site is traffic. Besides that, NO2 levels increase by a factor of 3.64
from rural to urban, by a factor of 1.64 from background to traffic, and by a factor of 1.22 during the
week. In respect of meteorological variables, these variables have significant negative associations
withNO2 levels. These conclusions confirm the results from the preliminary data analysis.Wind speed
has a stronger influence on NO2 concentrations than humidity and air temperature. Furthermore, NO2
level decreases 3% by an increase of 1 km/h in wind speed and decreases 1% by an increase of 1%
in humidity. In the case of air temperature, the lack of significance in its coefficient was confirmed
under the proposed block bootstrap approach, which can be explained by the fact that only months
with low temperature are selected (in October to December, mean is 14.6 °C and standard deviation
is 5.4 °C). The acquired coefficient of determination shows that 41% of the large-scale variation of NO2
concentrations is explained under this trend model.

4.2. Small-scale variation

Having estimated the large-scale variationµ (s, t) as g−1(η (s, t)) in (3), we now aim at estimating
the dependence structure of the stationary residual δ (s, t), resulting from Z (s, t) − µ (s, t) in (1).
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Table 2
ME and MSE estimates of the cross-validation study.

Model Joint Temporal Space ME MSE

Product-sum model – Exp Gau −0.016 0.214
Sum-metric model Gau Exp Gau −0.007 0.219

Fig. 5. Plots of the experimental estimator (left) and the fitted model (right) for the space–time variogram.

This issue is addressed through the approximation of the spatio-temporal variogram. The fit of
the empirical variogram demands estimation of the unknown parameters of the theoretical model,
namely, the nugget τ 2, the partial variance σ 2 and the range φ. We start by analysing the marginal
spatial and the marginal temporal correlation structures, defined in De Iaco and Posa (2012). The
Gaussianmodel is selected for the approximation of the spatial variogram, suggesting the parameters
estimates τ̂ 2

s = 0.19, σ̂ 2
s = 0.59 and φ̂s = 35.47 km. For the temporal variogram, it is selected

the Exponential model, and the resulting parameters estimates are τ̂ 2
t = 0.60, σ̂ 2

t = 0.06 and
φ̂t = 47.47 h. We examined other models, however, the results for the parameter estimates were
similar.

To decide whether to adopt the product-summodel in (4) or sum-metric model in (5), we proceed
with a cross-validation study to compare bothmodels, according towhich the eliminated observations
are predicted through the kriging tools. For each model, we estimate the mean error (ME) and the
mean square error (MSE) based on all resulting prediction errors. The results in Table 2 are very
similar, however, the model sum-metric has an extra parameter for anisotropy which allows dealing
with spatial and temporal distances in the same term. Besides that, the sum-metric model makes it
possible to use specific variogram for space, time, and space–time. Therefore, we decide to choose the
sum-metric model with an Exponential function for the temporal component and Gaussian functions
for the spatial and the spatio-temporal components.

Under this selection, the fitted final model is represented in Fig. 5 (right), being the corresponding
empirical variogram given in the left panel. The resulting parameters estimates and corresponding
standard errors, obtained by moving block bootstrap, blocks of 5 weeks sliding 8 h, generating 171
replicates, are given in Table 3. Initially, we tried the option of sliding 3 h instead of 8 h, as done for the
regression coefficients estimates in the trend, but the computational cost associated to the estimation
of the variogram was not acceptable. According to the results, we conclude that the majority of the
total variation is explained by the spatial component. The temporal and spatio-temporal components
have a smaller contribution. Furthermore, NO2 concentrations have a significative spatial correlation
up to 40 km and a temporal correlation up to 100 h (approximately 4 days).
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Table 3
Parameters estimates, and corresponding bootstrap standard errors obtained by moving block
bootstrap with blocks of 5 weeks sliding 8 h, generating 171 replicates, for the spatial, temporal and
spatio-temporal variograms.

Variogram Model τ 2 σ 2 φ α

Spatial Gau 0.015 (0.025) 0.662 (0.128) 40 km (1.348)
Temporal Exp 0.010 (0.020) 0.071 (0.022) 100 h (0.003)
Joint Gau 0.172 (0.018) 0.132 (0.030) 70 (0.024) 13.007 (0.074)

Table 4
MASE and MAPE errors for some stations, according environment of the zone and type of the site.

Station Environment Type MASE MAPE (×100%)

Loures Urban Background 0.841 0.54
Beato Urban Background 0.618 0.40
Entrecampos Urban Traffic 0.898 0.48
Avenida da Liberdade Urban Traffic 0.443 0.47
Matosinhos Suburban Background 0.623 0.51
Lourinhã Rural Background 0.874 0.38
Sonega Rural Industrial 0.757 0.68

4.3. Model assessment

To assess the goodness of fit of the model two measures are chosen: the Mean Absolute
Percentual Error (MAPE) and the Mean Absolute Scaled Error (MASE). The MAPE, being a percentage
error has the advantage of being scale-independent, and so is frequently used to compare model
predictive performance between different data sets, in this case stations with different environment
characteristics. On the other hand, the MAPE, being a measure based on percentage errors has the
disadvantage of presenting large values for observations close to zero. Hyndman and Koehler (2006)
proposed theMASE as an alternativemeasure based on scaled errors, which, in fact, compare the error
in the value predicted by the model with that of a naive prediction. The naive prediction must take
into account the data seasonality.

For model assessment the predictions are defined as Ẑ (s, t) = µ̂ (s, t)+ δ̂ (s, t), where: µ̂ (s, t) is
the fitted large scale variation at location s and time t , given climate conditions; and δ̂ (s, t) is the
predicted small scale-variation, obtained under a cross-validation approach. This means that data
from station at location s is eliminated and δ (s, t) is predicted from the remaining data by kriging
tools. Considering T observations for any particular station s, one has

MAPE =
1
T

T
t=1

|et |
Z (s, t)

× 100% MASE =

T
t=1

|et |
T

t=1
|Z (s, t) − Z (s, t − 168) |

where et = Ẑ (s, t) − Z (s, t).
Since our data set is of high dimensionality, model assessment is performed for a subset of

seven monitoring stations (Loures, Beato, Entrecampos, Avenida da Liberdade, Matosinhos, Lourinhã,
Sonega) representative of the different types of environments during five consecutive working days:
from2014-10-13 at 0:00 (Monday) to 2014-10-17 at 24:00 h (Friday). Goodness of fitmeasures,MAPE
and MASE for the seven stations are presented in Table 4. For the computation of the MASE, a more
adequatemeasure in our case, we considered a naive prediction of theNO2 concentration at a location,
the value of the concentration at that location, at the sameday and same timeof the day of the previous
week, computed formean climate conditions of that time of day. This procedure takes into account the
multiple seasonalities present inNO2 concentrations. TheMASE values range from0.44 to 0.90 and are
all less than one indicating that the model predicts more accurately that the naive predictor. There is
not a clear pattern on the errors with urban, traffic stations (Avenida da Liberdade and Entrecampos)
presenting the lowest and highest MASE errors. The absence of such a pattern may be explained on
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Fig. 6. Estimation of the large-scale variation (top) and small-scale variation (bottom) of NO2 concentrations in Loures station
from 2014-10-13 (Monday) to 2014-10-17 (Friday).

one hand by the high variability that hourly concentrations present and on the other hand, the low
number of stations classified as rural and industrial.

The predicted large and small scales variation and observed concentration in Loures, an urban and
background station, represented in Fig. 6 illustrates the high variability present in the data. Although
the overallmean intra-day pattern of theNO2 concentrations iswell described by themodel, see Fig. 2,
individual stations and days present particularities that remain unexplained by the model.

Even so, this assessment exercise allows to conclude that the model provides a good enough rep-
resentation of the data and can be used for out of sample prediction and scenario generation.

5. Space–time prediction and forecasting

This section illustrates the potential of the proposed spatio-temporal modelling strategy for
prediction and forecasting. The former is accomplished by interpolating in the observed space–time
dimension, through the kriging tools. The latter is accomplished through the mean predictor given in
(3), as it allows to obtain NO2 forecasts as a function of the explanatory variables.

5.1. Space–time prediction

A major advantage of the proposed modelling methodology is the possibility of using space–time
kriging techniques, namely ordinary kriging, to make predictions at any space–time point within
the observation domain. Thus it allows to assess how pollution patterns change over space and
time, as well as extending the current sampling design to locations without monitoring stations.
This is illustrated in Fig. 7 which represents the predicted spatio-temporal NO2 concentrations
process (small-scale variation) over Portugal on a Friday and a Sunday at 8:00, 13:00 and 18:00. We
choose these days because Friday and Sunday are the days of the week with the highest and lowest
concentration levels, respectively, while the choice of the times correspond to dailymaxima, 8:00 and
18:00 andminimum, 13:00. Note thatmost of the temporal patterns inNO2 concentrations result from
anthropogenic activities and are captured by the mean or large-scale variation. The first comment is
that NO2 concentrations present a strong spatial pattern that does not present much variation over
time: along the day and overs different days. The space–time residual process achieves higher values
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Fig. 7. Space kriging maps for 2014-11-21 (Friday) and 2014-11-23 (Sunday), aiming to estimate the intra- and inter-day
spatial patterns of NO2 after removing the estimated trend.

on the coast where most of the urban and traffic monitoring station are located, corresponding to
higher population density.

One may find slight differences on spatial patterns in interior zones of Portugal probably justified
by the lack of monitoring stations, becoming harder to produce accurate estimations. Moreover, we
can conclude that the estimated residuals slightly decrease, when comparing Friday and Sunday,
mainly at 8:00 and 18:00. This should be explained by the lower traffic typical from weekends at
these moments of the day.

A further application of space–time kriging allows to predict missing values in a specific station.
These missing values may occur occasionally at some time points or when the station becomes
inactive. Firstly, to illustrate this application, we proceed with the estimation of large and small-
scale variation from Monday 2014-10-06 to Friday 2014-10-10 for Vila Nova da Telha, a suburban
and background station from Maia county with no observations during this period. The results are
presented at Fig. 8, dashed lines, in the top panel, represent the 95% confidence bands for the estimated
large-scale variation obtained bymoving block bootstrap in time dimension, as explained in Section 3.
The 95% confidence bands for the estimated small-scale variation, in the bottom panel, were obtained
using kriging tools. We note that the estimated afternoon peak seems to occur 1 h later which might
be explained by the fact that Maia is a satellite town of Porto, leading to a postponed rush hour traffic.
Wednesday’s NO2 concentrations are lower with a somewhat different pattern from the remaining
weekdays, which is also noted for other stations.

5.2. Forecasting

The proposed model and associated modelling strategy enables to produce forecasts for NO2 and
quantify the associated uncertainty, as well as to analyse scenarios of possible future situations such
as climate change and environmental policies. As explained before, the NO2 forecasts are acquired
through the mean predictor.

In Portugal, December 2015 was considered atypically warm with a mean temperature of 11.8 °C,
the second warmest since 1931. Consider the 14th of December, a Monday, with mean valued for
temperature, wind speed and relative humidity 16.1 °C, 15.6 km/h and 87%, respectively. The daily
mean forecasts for NO2 in the 39 stations are represented in the right panel of Fig. 9. The point
estimates are classified for easiness of representation. Since QualAr NO2 levels for December 2015
are not available at the time of writing, we compare these forecasts with fitted NO2 levels for Monday
15th December 2014, left panel of Fig. 9, a day with somewhat different meteorological conditions:
mean temperature of 11.2 °C, wind speed of 9.9 km/h and relative humidity of 78.5%.

As expected, due to the altered weather conditions in 2015, the predictions of NO2 levels for this
year are lower than for 2014, in particular in the north of the country.

To further analyse the impact of meteorological variables (wind speed and relative humidity), we
now compare hourly NO2 concentrations observed during a week in 2014 with the corresponding
2015 forecasts for the same weekdays. The analysis is illustrated in Vila do Conde, a suburban and
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Fig. 8. Estimation of the large-scale variation, top panel, and small-scale variation, bottom panel, of NO2 concentrations in
Maia station from Monday 2014-10-06 to Friday 2014-10-10. The dashed-lines identify the 95% confidence bands for: large-
scale variation, obtained by amoving block bootstrap, each blockwith 5weeks sliding 3 h, generating 456 replicates (top panel);
small-scale variation obtained by kriging tools (bottom panel).

background station, between 15th and 21st December of 2014 (14th to 20th December of 2015). In
Fig. 10, all the meteorological variables and NO2 levels for 2014 represent observed values, while the
bottom right panel represents NO2 forecasts for 2015. Bearing inmind that in 2014 the values of wind
speed ranged from 0 to 15 km/h and in 2015 ranged from 0 to 30 km/h (top panels), and the increased
variability of relative humidity in 2015 (middle panels), we note a significant decrease in the forecasts
of NO2 concentrations for 2015. Furthermore, the maximum peaks in the wind speed correspond to
the minimum peaks of NO2 concentrations, showing a ‘‘mirror’’ alike effect.

5.3. Scenario analysis

Scenario analysis is achieved with conditional forecasting in which future (unknown) realizations
of the explanatory variables are fixed at plausible values of interest. To illustrate the potential of
the model in scenario generation, we obtain NO2 forecasts under two distinct scenarios: if wind
speed duplicates, and if relative humidity is reduced by half. In particular, we choose again Vila do
Conde station, as being located in the north Portuguese coast, typically a windy and humid region.
Fig. 11 displays the observedNO2 concentrations from2014-12-12 (Monday) to 2014-12-18 (Sunday),
against theNO2 forecasts under the two scenarioswhich are being considered. The results confirm that
an increase in wind speed provokes, in general, a decrease in NO2 concentrations and a decrease in
relative humidity provokes, generally, an increase in NO2 levels.
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Fig. 9. Daily mean of fitted NO2 levels for 2014-12-15 (left). As meteorological data are available earlier than NO2 levels,
predictions for NO2 levels for 2015-12-14 (right).

Fig. 10. Observed NO2 concentrations and meteorological variables in Vila do Conde, suburban and background station from
2014-12-15 (Monday) to 2014-12-21 (Sunday) (left). Meteorological variables in Vila do Conde from 2015-12-14 (Monday) to
2015-12-20 (Sunday) (right) and corresponding NO2 forecasts.

A last example of scenario generation is the enforcement of environmental policies that many
European cities are taking by pondering the permanent prohibition of vehicles in certain areas. This
is equivalent to changing the type of site of a station located in a city from traffic to background.
To illustrate this situation we consider Entrecampos which is an urban and traffic station located in
Lisbon, where only vehicles registered after 1996 can circulate. Fig. 12 displays the observed NO2
levels together with NO2 forecast if Entrecampos station becomes classified as background, assuming
that the meteorological variables are the same as in 2014. The decrease not only in mean but also in
variability of NO2 levels is noteworthy.
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Fig. 11. Observed NO2 concentrations, in Vila do Conde station, from 2014-12-12 (Monday) to 2014-12-18 (Sunday). The
dashed-lines represent NO2 forecasts under the scenarios: wind speed duplicates (top panel) and relative humidity reduced by
half (bottom panel).

Fig. 12. Observed NO2 concentrations in Entrecampos station from 2014-12-12 (Monday) to 2014-12-18 (Sunday). The
dashed-line represents NO2 forecast under the scenario of changing this station from traffic to background classification.

6. Discussion and concluding remarks

In this work, an easily implementable two-step approach is suggested to model spatial and
high resolution temporal data, which exhibits multiple seasonal patterns imposed by social habits,
anthropogenic activity and natural cycles explained by meteorological condition, simultaneously
incorporating any additional information considered relevant to explain the phenomenon. The
framework allows inference on the large-scale and small-scale variation components of the spatio-
temporal stochastic process. Our proposal uses a block bootstrap procedure to correctly assess
uncertainty in parameter estimates and produce reliable confidence regions for (space–time)
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unobserved values of the variable of interest. The suggested modelling approach, supported by well-
known geostatistical tools such as kriging, is amethodology accessible to awide range of practitioners,
within the scope of spatial statistics.

Nonetheless, the discussed model presents some limitations, one of which is the difficulty in
capturing temporal specificities intrinsic to a location. In fact, as discussed in Section 4.3 in the
illustrating example, although the overall mean intra-day pattern of the NO2 concentrations is well
described by the model, individual stations and days present particularities that remain unexplained.
For example, stations located in the surroundings ofmajor cities present anticipated and/or postponed
rush-hour traffic leading to lagged peaks of NO2 concentrations. To overcome this issue interactions
between harmonic regression and type of station could be incorporated into the model, or time
and space-varying model parameters could be allowed. Furthermore, this method, as a two-stage
approach may introduce some extra-variance in the inferential procedures, which is expected to be
negligible. A simulation study could be conducted to better assess its impact.

An alternative advocated approach is the Stochastic Partial Differential Equations (SPDE) approach
implemented via the Integrated Nested Laplace Approximation (INLA) R package which is currently
widely used in spatio-temporalmodelling. For high resolution time series, such as the ones considered
in the present work, Blangiardo and Cameletti (2015) point out that INLA becomes computationally
expensive and advise lowering the temporal resolution by defining the model on a set of time knots,
instead of on the set of all the time points. In our view, this could, however, mask high frequency
variability, such as intra-day variability resulting from anthropogenic activities and meteorological
conditions.

This work contributes to the characterization of the space–time dynamics, which can be used to
complement the current sampling design by space–time prediction, to obtain forecasts and perform
scenario analysis in environmental data as NO2 concentrations, as well as in other data sets with
similar characteristics, such as electrical demand.
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